Feltöltés alatt...

Elfogadott dolgozatok

Á. Figula and G. Falcone, The action of a compact Lie group on nilpotent Lie algebras of type {n,2}, accepted for publication in Forum Math., pp. 16.

Á. Figula, G. Falcone and Karl Strambach, Multiplicative loops of 2-dimensional topological quasifields, accepted for publication in Communications in Algebra, pp. 29.

Á. Figula and M. Z. Menteshashvili, On the geometry of the domain of the solution of nonlinear Cauchy problem, accepted for publication in UNIPA Springer Series, pp. 14.

D. Cs. Kertész and L. Tamássy, Differentiable distance spaces.

Gy. Szanyi, The study of the preparation of function concept.

Gy. Szanyi, A szabályfelismerő és szabálykövető képességek fejlesztése a törtek tanítása során.

Gy. Szanyi, The investigation of students’ skills in the process of function concept creation.


Z. Muzsnay and P. T. Nagy, Finsler 2-manifolds with maximal holonomy group of infinite dimension, Differential Geometry and its Applications, 39 (2015), 19.   
[pdf] [journal] [doi]

Z. Muzsnay and P. T. Nagy, Projectively flat Finsler manifolds with infinite dimensional holonomy, Forum Mathematicum, 27 (2) (2015), 767–786.

Á. Figula and V. Kvaratskhelia, Some numerical characteristics of Sylvester and Hadamard matrices, Publ. Math. Debrecen, 86 (1-2) (2015), 149168.

Á. Figula and M. Lattuca, Three-dimensional topological loops with nilpotent multiplication groups, J. Lie Theory, 25/3 ) (2015), 787805.

Cs. Vincze and Á. Nagy, An algorithm for the reconstruction of hv-convex planar bodies by finitely many and noisy measurements of their coordinate X-rays, Fundamenta Informaticae, 141 (2015), 169–189.

Cs. Vincze and Á. Nagy, Generalized conic functions of hv-convex planar sets: continuity properties and relations to X-rays, Aequationes Mathematicae, 89 (4) (2015), 10151030.

Á. Nagy, Cs. Vincze, M. Barczy and Cs. NoszályA Robbins-Monro-type algorithm for computing global minimizer of generalized conic functions, Optimization, 64 (9) (2015), 19992020.

Á. Nagy, A short review on the theory of generalized conics, AMAPN, 31 (1) (2015), 8196.

B. Aradi, Left invariant Finsler manifolds are generalized Berwald, European Journal of Pure and Applied Mathematics 8 (1) (2015), 118–125.
[journal] [pdf]

D. Cs. Kertész, S. Deng and Z. Yan, There are no proper Berwald–Einstein manifolds, Publ. Math. Debrecen, 86 (2015).

D. Cs. Kertész, Finslerian Lie derivative and Landsberg manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S.),  31 (2) (2015).



Z. Muzsnay and P. T. Nagy, Characterization of projective Finsler manifolds of constant curvature having infinite dimensional holonomy group, Publ. Math. Debrecen,  84 (1-2) (2014), 1728.

Z. Kovács and A. Lengyelné Tóth, Left invariant Randers metrics on the 3-dimensional Heisenberg group, Publ. Math. Debrecen, 85 (1-2) (2014), 161–179.

B. Aradi and D. Cs. Kertész, Isometries, submetries and distance coordinates on Finsler manifolds, Acta Mathematica Hungarica 143 (2) (2014), 337–350.

[2] B. Aradi and D. Cs. Kertész, A characterization of holonomy invariant functions on tangent bundles, Balkan Journal of Geometry and Its Applications 19(2) (2014), 1–10.


J. Szilasi, R. L. Lovas and D. Cs. Kertész, Connections, Sprays and Finsler Structures, World Scientific, 2014.

Z. Muzsnay and J. Grifone, Variational Principles for Second-order Differential Equations, World Scientific, Singapore, 2000.