Hivatkozások: Több mint 2400 hivatkozás (hivatkozáslista), Hirsch-index: 26.

[1] K. Győry, On the diophantine equations n\choose 2=al and n\choose 3=al (in Hungarian), Mat. Lapok, 14 (1963), 322-329.

[2] K. Győry and A. Pethő, On solutions with „many” zeros in homogeneous linear equation systems (in Hungarian), Mat. Lapok, 16 (1965), 267-273.

[3] Z. Daróczy and K. Győry, Die Cauchysche Funktionalgleichung über diskrete Mengen, Publ. Math. Debrecen, 13 (1966), 249-256.

[4] K. Győry, Über die diophantische Gleichung xp+yp=czp. Publ. Math. Debrecen, 13 (1966), 301-306.

[5] K. Győry, Contributions to the theory of diophantine equations (in Hungarian), university doctor's thesis, Debrecen, 1966.

[6] K. Győry, On the diophantine equation xp+yp=czp (in Hungarian), Mat. Lapok, 18 (1967), 93-96.

[7] K. Győry, Note sur un théorème de H. Davenport et de K. F. Roth, Publ. Math. Debrecen, 14 (1967), 331-336.

[8] K. Győry, Sur une classe des équations diophantiennes, Publ. Math. Debrecen, 15 (1968), 165-179.

[9] K. Győry and B. Kovács, On a number-theoretical congruence (in Hungarian), Mat. Lapok 19 (1968), 109-116.

[10] K. Győry, Sur une classe des équations diophantiques, Number Theory. Coll. Math. Soc. J. Bolyai 2, North-Holland Publ. Comp., Amsterdam-London, 1969, pp. 111-116.

[11] K. Győry, Note on the paper of W. M. Schmidt „Some diophantine equations in three variables with only finitely many solutions”, Ann. Univ. Sci. Budapest Eötvös, Sect. Math., 12 (1969), 67-71.

[12] K. Győry, Représentation des nombres par des formes décomposables I., Publ. Math. Debrecen, 16 (1969), 253-263.

[13] K. Győry and L. Lovász, Representation of integers by norm forms II., Publ. Math. Debrecen, 17 (1970), 173-181.

[14] K. Győry, Sur l'irréductibilité d'une classe des polynômes I., Publ. Math. Debrecen, 18 (1971), 289-307.

[15] K. Győry, Sur l'irréductibilité d'une classe des polynômes II., Publ. Math. Debrecen, 19 (1972), 293-326.

[16] K. Győry, Diophantine investigations in the theory of irreducible polynomials (in Hungarian), candidate's thesis, Debrecen, 1972.

[17] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith., 23 (1973), 419-426.

[18] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné II., Publ. Math. Debrecen, 21 (1974), 125-144.

[19] K. Győry, Professor Dr. Andor Kertész (1929-1974), Publ. Math. Debrecen, 21 (1974), 159-160.

[20] K. Győry, Sur une classe des corps de nombres algébriques et ses applications, Publ. Math. Debrecen, 22 (1975), 151-175.

[21] K. Győry and A. Pethő, Sur la distribution des solutions des équations du type „norme-forme”, Acta Math. Acad. Sci. Hungar., 26 (1975), 135-142.

[22] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné III., Publ. Math. Debrecen, 23 (1976), 141-165.

[23] K. Győry, Polynomials with given discriminant, Topics in Number Theory.  Coll. Math. Soc. J. Bolyai 13, North-Holland Publ. Comp., 1976, pp. 65-78.

[24] K. Győry and J. Rimán, On irreducibility criteria of Schur type (in Hungarian), Mat. Lapok, 24 (1973), 225-253 (1977).

[25] K. Győry and A. Pethő, Über die Verteilung der Lösungen von Normformen Gleichungen II., Acta Arith., 32 (1977), 349-363.

[26] K. Győry and W. Leahey, A note on Hilbert class fields of algebraic number fields, Acta Math. Acad. Sci. Hungar., 29 (1977), 251-254.

[27] K. Győry, Représentation des nombres entiers par des formes binaires, Publ. Math. Debrecen, 24 (1977), 363-375.

[28] K. Győry and Z. Z. Papp, On discriminant form and index form equations, Studia Sci. Math. Hungar., 12 (1977), 47-60 (1980).

[29] K. Győry, On polynomials with integer coefficients and given discriminant IV., Publ. Math. Debrecen, 25 (1978), 155-167.

[30] K. Győry and Z. Z. Papp, Effective estimates for the integer solutions of norm form and discriminant form equations, Publ. Math. Debrecen, 25 (1978), 311-325.

[31] K. Győry, On polynomials with integer coefficients and given discriminant V, p-adic generalizations, Acta Math. Acad. Sci. Hungar., 32 (1978), 175-190.

[32] K. Győry, On the greatest prime factors of decomposable forms at integer points, Ann. Acad. Sci. Fenn., Ser. A I Math., 4 (1978/1979), 341-355.

[33] M. Voorhoeve, K. Győry and R. Tijdeman, On the Diophantine equation 1k+2k+…+xk+R(x)=yz, Acta Math., 143 (1979), 1-8.

[34] K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv., 54 (1979), 583-600.

[35] K. Győry, Norm form equations, Séminaire de Théorie des Nombres, 1978-1979, Univ. Bordeaux, No. 25, 1-9 (1979).

[36] K. Győry, On the solutions of linear Diophantine equations in algebraic integers of bounded norm, Ann. Univ. Sci. Budapest Eötvös, Sect. Math., 22-23 (1979-1980), 225-233.

[37] K. Győry, On certain graphs composed of algebraic integers of a number field and their applications I., Publ. Math. Debrecen, 27 (1980), 229-242.

[38] K. Győry and A. Pethő, Über die Verteilung der Lösungen von Normformen Gleichungen III., Acta Arith., 37 (1980), 143-165.

[39] K. Győry, R. Tijdeman and M. Voorhoeve, On the equation 1k+2k+…+xk=yz, Acta Arith., 37 (1980), 233-240.

[40] P. Erdős, K. Győry and Z. Z. Papp, On some new properties of functions σ(n), φ(n), d(n) and ν(n) (in Hungarian), Mat. Lapok, 28 (1980), 125-131.

[41] K. Győry, Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn., Ser. A I Math., 5 (1980), 3-12.

[42] K. Győry, Corps de nombres algébriques d'anneau d'entiers monogène, Séminaire Delange-Pisot-Poitou (Théorie des Nombres), 20e année, 1978/1979 Paris, No 26, 1-7 (1980).

[43] K. Győry, Sur une généralisation de l'équation de Thue-Mahler, C. R. Acad. Sci. Paris, Sér. A, 290 (1980), 633-635.

[44] K. Győry, Explicit lower bounds for linear forms with algebraic coefficients, Arch. Math., 35 (1980), 438-446.

[45] K. Győry, Sur certaines généralisations de l'équation de Thue-Mahler, Enseign. Math., 26 (1980), 247-255.

[46] K. Győry, Résultats effectifs sur la représentation des entiers par des formes décomposables, Queen's Papers in Pure and Applied Math., No. 56, Kingston, Canada, 1980.

[47] K. Győry, On the representation of integers by decomposable forms in several variables, Publ. Math. Debrecen, 28 (1981), 89-98.

[48] K. Győry, On discriminants and indices of integers of an algebraic number field, J. Reine Angew. Math., 324 (1981), 114-126.

[49] K. Győry, P. Kiss and A. Schinzel, On Lucas and Lehmer sequences and their applications to diophantine equations, Colloq. Math., 45 (1981), 75-80.

[50] K. Győry, On certain graphs associated with an integral domain and their applications to diophantine problems, Publ. Math. Debrecen, 29 (1982), 79-94.

[51] K. Győry, On some arithmetical properties of Lucas and Lehmer numbers, Acta Arith., 40 (1982), 369-373.

[52] K. Győry, On the irreducibility of a class of polynomials III., J. Number Theory, 15 (1982), 164-181.

[53] K. Győry, Polynomials of given discriminant and integral elements of given discriminant over integral domains, C. R. Math. Rep. Acad. Sci. Canada, 4 (1982), 75-80.

[54] K. Győry, On S-integral solutions of norm form, discriminant form and index form equations, Studia Sci. Math. Hungar., 16 (1981), 149-161 (1983).

[55] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, Studies in Pure Mathematics (To the memory of Paul Turán), Akadémiai Kiadó, Budapest, 1983, pp. 245-257.

[56] K. Győry, Bounds for the solutions of norm form, discriminant form and index form equations in finitely generated integral domains, Acta Math. Hungar., 42 (1983), 45-80.

[57] K. Győry, Effective finiteness theorems for diophantine problems and their applications (in Hungarian), academic doctor's thesis, Debrecen, 1983.

[58] K. Győry, Graphs associated with an integral domain and their applications, Finite and infinite sets. Coll. Math. Soc. J. Bolyai, 37, North-Holland Publ. Comp., 1984, pp. 349-358.

[59] K. Győry, On norm form, discriminant form and index form equations, Topics in Classical Number Theory.  Coll. Math. Soc. J. Bolyai, 34, North-Holland Publ. Comp., 1984, pp. 617-676.

[60] K. Győry, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math., 346 (1984), 54-100.

[61] K. Győry, Sur les générateurs des ordres monogènes des corps de nombres algébriques, Séminaire de Théorie des Nombres, 1983-84. Univ. Bordeaux, No. 32., pp. 12 (1984).

[62] J. H. Evertse and K. Győry, On unit equations and decomposable form equations, J. Reine Angew. Math., 358 (1985), 6-19.

[63] B. Brindza, K. Győry and R. Tijdeman, The Fermat equation with polynomial values as base variables, Invent. Math., 80 (1985), 139-151.

[64] B. Brindza, K. Győry and R. Tijdeman, On the Catalan equation over algebraic number fields, J. Reine Angew. Math., 367 (1986), 90-102.

[65] K. Győry, C. L. Stewart and R. Tijdeman, On prime factors of sums of integers I., Compositio Math., 59 (1986), 81-89.

[66] J. H. Evertse, K. Győry, T. N. Shorey and R. Tijdeman, Equal values of binary forms at integral points, Acta Arith., 48 (1987), 379-396.

[67] J. H. Evertse and K. Győry, On the number of polynomials and integral elements of given discriminant, Acta Math. Hungar., 51 (1988), 341-362.

[68] K. Győry, C. L. Stewart and R. Tijdeman, On prime factors of sums of integers III., Acta Arith., 49 (1988), 307-312.

[69] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, On S-unit equations in two unknowns, Invent. Math., 92 (1988), 461-477.

[70] J. H. Evertse and K. Győry, On the numbers of solutions of weighted unit equations, Compositio Math., 66 (1988), 329-354.

[71] K. Győry and T. N. Shorey, On the denominators of equivalent algebraic numbers, Indag. Math., 50 (1988), 29-41.

[72] J. H. Evertse and K. Győry, Finiteness criteria for decomposable form equations, Acta Arith., 50 (1988), 357-379.

[73] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, New Advances in Transcendence Theory (A. Baker ed.), Cambridge University Press, 1988, pp. 110-174.

[74] J. H. Evertse and K. Győry, Decomposable form equations, New Advances in Transcendence Theory (A. Baker ed.), Cambridge University Press, 1988, pp. 175-202.

[75] J. H. Evertse, I. Gaál and K. Győry, On the numbers of solutions of decomposable polynomial equations, Arch. Math., 52 (1989), 337-353.

[76] J. H. Evertse and K. Győry, Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math., 399 (1989), 60-80.

[77] J. H. Evertse and K. Győry, On the number of solutions of unit equations and decomposable polynomial equations, Number Theory. Coll. Math. Soc. J. Bolyai 51, North-Holland Publ Comp., 1990, pp. 671-696.

[78] B. Brindza and K. Győry, On unit equations with rational coefficients, Acta Arith., 53 (1990), 367-388.

[79] K. Győry, On arithmetic graphs associated with integral domains, A Tribute to Paul Erdős, Cambridge University Press, 1990, pp. 207-222.

[80] J. Buchmann, K. Győry, M. Mignotte and N. Tzanakis, Lower bounds for P(x3+k), an elementary approach, Publ. Math. Debrecen, 38 (1990), 1-19.

[81] K. Győry, M. Mignotte and T. N. Shorey, On some arithmetical properties of weighted sums of S-units, Math. Pannon., 1/2 (1990), 25-43.

[82] K. Győry and G. Halász (eds.), Number Theory, Coll. Math. Soc. J. Bolyai 51, North-Holland Publ. Comp., Amsterdam-Oxford-New York, 1990.

[83] J. H. Evertse and K. Győry, Thue inequalities with a small number of solutions, The Mathematical Heritage of C. F. Gauss, World Scientific Publ. Comp., 1991, pp. 204-224.

[84] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math., 79 (1991), 169-204.

[85] J. H. Evertse and K. Győry, Some new results on Thue equations and Thue-Mahler equations, Computational Number Theory. Walter de Gruyter, Berlin-New York, 1991, pp. 295-302.

[86] B. Brindza, J. H. Evertse and K. Győry, Bounds for the solutions of some diophantine equations in terms of discriminants, J. Austral. Math. Soc., Ser. A, 51 (1991), 8-26.

[87] K. Győry and A. Pethő, On second order linear divisibility sequences over algebraic number fields, Publ. Math. Debrecen, 39 (1991), 171-179.

[88] J. H. Evertse and K. Győry, Effective finiteness theorems for decomposable forms of given discriminant, Acta Arith., 60 (1992), 233-277.

[89] K. Győry, Upper bounds for the numbers of solutions of unit equations in two unknowns, Lithuanian Math. J., 32 (1992), 40-44.

[90] K. Győry, On arithmetic graphs associated with integral domains II., Sets, Graphs and Numbers. Coll. Math. Soc. J. Bolyai 60, North-Holland Publ. Comp.,1992, pp. 365-374.

[91] J. H. Evertse and K. Győry, Discriminants of decomposable forms, New Trends in Probability and Statistics, Vol. 2: Analytic and Probabilistic Methods in Number Theory, VSP Int. Science Publ., Zeist, 1992, pp. 39-56.

[92] K. Győry, On the irreducibility of a class of polynomials IV., Acta Arith., 62 (1992), 399-405.

[93] K. Győry, Some recent applications of S-unit equations, Astérisque, 209. Soc. Math. France, 1992, pp. 17-38.

[94] K. Győry, On the number of pairs of polynomials with given resultant or given semi-resultant, Acta. Sci. Math., 57 (1993), 515-529.

[95] J. H. Evertse and K. Győry, Lower bounds for resultants I., Compositio Math., 88 (1993), 1-23.

[96] K. Győry, On pairs of binary forms with given resultant or given semi-resultant, Math. Pannon., 4 (1993), 169-180.

[97] K. Győry, Some new results connected with resultants of polynomials and binary forms, Grazer Math. Ber., 318 (1993), 17-27.

[98] K. Győry, On the numbers of families of solutions of systems of decomposable form equations, Publ. Math. Debrecen, 42 (1993), 65-101.

[99] K. Győry, Some applications of decomposable form equations to resultant equations, Colloq. Math., 65 (1993), 267-275.

[100] K. Győry and A. Schinzel, On a conjecture of Posner and Rumsey, J. Number Theory, 47 (1994), 63-78.

[101] K. Győry, Upper bounds for the degrees of decomposable forms of given discriminant, Acta Arith., 66 (1994), 261-268.

[102] K. Győry, On the irreducibility of neighbouring polynomials, Acta Arith., 67 (1994), 283-294.

[103] K. Győry, On a problem of A. M. Odlyzko on algebraic units of bounded degree, Acta Math. Hungar., 69 (1995), 1-4.

[104] K. Győry, Applications of unit equations, Analytic Number Theory, Kyoto, 1996, pp. 62-78.

[105] Y. Bugeaud and K. Győry, Bounds for the solutions of unit equations, Acta Arith., 74 (1996), 67-80.

[106] Y. Bugeaud and K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith., 74 (1996), 273-292.

[107] K. Győry, A. Sárközy and C. L. Stewart, On the number of prime factors of integers of the form ab+1, Acta Arith., 74 (1996), 365-385.

[108] K. Győry and A. Sárközy, On prime factors of integers of the form (ab+1)(bc+1)(ca+1), Acta Arith., 79 (1997), 163-171.

[109] G. R. Everest and K. Győry, Counting solutions of decomposable form equations, Acta Arith., 79 (1997), 173-191.

[110] K. Győry, On the diophantine equation n\choose k=xl, Acta Arith., 80 (1997), 289-295.

[111] J. H. Evertse and K. Győry, The number of families of solutions of decomposable form equations, Acta Arith., 80 (1997), 367-394.

[112] A. Ádám, K. Győry and A. Sárközy, The life and mathematics of Paul Erdős (1913-1996), Math. Japon., 46 (1997), 517-526.

[113] K. Győry, Bounds for the solutions of decomposable form equations, Publ. Math. Debrecen, 52 (1998), 1-31.

[114] K. Győry, Recent bounds for the solutions of decomposable form equations, Number Theory. Walter de Gruyter, Berlin-New York, 1998, pp. 255-270.

[115] K. Győry, On the diophantine equation n(n+1)…(n+k-1)=bxl, Acta Arith., 83 (1998), 87-92.

[116] K. Győry and Min Ru, Integer solutions of a sequence of decomposable form inequalities, Acta Arith., 86 (1998), 227-237.

[117] K. Győry, Power values of binomial coefficients, Number Theory and Its Applications, Kyoto, 1998, pp. 124-136.

[118] K. Győry, A. Pethő and V. T. Sós (eds.), Number Theory, Diophantine, Computational and Algebraic Aspects, Walter de Gruyter, Berlin-New York, 1998.

[119] K. Győry, On the distribution of solutions of decomposable form equations, Number Theory in Progress. Walter de Gruyter, Berlin-New York, 1999, pp. 237-265.

[120] I. Gaál and K. Győry, Index form equations in quintic fields, Acta Arith., 89 (1999), 379-396.

[121] K. Győry, Power values of products of consecutive integers and binomial coefficients, Number Theory and Its Applications, Kluwer Acad. Publ., Boston-Dordrecht-London, 1999, pp. 145-156.

[122] K. Győry, Ákos Császár is 75 years old (in Hungarian), Mat. Lapok, New Series 4 (1994), 9-10 (1999).

[123] K. Győry, H. Iwaniec and J. Urbanowicz (eds.), Number Theory in Progress, Walter de Gruyter, Berlin-New York, 1999.

[124] K. Győry and S. Kanemitsu (eds.), Number Theory and Its Applications, Kluwer Acad. Publ., Boston-Dordrecht-London, 1999.

[125] K. Győry, Discriminant form and index form equations, Algebraic Number Theory and Diophantine Analysis. Walter de Gruyter, Berlin-New York, 2000, pp. 191-214.

[126] K. Győry, Thue inequalities with a small number of primitive solutions, Periodica Math. Hungar., 42 (2001), 199-209.

[127] G. Everest, I. Gaál, K. Győry and G. Röttger, On the spatial distribution of solutions of decomposable form equations, Math. Comp., 71 (2002), 633-648.

[128] K. Győry, On the number of primitive solutions of Thue equations and Thue inequalities, Paul Erdős and His Mathematics, Vol. I, Springer, 2002, pp. 279-294.

[129] K. Győry, Solving diophantine equations by Baker's theory, A Panorama of Number Theory, Cambridge University Press, 2002, pp. 38-72.

[130] A. Bérczes and K. Győry, On the number of solutions of decomposable polynomial equations, Acta Arith., 101 (2002), 171-187.

[131] K. Győry, On the solutions of decomposable form equations, New Aspects of Analytic Number Theory, Research Institute for Mathematical Sciences, Kyoto, 2002, pp. 142-156.

[132] K. Győry and Á. Pintér, On the equation 1k+2k+…+xk=yn, Publ. Math. Debrecen, 62 (2003), 403-414

[133] K. Győry, On some arithmetical properties of Lucas and Lehmer numbers II., Acta Acad. Paed. Agriensis, Sect. Math., 30 (2003), 67-73.

[134] G. Everest and K. Győry, Primitive prime divisors, preprint.

[135] Y. Bugeaud and K. Győry, On binomial Thue-Mahler equations, Periodica Math. Hungar., 49 (2004), 25-34.

[136] A. Bérczes, J. H. Evertse and K. Győry, On the number of equivalence classes of binary forms with given degree and given discriminant, Acta Arith., 113 (2004), 363-399.

[137] K. Győry, L. Hajdu and N. Saradha, On the diophantine equation n(n+d)…(n+(k-1)d)=byl, Canad. Math. Bull., 47 (2004), 373-388.

[138] K. Győry, L. Hajdu, Á. Pintér and A. Schinzel, Polynomials determined by a few of their coefficients, Indag. Math., 15 (2004), 209-221.

[139] M. Bennett, K. Győry and Á. Pintér, On the diophantine equation 1k+2k+…+xk=yn, Compositio Math., 140 (2004), 1417-1431.

[140] Y. Bilu, I. Gaál and K. Győry, Index form equations in sextic fields: a hard computation, Acta Arith., 115 (2004), 85-96.

[141] K. Győry, A. Pethő and Á. Pintér, Béla Brindza (1958-2003), Publ. Math. Debrecen, 65 (2004), 1-11.

[142] K. Győry, I. Pink and Á. Pintér, Power values of polynomials and binomial Thue-Mahler equations, Publ. Math. Debrecen, 65 (2004), 341-362.

[143] G. Everest and K. Győry, On some arithmetical properties of solutions of decomposable form equations, Math. Proc. Cambridge Philos. Soc., 139 (2005), 27-40.

[144] K. Győry and Á. Pintér, Almost perfect powers in products of consecutive integers, Monatsh. Math., 145 (2005), 19-33.

[145] K. Győry, Index form equations and their applications, Proc. of the Institute of Math. of NAN Belarus, 13 (2005), 83-93.

[146] M. Bennett, N. Bruin, K. Győry and L. Hajdu, Powers from products of consecutive terms in arithmetic progressions, Proc. London Math. Soc., 92 (2006), 273-306.

[147] K. Győry, Polynomials and binary forms with given discriminant, Publ. Math. Debrecen, 69 (2006), 473-499.

[148] M. Bennett, K. Győry, M. Mignotte and Á. Pintér, Binomial Thue equations and polynomial powers, Compositio Math., 142 (2006), 1103-1121.

[149] K. Győry, Perfect powers in products with consecutive terms from arithmetic progressions, More Sets, Graphs and Numbers, Springer and Bolyai Society, Budapest, 2006, pp. 143-155.

[150] K. Győry and K. Yu, Bounds for the solutions of S-unit equations and decomposable form equations, Acta Arith., 123 (2006), 9-41.

[151] N. Bruin, K. Győry, L. Hajdu and Sz. Tengely, Arithmetic progressions consisting of unlike powers, Indag. Math., 17 (2006), 539-555.

[152] A. Bérczes, J. H. Evertse and K. Győry, On the numbers of pairs of binary forms with given degree and given resultant, Acta Arith., 128 (2007), 19-54.

[153] A. Bérczes, J. H. Evertse and K. Győry, Diophantine problems related to discriminants and resultants of binary forms, Diophantine Geometry, Pisa, 2007, pp. 45-63.

[154] K. Győry and Á. Pintér, On the resolution of equations Axn-Byn=C in integers x, y and n≥3, Publ. Math. Debrecen, 70 (2007), 483-501.

[155] K. Győry and Á. Pintér, Polynomial powers and a common generalization of binomial Thue-Mahler equations and S-unit equations, Diophantine Equations, Narosa Publ. House, New Delhi, India, 2008, pp. 103-119.

[156] K. Győry, On certain arithmetic graphs and their applications to diophantine problems, Functiones et Approximatio Commentarii Mathematici, 39 (2008), 289-314.

[157] K. Győry, On the abc conjecture in algebraic number fields, Acta Arith., 133 (2008), 281-295.

[158] A. Bérczes, J. H. Evertse and K. Győry, Effective results for linear equations in two unknowns from a multiplicative division group, Acta Arith., 136 (2009), 331-349.

[159] K. Győry, L. Hajdu and Á. Pintér, Perfect powers from products of consecutive terms in arithmetic progression, Compositio Math., 145 (2009), 845-864.

[160] A. Bérczes, J. H. Evertse, K. Győry and C. Pontreau, Effective results for points on certain subvarieties of tori, Math. Proc. Cambridge Phil. Soc., 147 (2009), 69-94.

[161] A. Bazsó, A. Bérczes, K. Győry and Á. Pintér, On the resolution of equations Axn-Byn=C in integers x, y and n≥3, II, Publ. Math. Debrecen, 76 (2010), 227-250.

[162] K. Győry and C. Smyth, The divisibility of an-bn by powers of n, Integers, 10 (2010), 319-334.

[163] K. Győry, S-unit equations in number fields: effective results, generalizations, abc-conjecture, Analytic Number Theory and Related Topics, Kyoto University, Kyoto, RIMS, 1710 (2010), 71-84.

[164] K. Győry and Á. Pintér, Binomial Thue equations, ternary equations and power values of polynomials (in Russian), Fundam. Prikl. Mat., 16 (2010), 61-77.

[165] K. Győry, L. Hajdu and R. Tijdeman, Irreducibility criteria of Schur-type and Pólya-type, Monatsh. Math., 163 (2011), 415-443.

[166] K. Győry and Á. Pintér, Binomial Thue equations, ternary equations and power values of polynomials, J. Math. Sciences, 180 (2012), 569-580.

[167] A. Dujella, K. Győry and Á. Pintér, On power values of pyramidal numbers, I, Acta Arith., 155 (2012), 217-226.

[168] A. Bérczes, J. H. Evertse and K. Győry, Multiply monogenic orders, Ann. Scuola Normale Sup. Pisa Cl. Sci., 12 (2013), 467-497.

[169] J. H. Evertse and K. Győry, Effective results for unit equations over finitely generated domains, Math. Proc. Cambridge Philos. Soc., 154 (2013), 351-380.

[170] K. Győry, Perfect powers in products with consecutive terms from arithmetic progressions II, in: Erdős Centennial, Bolyai Soc. Math. Stud., Springer, 2013, pp. 311-324.

[171] A. Bérczes, J. H. Evertse and K. Győry, Effective results for hyper- and superelliptic equations over number fields, Publ. Math. Debrecen, 82 (2013), 727-756.

[172] J. Pintz, A. Biró, K. Győry, G. Harcos, M. Simonovits and J. Szabados (eds.), Number Theory, Analysis, and Combinatorics, de Gruyter, Berlin-Boston, 2014.

[173] J. H. Evertse and K. Győry, Effective results for Diophantine equations over finitely generated domains: A survey, in: Number Theory, Analysis and Combinatorics, de Gruyter, Berlin, 2014, 63-73.

[174] K. Győry, T. Kovács, Gy. Péter and Á. Pintér, Equal values of standard counting polynomials, Publ. Math. Debrecen, 84 (2014), 259-277.

[175] A. Bérczes, J. H. Evertse and K. Győry, Effective results for Diophantine equations over finitely generated domains, Acta Arith., 163 (2014), 71-100.

[176] K. Győry, L. Hajdu and R. Tijdeman, Representation of finite graphs as difference graphs of S-units, I, J. Combinatorial Theory, 127 (2014), 314-335.

[177] J. H. Evertse and K. Győry, Unit Equations in Diophantine Number Theory, Cambridge University Press, 2015.

[178] J. H. Evertse and K. Győry, Discriminant Equations in Diophantine Number Theory, Cambridge University Press, 2016.

[179] K. Győry, L. Hajdu and R. Tijdeman, Representation of finite graphs as difference graphs of S-units, II, Acta Math. Hung., 149 (2016), 423-447.

[180] K. Győry, On some norm inequalities and discriminant inequalities in CM-fields, Publ. Math. Debrecen, 89 (2016), 513-523.

[181] J. H. Evertse and K. Győry, Effective results for discriminant equations over finitely generated integral domains, Number Theory-Diophantine problems, uniform distribution and applications, to appear.

[182] Y. Bugeaud, J. H. Evertse and K. Győry, S-parts of values of polynomials and decomposable forms at integral points, Acta Arith., to appear.