Publikációs lista


Független hivatkozások

 

Publikációk

2014

[92] Gy. Maksa, On subgroups of the multiplicative group of the positive real numbers associated to information functions, Publ. Math. Debrecen, volume 84, 2014.
2013
[91] Gy. Maksa, On additive functions which differentiate elementary functions in some sense, In Annales Univ. Sci. Budapest. Sect. Comp., volume 41, 2013
[90] Z. Daróczy, Gy. Maksa, A functional equation involving comparable weighted quasi-arithmetic means, Acta Math. Hungar., volume 138, 2013.
2012
[89] Gy. Maksa, Zs. Páles, Wigner's theorem revisited, Publ. Math. Debrecen, volume 81, 2012.
2011
[88] Gy. Maksa, Zs. Páles, The equality case in some recent convexity inequalities, Opuscula Math., volume 31, 2011.
[87] E. Gselmann, Gy. Maksa, A characterization of the relative entropies, Annales Univ. Sci. Budapest. Sect. Comp., volume 35, 2011.
2010
[86] Gy. Maksa, A. Varga, The equivalence of two functional equations involving the arithmetic mean, the geometric mean and their Gauss composition, Aequationes Math., volume 80, 2010.
[85] Gy. Maksa, Zs. Páles, Remarks on the comparison of weighted quasi-arithmetic means, Colloq. Math., volume 120, 2010.
[84] K. Lajkó, Gy. Maksa, Zs. Páles, Report of Meeting: Researches in Didactics of Mathematics and Computer Sciences (January 21 – 23, 2010, Debrecen, Hungary), Teaching Math. Comp. Sci., volume 8, 2010.
2009
[83] Gy. Maksa, Zs. Páles, Decomposition of higher-order Wright-convex functions,  J. Math. Anal. Appl., volume 359, 2009.
[82] K. Lajkó, Gy. Maksa, Zs. Páles, Report of Meeting: Researches in Didactics of Mathematics and Computer Sciences (January 30 – February 1, 2009, Debrecen, Hungary, Teaching Math. Comp. Sci., volume 7, 2009.
[81] K. Lajkó, Gy. Maksa, F. Mészáros, On a generalized Hosszú functional equation, Publ. Math. Debrecen, volume 74, 2009.
[80] E. Gselmann, Gy. Maksa,  Stability of the parametric fundamental equation of information for nonpositive parameters,  Aequationes Math., volume 78, 2009.
[79] E. Gselmann, Gy. Maksa, The Shannon field of non-negative information functions, Sci. Math. Jpn., volume 69, 2009.
2008
[78] Gy. Maksa, F. Mészáros, A characterization of the exponential distribution through functional equations, Inequalities and Applications (Noszvaj, 2007), Birkhäuser (C. Bandle, A. Gilányi, L. Losonczi, M. Plum, Zs. Páles, eds.), volume 157, 2008.
[77] Gy. Maksa, The stability of the entropy of degree alpha, J. Math. Anal. Appl., volume 346, 2008.
[76] A. E. Abbas, E. Gselmann, Gy. Maksa, Z. Sun, General and continuous solutions of the entropy equation, Proceedings of the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, American Institute of Physics, volume 1073, 2008.
2007
[75] Z. Daróczy, K. Lajkó, R. L. Lovas, Gy. Maksa, Zs. Páles, Functional equations involving means, Acta Math. Hungar., volume 116, 2007.
[74] Zs. Ádám, K. Lajkó, Gy. Maksa, F. Mészáros, Two functional equations on group, Ann. Math. Sil., volume 21, 2007.
2006
[73] Gy. Maksa, E. Nizsalóczki, Quasi-sums in several variables, Acta Math. Acad. Paedagog. Nyházi. (N.S.), volume 22, 2006.
[72] Z. Daróczy, Gy. Maksa, Zs. Páles, Functional equations involving means and their Gauss composition, Proc. Amer. Math. Soc., volume 134, 2006.
[71] Zs. Ádám, K. Lajkó, Gy. Maksa, F. Mészáros, Sequenced problems for functional equations, Teaching Math. Comp. Sci., volume 4, 2006.
2005
[70] Gy. Maksa, Quasisums and generalized associativity, Aequationes Math., volume 69, 2005.
2004
[69] Gy. Maksa, Zs. Páles, On a composite functional equation arising in utility theory, Publ. Math. Debrecen, volume 65, 2004.
[68] Gy. Maksa, CM solutions of some functional equations of associative type, Ann. Univ. Sci. Budapest. Sect. Comput., volume 24, 2004.
[67] Gy. Maksa, Asszociativitási és biszimmetria egyenletek (Associativity and Bisymmetry Equations), (in Hungarian), 2004.
[66] A. Járai, Gy. Maksa, Zs. Páles, On Cauchy-differences that are also quasisums,  Publ. Math. Debrecen, volume 65, 2004.
[65] Z. Daróczy, Gy. Maksa, Zs. Páles, On two-variable means with variable weights, Aequationes Math., volume 67, 2004.
2003
[64] B. Brindza, Gy. Maksa,  A note on non-negative information functions, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.), volume 30, 2003.
2002
[63] Gy. Maksa, Jensen's equation and bisymmetry, Publ. Math. Debrecen, volume 61, 2002.
2001
[62] Gy. Maksa, Zs. Páles, Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyházi. (N.S.), volume 17, 2001.
[61] Gy. Maksa, Biszimmetria-egyenletek, (Bisymmetry equations), (in Hungarian), Chapter in Talks at the Academy, May 2000, Hungarian Academy of Sciences, volume II, 2001.
[60] J. Aczél, Gy. Maksa, Zs. Páles,  Solution of a functional equation arising in an axiomatization of the utility of binary gambles, Proc. Amer. Math. Soc., volume 129, 2001.
[59] J. Aczél, Gy. Maksa, C. T. Ng, Zs. Páles, A functional equation arising from ranked additive and separable utility, Proc. Amer. Math. Soc., volume 129, 2001.
[58] J. Aczél, Gy. Maksa, A functional equation generated by event commutativity in separable and additive utility theory, Aequationes Math., volume 62, 2001.
2000
[57] Á. Münnich, Gy. Maksa, R. J. Mokken, $n$-variable bisection, J. Math. Psych., volume 44, 2000.
[56] Gy. Maksa, P. Volkmann, Characterization of group homomorphisms having values in an inner product space,  Publ. Math. Debrecen, volume 56, 2000.
[55] Gy. Maksa, A. A. J. Marley, Zs. Páles, On a functional equation arising from joint-receipt utility models, Aequationes Math., volume 59, 2000.
[54] Gy. Maksa, The generalized associativity equation revisited, Rocznik Nauk.-Dydakt. Prace Mat., volume 17, 2000.
[53] Gy. Maksa, Újabb eredmények a függvényegyenletek elméletében (New Methods in the Theory of Functional Equations), (in Hungarian), 2000.
[52] Z. Daróczy, Gy. Maksa, Zs. Páles, Extension theorems for the Matkowski–Sutô problem, Demonstratio Math., volume 33, 2000.
[51] J. Aczél, A. Gilányi, Gy. Maksa, A. A. J. Marley, Consistent aggregation of simply scalable families of choice probabilities, Math. Social Sci., volume 39, 2000.
1999
[50] Á. Münnich, Gy. Maksa, R. J. Mokken, Collective judgement: combining individual value judgements, Math. Social Sci., volume 37, 1999.
[49] Gy. Maksa, An associative algorithm, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.), volume 26, 1999.
[48] Gy. Maksa, Solution of generalized bisymmetry type equations without surjectivity assumptions, Aequationes Math., volume 57, 1999.
[47] Gy. Maksa, Intervallumkitöltő sorozatok, KLTE MFK Tud. Közl., volume 24, 1999.
[46] Z. Daróczy, Gy. Maksa, Functions commuting with ternary operations, Rocznik Nauk.-Dydakt. Prace Mat., volume 16, 1999.
[45] Z. Daróczy, Gy. Maksa, On a problem of Matkowski, Colloq. Math., volume 82, 1999.
[44] J. Aczél, Gy. Maksa, Zs. Páles, Solution to a functional equation arising from different ways of measuring utility, J. Math. Anal. Appl., volume 233, 1999.
1998
[43] Gy. Maksa, Functions having quadratic difference in a given class, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.), volume 25, 1998.
[42] Gy. Maksa, The solution of a system of functional equations related to selection probabilities, Publ. Math. Debrecen, volume 52, 1998.
[41] I. Kocsis, Gy. Maksa, The stability of a sum form functional equation arising in information theory, Acta Math. Hungar., volume 79, 1998.
1997
[40] Gy. Maksa, A konzisztens aggregáció problémája és a biszimmetria függvényegyenlete (The problem of consistent aggregation and the functional equation of bisymmetry), (in Hungarian),  KLTE MFK Tud. Közl., volume 23, 1997.
[39] J. Aczél, Gy. Maksa, M. Taylor,  Equations of generalized bisymmetry and of consistent aggregation: weakly surjective solutions which may be discontinuous at places, J. Math. Anal. Appl., volume 214, 1997.
[38] J. Aczél, Gy. Maksa, A. A. J. Marley, Z. Moszner,  Consistent aggregation of scale families of selection probabilities, Math. Social Sci., volume 33, 1997.
[37] J. Aczél, Gy. Maksa, Consistent aggregation and generalized bisymmetry, Trans. Royal Soc. Canada, volume 6, 1997.
[36] J. Aczél, Gy. Maksa,  Inequalities for selection probabilities, Chapter in General inequalities, 7 (Oberwolfach, 1995), Birkhäuser (C. Bandle, W. N. Everitt, L. Losonczi, W. Walter, eds.), volume 123, 1997.
1996
[35] J. Aczél, Gy. Maksa, Solution of the rectangular $m\times n$ generalized bisymmetry equation and of the problem of consistent aggregation, J. Math. Anal. Appl., volume 203, 1996.
[34] J. Aczél, Gy. Maksa, Consistent aggregation and generalized bisymmetry, Chapter in Contributions to the Theory of Functional Equations, II (Zamárdi, 1995), Karl-Franzens-Univ. Graz (D. Gronau, Zs. Páles, eds.), volume 327, 1996.
[33] J. Aczél, R. D. Luce, Gy. Maksa, Solutions to three functional equations arising from different ways of measuring utility, J. Math. Anal. Appl., volume 204, 1996.
1995
[32] Gy. Maksa, A Shannon entrópia jellemzései függvényegyenletek segítségével (Characterizations of the Shannon entropy with the help of functional equations), (in Hungarian), Ybl Miklós Műszaki Főisk. Tud. Közl., volume 22, 1995.
[31] A. Járai, Gy. Maksa, The measurable solutions of a functional equation of C. Alsina and J. L. Garcia-Roig, C. R. Math. Rep. Acad. Sci. Canada, volume 17, 1995.
[30] Z. Daróczy, Gy. Maksa, Functional equations on convex sets, Acta Math. Hungar., volume 68, 1995.
1994
[29] Gy. Maksa, On the stability of a sum form equation, Results Math., volume 26, 1994.
1991
[28] Gy. Maksa, K. Nikodem, Zs. Páles, Results on $t$-Wright convexity, C. R. Math. Rep. Acad. Sci. Canada, volume 13, 1991.
[27] Gy. Maksa, Report on the Third International Symposium on Functional Equations and Inequalities, Publ. Math. Debrecen, volume 38, 1991.
[26] Gy. Maksa, Interval filling sequences and the dyadic group, Chapter in Contributions to the Theory of Functional Equations (Graz, 1991), Karl-Franzens-Univ. Graz (D. Gronau, ed.), volume 315, 1991.
[25] B. Kovács, Gy. Maksa, Interval-filling sequences of order $N$ and a representation of real numbers in canonical number systems, Publ. Math. Debrecen, volume 39, 1991.
[24] Z. Daróczy, Gy. Maksa, T. Szabó, Some regularity properties of algorithms and additive functions with respect to them, Aequationes Math., volume 41, 1991.
1989
[23] Gy. Maksa, Zs. Páles, On Hosszú's functional inequality, Publ. Math. Debrecen, volume 36, 1989.
[22] Gy. Maksa, The role of boundedness and nonnegativity in characterizing entropies of degree $\alpha$, Publ. Math. Debrecen, volume 36, 1989.
1988
[21] Gy. Maksa, Gy. Szabó, L. Székelyhidi, Equations arising from the theory of orthogonally additive and quadratic functions, C. R. Math. Rep. Acad. Sci. Canada, volume 10, 1988.
1987
[20] Gy. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada, volume 9, 1987.
[19] Gy. Maksa, The general solution of a functional equation arising in information theory, Acta Math. Hungar., volume 49, 1987.
[18] Gy. Maksa, A characterization of the signed hyperbolic distance, C. R. Math. Rep. Acad. Sci. Canada, volume 9, 1987.
1986
[17] Gy. Maksa, C. T. Ng, The fundamental equation of information on open domain, Publ. Math. Debrecen, volume 33, 1986.
[16] Gy. Maksa, On completely additive functions, Acta Math. Hungar., volume 48, 1986.
[15] B. R. Ebanks, Gy. Maksa, Measures of inset information on open domain I: Inset entropies and information functions of all degrees, Aequationes Math., volume 30, 1986.
1985
[14] Gy. Maksa, Információmértékek előállítása és jellemzése függvényegyenletek segítségével (Construction and characterization of information measures with the help of functional equations (in Hungarian), 1985.
1982
[13] Gy. Maksa, Solution on the open triangle of the generalized fundamental equation of information with four unknown functions, Utilitas Math., volume 21, 1982.
[12] L. Losonczi, Gy. Maksa, On some functional equations of the information theory, Acta Math. Acad. Sci. Hungar., volume 39, 1982.
1981
[11] Gy. Maksa, On the bounded solutions of a functional equation, Acta Math. Acad. Sci. Hungar., volume 37, 1981.
[10] Gy. Maksa, On near derivations, Proc. Amer. Math. Soc., volume 81, 1981.
[9] Gy. Maksa, The general solution of a functional equation related to the mixed theory of information, Aequationes Math., volume 22, 1981.
[8] L. Losonczi, Gy. Maksa, The general solution of a functional equation of information theory, Glas. Mat. Ser. III, volume 16(36), 1981.
[7] Z. Daróczy, Gy. Maksa, On the generating function for the Appell polynomials, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., volume 24, 1981.
1980
[6] Gy. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat. Ser. III, volume 15(35), 1980.
[5] Gy. Maksa, Bounded symmetric information functions, C. R. Math. Rep. Acad. Sci. Canada, volume 2, 1980.
1979
[4] Z. Daróczy, Gy. Maksa, Nonnegative information functions, Chapter in Analytic function methods in probability theory (Proc. Colloq. Methods of Complex Anal. in the Theory of Probab. and Statist., Lajos Kossuth Univ. Debrecen, Debrecen, 1977), North-Holland, 1979.
1977
[3] Gy. Maksa, On the functional equation $f(x+y)+g(xy)=h(x)+h(y)$, Publ. Math. Debrecen, volume 24, 1977.
1976
[2] Gy. Maksa, A functional equation with differences, Zbornik Rad. Mat. Inst. Beograd (N.S.), volume 1(9), 1976.
[1] Gy. Maksa, Devációk és differenciák (Deviations and Differences), (in Hungarian), 1976.