MULTIPlicative Loops
of Topological Quasifields

ÁGOTA FIGULA

Institute of Mathematics, University of Debrecen
P.O.Box 400, H-4002, Debrecen, Hungary
E-mail: figula@science.unideb.hu

Abstract. Locally compact connected topological non-Desarguesian translation planes have been a popular subject for research in geometry since the seventies of the last century. These planes are coordinatized by locally compact quasifields $(Q, +, \cdot)$ such that the kernel of Q is either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. In recent papers we determined the algebraic structure of the multiplicative loops $Q^* = (Q \setminus \{0\}, \cdot)$ of quasifields Q such that Q has dimension 2 over its kernel. Now we compare these cases and give a unified treatment of our results. In particular, we deal with multiplicative loops which either have a one-dimensional normal subloop or contain a compact subgroup.

1. Introduction. The first impulse to study non-associative structures came from the investigation of coordinate systems of non-Desarguesian planes. The translation planes are affine planes with a transitive group of translations. The translation planes are coordinatized by planar quasifields. The finite translation planes and the finite semifields are thoroughly studied in [D], [J], [GN1], [GN2]. The locally compact connected topological non-Desarguesian translation planes and the locally compact quasifields were fruitfully investigated in [B3], [B1–B6], [C], [H1–H3], [K], [O], [PS], [S] including classifications.

In [F1] and [F2] we gave loop theoretical characterizations of the algebraic structure of the multiplicative loops $Q^* = (Q \setminus \{0\}, \cdot)$ of locally compact quasifields Q having dimension 2 over its kernel K_r. If $K_r = \mathbb{R}$, then $(Q, +)$ is the vector group \mathbb{R}^2 and the topological loop Q^* is homeomorphic to $\mathbb{R} \times S^1$. If $K_r = \mathbb{C}$, then $(Q, +)$ is the vector group \mathbb{C}^2 and the loop Q^* is homeomorphic to $\mathbb{R} \times S^3$. In this paper we compare these cases and give a unified treatment of our results.

2010 Mathematics Subject Classification: 20N05; Secondary 22A30, 12K10, 51A40, 57M60.
Key words and phrases: Multiplicative loops of locally compact quasifields, sections in Lie groups, semifields, translation planes, automorphism groups.
The paper is in final form and no version of it will be published elsewhere.
In Proposition 3.1 we determine the Lie groups G topologically generated by the left translations of the multiplicative loops Q^* of Q and the continuous sharply transitive sections σ belonging to the loops Q^*. If Q^* is a two-dimensional proper loop, then P. T. Nagy and K. Strambach showed that the group G is the connected component of $GL_2(\mathbb{R})$ (cf. [NS1], Section 29, p. 345). In this case we give a new characterization for the functions parametrizing the continuous section σ. For $\dim Q = 4$ and $K_r = \mathbb{C}$ the group G is one of the following groups: $\text{Spin}_3(\mathbb{R}) \times \mathbb{R}$, $\text{Spin}_3(\mathbb{R}) \times \mathbb{C}$, $\text{SL}_2(\mathbb{C}) \times \mathbb{R}$, $GL_2(\mathbb{C})$. We give a new detailed proof of this assertion.

In Section 3 we mostly deal with those properties of the two- and four-dimensional multiplicative loops which emphasize their common features. To do this we give the precise description of the connections between the special algebraic properties of these loops Q^* and the functions parametrizing the continuous section σ corresponding to Q^* (cf. Propositions 3.3, 3.6 and Theorem 3.4). We use here a slight modification of the notion of the decomposable multiplicative loop, the normal subloop decomposition of a multiplicative loop which is a central extension of a one-dimensional normal subgroup by a compact loop and the corresponding proofs comparing with those given in [F1] and [F2].

The last section is devoted to the differences between the two- and four-dimensional multiplicative loops Q^*. Although each locally compact two-dimensional nearfield is the field of complex numbers ([G], XI.12.2 Proposition, p. 348) there are proper Kalscheuer’s nearfields of dimension four. Any locally compact two-dimensional semifield is the field of complex numbers (cf. [PS]). In contrast to this we describe a class of four-dimensional proper semifields having the field \mathbb{C} as their kernel. We show that the group generated by all left and right translations of the multiplicative loops Q^* of this class is the group $\text{SL}_4(\mathbb{R}) \times \mathbb{R}$. This fact differs from the two-dimensional proper multiplicative loops since they have infinite-dimensional group as the group generated by all translations (cf. [NS1], Theorem 29.1, p. 345).

2. Preliminaries. For basic facts on loops we refer to [NS1], Section 1. Here we collect the often used notions.

Definition 2.1. A set L with a binary operation $(x, y) \mapsto x \cdot y$ is called a loop if there exists an element $1 \in L$ such that $x = 1 \cdot x = x \cdot 1$ holds for all $x \in L$ and for any given $a, b \in L$ the equations $a \cdot y = b$ and $x \cdot a = b$ have unique solutions which are denoted by $y = a \backslash b$ and $x = b/a$. A loop L is proper if it is not a group. The kernel of a homomorphism $\alpha : L_1 \rightarrow L_2$ from a loop L_1 to a loop L_2 is a normal subloop N of L_1, i.e. a subloop of L_1 such that

$$x \cdot N = N \cdot x, \quad (x \cdot N) \cdot y = x \cdot (N \cdot y), \quad (N \cdot x) \cdot y = N \cdot (x \cdot y)$$

(1)

hold for all $x, y \in L_1$. The centre $Z(L)$ of a loop L consists of all elements z which satisfy the equations $zx \cdot y = z \cdot xy, xy \cdot z = x \cdot yz, xz \cdot y = x \cdot yz, xz = zx$ for all $x, y \in L$. If L has a central subgroup L_1 and the factor loop L/L_1 is isomorphic to the loop L_2 then L is called the central extension of L_1 by L_2. A loop L is called topological, if it is a topological space and the binary operations $(a, b) \mapsto a \cdot b,$ $(a, b) \mapsto b/a,$ $(a, b) \mapsto a \backslash b : L \times L \rightarrow L$ are continuous.
For all \(a \in L \), the left translations \(\lambda_a : L \to L, x \mapsto a \cdot x \), as well as the right translations \(\rho_a : L \to L, x \mapsto x \cdot a \), are bijections of \(L \). For topological loops the left and right translations of \(L \) are homeomorphisms of \(L \). Every topological connected loop \(L \) having a Lie group \(G \) as the group topologically generated by the left translations of \(L \) corresponds to a sharply transitive continuous section \(\sigma : G/H \to G \), where \(G/H = \{ xH \mid x \in G \} \) consists of the left cosets of the stabilizer \(H \) of \(1 \in L \) such that \(\sigma(H) = 1_G \) and \(\sigma(G/H) \) generates \(G \). The section \(\sigma \) is sharply transitive if the image \(\sigma(G/H) \) acts sharply transitively on \(G/H \), which means that to any \(xH, yH \) there exists precisely one \(z \in \sigma(G/H) \) with \(zxH = yH \).

Definition 2.2. A set \(Q \) with two binary operations \(+, \cdot : Q \times Q \to Q\) is called a (left) quasifield if \((Q, +)\) is an abelian group with neutral element 0, \((Q \setminus \{0\}, \cdot)\) is a loop, \(0 \cdot x = x \cdot 0 = 0\), and between these operations the (left) distributive law \(x \cdot (y+z) = x \cdot y + x \cdot z\) holds. A quasifield is proper if it is not a (skew) field. The kernel \(K_r \) of a (left) quasifield \(Q \) is a skew field defined by \((x+y) \cdot k = x \cdot k + y \cdot k\) and \((x \cdot y) \cdot k = x \cdot (y \cdot k)\) for all \(x, y, k \in Q \), \(k \in K_r \). The centre \(Z \) of \(Q \) is the set \(\{ z \in K_r \mid z \cdot x = x \cdot z \text{ for all } x \in Q \} \). A left quasifield \(Q \) is a semifield, if in \(Q \) also the right distributive law holds. A nearfield is a quasifield with associative multiplication. A locally compact connected topological quasifield is a locally compact connected topological space \(Q \) such that \((Q, +)\) is a topological group, \((Q \setminus \{0\}, \cdot)\) is a topological loop, the multiplication \(\cdot : Q \times Q \to Q \) is continuous and the mappings \(\lambda_a : x \mapsto a \cdot x \) and \(\rho_a : x \mapsto x \cdot a \) with \(0 \neq a \in Q \) are homeomorphisms of \(Q \).

The (left) quasifield \(Q \) is a right vector space over \(K_r \) and for all \(a \in Q \) the map \(\lambda_a : Q \to Q, x \mapsto a \cdot x \), is \(K_r \)-linear. Every locally compact connected nearfield is isomorphic to \(\mathbb{R}, \mathbb{C} \), or to the nearfield \(\mathbb{H}_r = (\mathbb{H}, +, \circ) \) obtained from the skew field \((\mathbb{H}, +, \cdot)\) of quaternions by using the new multiplication \(x \circ y = x \cdot \varphi(x)^{-1} \cdot y \cdot \varphi(x) \), where \(\varphi(x) = \exp(\imath r \log |x|) \), for some \(r \in \mathbb{R} \). The nearfields \(\mathbb{H}_r, r \neq 0 \), are called proper Kalscheuer’s nearfields (cf. [S], 64.19, 64.20, p. 363).

3. Sections corresponding to the multiplicative loops \(Q^* \) of \(Q \)

Here a locally compact connected topological quasifield \(Q \) having dimension 2 over its kernel \(K_r \) is treated. Assume that \(B = \{ e_1, e_2 \} \) is a fixed basis of \(Q \) as right vector space over \(K_r \) with the scalar multiplication induced by \(K^*_r \), where \(e_1 \in K_r \) is the identity element of the multiplicative loop \(Q^* \) of \(Q \). Hence \(Q \) is the vector space of pairs \((x, y)^t \in K^2_r, K_r \) is the subspace of pairs \((x, 0)^t \) and \((1, 0)^t \) is the identity element of \(Q^* \). Since the set \(\Lambda_Q \) of all left translations of \(Q \) is a spread set of the vector space \(Q \) (cf. Proposition 1.14 in [K], p. 12) the set \(\Lambda_Q \) is a set of \((2 \times 2)\)-matrices such that for any \((\alpha, \gamma)^t \in K^2_r \) there exists a unique matrix of \(\Lambda_Q \) having \((\alpha, \gamma)^t \) as its first column (cf. [FT], p. 2595).

Proposition 3.1. Let \(Q^* \) be the multiplicative loop for a locally compact topological proper quasifield \(Q \) having dimension two over its kernel \(K_r \). If \(K_r = \mathbb{R} \), then the group \(G \) topologically generated by the left translations of \(Q^* \) is the connected component \(\text{GL}_2^+(\mathbb{R}) \) of the group \(\text{GL}_2(\mathbb{R}) \). If \(K_r = \mathbb{C} \), then the group \(G \) is one of the following Lie groups: \(\text{Spin}_3(\mathbb{R}) \times \mathbb{R} \), \(\text{Spin}_3(\mathbb{R}) \times \mathbb{C} \), \(\text{SL}_2(\mathbb{C}) \times \mathbb{R} \), \(\text{GL}_2(\mathbb{C}) \). If \(G = \text{Spin}_3(\mathbb{R}) \times \mathbb{R} \), then \(Q \) is a proper Kalscheuer’s nearfield. If \(Q^* \) is proper, then it corresponds to a continuous
sharply transitive section of the form \(\sigma : G/H_{(k,l,s)} \to G \):

\[
\begin{pmatrix}
ux & -uy \\
uy & u\bar{x}
\end{pmatrix} H \mapsto \begin{pmatrix}
ux & -uy \\
uy & u\bar{x}
\end{pmatrix} \begin{pmatrix}
a(u, x, y) & b(u, x, y) \\
0 & a^{-1}(u, x, y)e^{ic(u, x, y)}
\end{pmatrix} = M_{(u, x, y)} \tag{2}
\]

such that \(u > 0 \), \((x, y) \in \mathbb{C}^2\), \(x\bar{x} + y\bar{y} = 1 \) and \(a(u, x, y), b(u, x, y), c(u, x, y) \) are continuous functions with positive, complex, real values, respectively. If \(G \) is \(GL_2(\mathbb{C}) \), then \(a(1, 1, 0) = 1, b(1, 1, 0) = 0 = c(1, 1, 0) \). If \(G \) is \(SL_2(\mathbb{C}) \times \mathbb{R} \), then \(a(1, 1, 0) = 1, b(1, 1, 0) = 0, \) and \(c(u, x, y) \) is the constant function \(0 \). If \(G \) is \(Spin_3(\mathbb{R}) \times \mathbb{C} \), then \(a(u, x, y) \) is the constant function \(1 \), \(b(u, x, y) \) is the constant function \(0 \) and \(c(1, 1, 0) = 0 \). If \(G \) is \(GL_2^+(\mathbb{R}) \), then \(x = \cos t, y = -\sin t, t \in [0, 2\pi) \), \(a(u, t) > 0, b(u, t) \in \mathbb{R}, c(u, t) \) is the constant function \(0 \) with \(a(1, 0) = 1, b(1, 0) = 0 \).

Proof. The first assertion was proved in [NS1], Theorem 29.1, p. 345. If \(K_r = \mathbb{C} \) then the group \(G \) is a connected closed subgroup of \(GL_2(\mathbb{C}) \). As the loop \(Q^* \) is homeomorphic to \(S^3 \times \mathbb{R} \) the group \(G \) operates transitively on the sphere \(S^3 \) of oriented lines through 0 in \(\mathbb{R}^4 \) and it has a four-dimensional subgroup \(Spin_3(\mathbb{R}) \times \mathbb{R} \). According to [V], p. 24, the group \(G \) is the product \(ST \) such that \(S \) is conjugate to the group \(SL_2(\mathbb{C}) \) or to \(SU_2(\mathbb{C}) = Spin_3(\mathbb{R}) \) and \(T \) is a Lie subgroup of the centralizer of \(S \) in \(GL_4(\mathbb{R}) \). Since \(SU_2(\mathbb{C}) \) is a maximal compact subgroup of \(SL_2(\mathbb{C}) \) the group \(T \) is a connected subgroup of the group \(\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C} \setminus \{0\} \} \) and the group \(G \) is one of the groups listed in the assertion. In these cases \(dim Q^* = 4 \). If \(G \) is the group \(Spin_3(\mathbb{R}) \times \mathbb{R} \), then \(Q^* \) is isomorphic to \(G \) and hence \(Q \) is a proper Kalscheuer’s nearfield. If \(Q^* \) is proper, then we may assume that the stabilizer \(H \) of the identity of \(Q^* \) is the subgroup

\[
H_{(k,l,s)} = \left\{ \begin{pmatrix} k & l \\ 0 & k^{-1}e^{is} \end{pmatrix} \mid k > 0, \ l \in \mathbb{C}, \ s \in \mathbb{R} \right\} \tag{3}
\]

if \(G = GL_2(\mathbb{C}) \), the subgroup \(H_{(k,1,0)} \) if \(G = SL_2(\mathbb{C}) \times \mathbb{R} \), the subgroup \(H_{(1,0,s)} \) if \(G = Spin_3(\mathbb{R}) \times \mathbb{C} \). The elements \(g \) of \(G \) have a unique decomposition as the product

\[
g = \begin{pmatrix} ux & -uy \\ uy & u\bar{x} \end{pmatrix} h \quad \text{with} \quad x, y \in \mathbb{C}, \quad x\bar{x} + y\bar{y} = 1, \quad u > 0, \quad h \in H_{(k,l,s)}. \tag{4}
\]

In particular if \(G \) is the group \(GL_2^+(\mathbb{R}) \), then \(dim Q^* = 2 \) and the stabilizer \(H \) of the identity of \(Q^* \) may be chosen as the subgroup \([3]\) with \(k > 0, \ l \in \mathbb{R}, \ s = 0 \). The elements \(g \) of \(G = GL_2^+(\mathbb{R}) \) can be written uniquely as the product \([4]\) such that \(x = \cos t, \ y = -\sin t, \ t \in [0, 2\pi) \). Hence a continuous section corresponding to a loop \(Q^* \) has form \([2]\) satisfying the properties as in the assertion.■

Description for the functions \(a, b \) of the section \(\sigma \) for a multiplicative loop \(Q^* \) with \(dim Q^* = 2 \): Using the sharply transitivity property we characterized in [F2] the continuous functions \(a, b, c \) defining the section \(\sigma \) belonging to a four-dimensional multiplicative loop \(Q^* \). Now we give a similar description for a two-dimensional multiplicative loop \(Q^* \). The section \(\sigma \) corresponding to \(Q^* \) is sharply transitive precisely if for all pairs \((u_1, t_1),\)
Comparing in both sides of matrix equation (6) the elements in the first column we have

\[
\begin{pmatrix}
 u \cos t & u \sin t \\
 -u \sin t & u \cos t
\end{pmatrix}
\begin{pmatrix}
 a(u, t) & b(u, t) \\
 0 & a^{-1}(u, t)
\end{pmatrix}
\begin{pmatrix}
 u_1 \cos t_1 & u_1 \sin t_1 \\
 -u_1 \sin t_1 & u_1 \cos t_1
\end{pmatrix}
= \begin{pmatrix}
 u_2 \cos t_2 & u_2 \sin t_2 \\
 -u_2 \sin t_2 & u_2 \cos t_2
\end{pmatrix}
\begin{pmatrix}
k & l \\
0 & k^{-1}
\end{pmatrix} \cdot (5)
\]

The determinants of the matrices on both sides of (5) are equal. Hence \(u = u_1^{-1}u_2 \) and matrix equation (5) reduces to

\[
\begin{pmatrix}
 \cos t & \sin t \\
 -\sin t & \cos t
\end{pmatrix}
\begin{pmatrix}
 a(u_1^{-1}u_2, t) & b(u_1^{-1}u_2, t) \\
 0 & a^{-1}(u_1^{-1}u_2, t)
\end{pmatrix}
= \begin{pmatrix}
 \cos t_2 & \sin t_2 \\
 -\sin t_2 & \cos t_2
\end{pmatrix}
\begin{pmatrix}
k & l \\
0 & k^{-1}
\end{pmatrix}
\begin{pmatrix}
\cos t_1 & -\sin t_1 \\
\sin t_1 & \cos t_1
\end{pmatrix} \cdot (6)
\]

Comparing in both sides of matrix equation (6) the elements in the first column we have

\[
\cos ta(u_1^{-1}u_2, t) = \cos t_2 \cos t_1 k + \cos t_2 \sin t_1 l + \sin t_2 \sin t_1 k^{-1}, \quad (7)
\]

\[- \sin ta(u_1^{-1}u_2, t) = - \sin t_2 \cos t_1 k - \sin t_2 \sin t_1 l + \cos t_2 \sin t_1 k^{-1}. \quad (8)
\]

Taking the square of both sides of equations (7), (8) and adding these equations we obtain

\[a(u_1^{-1}u_2, t) = \sqrt{k^2 \cos^2 t_1 + (l^2 + k^{-2}) \sin^2 t_1 + 2kl \cos t_1 \sin t_1}, \quad (9)\]

\[\cos t = \frac{\cos t_2 \cos t_1 k + \cos t_2 \sin t_1 l + \sin t_2 \sin t_1 k^{-1}}{\sqrt{k^2 \cos^2 t_1 + (l^2 + k^{-2}) \sin^2 t_1 + 2kl \cos t_1 \sin t_1}}, \quad (10)\]

\[\sin t = \frac{\sin t_2 \cos t_1 k + \sin t_1 \sin t_2 l - \sin t_1 \cos t_2 \sin t_1 k^{-1}}{\sqrt{k^2 \cos^2 t_1 + (l^2 + k^{-2}) \sin^2 t_1 + 2kl \cos t_1 \sin t_1}}. \quad (11)\]

The elements in the second column in both sides of matrix equation (6) are

\[
\cos tb(u_1^{-1}u_2, t) + \sin ta^{-1}(u_1^{-1}u_2, t) = - \cos t_2 \sin t_1 k + \cos t_2 \cos t_1 l + \sin t_2 \cos t_1 k^{-1}, \quad (12)
\]

\[- \sin tb(u_1^{-1}u_2, t) + \cos ta^{-1}(u_1^{-1}u_2, t) = \sin t_2 \sin t_1 k - \sin t_2 \cos t_1 l + \cos t_2 \cos t_1 k^{-1}. \quad (13)\]

Multiplying equation (12) by \(\cos t \) and (13) by \(-\sin t \) and adding the obtained equations we have

\[b(u_1^{-1}u_2, t) = \frac{- \sin t_1 \cos t_1 k^2 + (\cos^2 t_1 - \sin^2 t_1)kl + (l^2 + k^{-2}) \cos t_1 \sin t_1}{\sqrt{k^2 \cos^2 t_1 + (l^2 + k^{-2}) \sin^2 t_1 + 2kl \cos t_1 \sin t_1}}, \quad (14)\]

If \(\dim Q^* = 2 \), then for a continuous sharply transitive section \(\sigma \) given by (5) \(u = u_1^{-1}u_2 > 0 \), \(t \) is given by (10), (11), and for all fixed \(u \) the functions \(a(u_1^{-1}u_2, t) \), \(b(u_1^{-1}u_2, t) \) are given by (9), (14). Any continuous sharply transitive section \(\sigma \) belonging to a two-dimensional multiplicative loop \(Q^* \) has this form with suitable \(k > 0 \), \(l \in \mathbb{R} \).

The left translation with an element \((s, z)\) of the multiplicative loop \(Q^* \) of a left quasifield \(Q \) is a linear transformation \(M_{(u,x,y)}(u,x,y) \in \sigma(G/H(k,l,s)) \) defined by

\[
\begin{pmatrix}
s & u \\
z & w
\end{pmatrix}
= M_{(u,x,y)}(u,x,y)
\begin{pmatrix}
x \cos t & -y \sin t \\
x \sin t & y \cos t
\end{pmatrix}
\begin{pmatrix}
0 & -b(u,x,y) \\
a^{-1}(u,x,y) & e^{ic(u,x,y)}
\end{pmatrix}
\begin{pmatrix}
v \\
w
\end{pmatrix} \cdot (15)
\]
where \(s = uxα(u, x, y), \ z = uyα(u, x, y) \). The elements of the kernel \(K_r \) of \(Q \) are \((0, 0)^t, (s, 0)^t\), \(s \in \mathbb{C} \setminus \{0\} \) if \(\dim Q = 4 \), and \(s \in \mathbb{R} \setminus \{0\} \) if \(\dim Q = 2 \). The matrix representation of the left translations with the elements of the one-dimensional connected subgroup \((r, 0)^t \mid r > 0\) of the kernel \(K_r \) of \(Q \) is

\[
M_{(u, 1, 0)} = \begin{cases}
(ua(u, 1, 0) & ub(u, 1, 0) \\
0 & ua^{-1}(u, 1, 0)e^{ic(u, 1, 0)}
\end{cases} \quad u > 0
\]

(16)

with \(r = ua(u, 1, 0) \) and \(c(u, 1, 0) = 0 \) if \(\dim Q = 2 \). The subset

\[
\mathcal{T}_\mathbb{R} = \left\{ \begin{pmatrix} \cos t & \sin t \\
-\sin t & \cos t \end{pmatrix} \begin{pmatrix} a(1, t) & b(1, t) \\
a^{-1}(1, t) \end{pmatrix} \mid t \in [0, 2\pi) \right\}
\]

(17)

of the image of the section (2) consisting of elliptic elements acts sharply transitively on the oriented lines through \((0, 0)^t\) in \(\mathbb{R}^2 \). Therefore \(\mathcal{T}_\mathbb{R} \) is the set of all left translations of a one-dimensional compact loop. Similarly the subset

\[
\mathcal{T}_\mathbb{C} = \left\{ \begin{pmatrix} x & -\bar{y} \\
y & \bar{x} \end{pmatrix} \begin{pmatrix} a(1, x, y) & b(1, x, y) \\
a^{-1}(1, x, y)e^{ic(1,x,y)} \end{pmatrix} \mid x, y \in \mathbb{C}, \ x\bar{x} + y\bar{y} = 1 \right\}
\]

(18)

of the image of (2) seen as a set of \((4 \times 4)\)-real matrices acts sharply transitively on the oriented lines through \((0, 0, 0, 0)^t\) in \(\mathbb{R}^4 \). Hence \(\mathcal{T}_\mathbb{C} \) is the set of all left translations of a loop homeomorphic to \(S^3 \).

Definition 3.2. Let \(Q \) be a locally compact connected topological quasifield having dimension two over its kernel. The multiplicative loop \(Q^* \) of \(Q \) is called *decomposable*, if the set of all left translations of \(Q^* \) is a product \(\mathcal{T}_\mathcal{K} \), where \(\mathcal{T} \) is the set of all left translations of a compact loop given by (17), respectively (18), and \(\mathcal{K} \) is the set (16) of all left translations of \(Q^* \) belonging to the subgroup \((r, 0)^t \mid r > 0\) of the kernel \(K_r \) of \(Q \).

Proposition 3.3. Let \(Q \) be a locally compact connected topological quasifield having dimension two over its kernel. The multiplicative loop \(Q^* \) of \(Q \) is decomposable if and only if for all \(u > 0, \ x, y \in \mathbb{C}, \ x\bar{x} + y\bar{y} = 1 \) one has \(a(u, x, y) = a(1, x, y)a(u, 1, 0), \ c(u, x, y) = c(u, 1, 0) + c(1, x, y) \) and \(b(u, x, y) = a(1, x, y)b(u, 1, 0) + a^{-1}(u, 1, 0)e^{ic(u,1,0)}b(1, x, y) \) if \(\dim Q^* = 4 \) or for all \(u > 0, \ t \in [0, 2\pi) \), one has \(a(u, t) = a(1, t)a(u, 0), \ b(u, t) = a(1, t)b(u, 0) + a^{-1}(u, 0)b(1, t) \) if \(\dim Q^* = 2 \).

Proof. The set

\[
\{ M_{(u, x, y)} \mid u > 0, \ x, y \in \mathbb{C}, \ x\bar{x} + y\bar{y} = 1 \text{ or } x = \cos t, \ y = -\sin t, \ c(u, x, y) = 0, \ t \in [0, 2\pi) \}
\]

acts sharply transitively on \(Q^* \). Hence any point \((v, w)^t \setminus \{(0, 0)\}\) is the image of the point \((1, 0)^t\) under a unique linear mapping \(M_{(u, x, y)} \) given by (15). For all \(s > 0, \ m, n \in \mathbb{C}, \ m\bar{m} + n\bar{n} = 1 \) or \(m = \cos \varphi, \ n = -\sin \varphi, \ \varphi \in [0, 2\pi) \) the matrix equation

\[
\mathcal{T}_\mathbb{C} \left[M_{(u, 1, 0)} \begin{pmatrix} \text{sma}(s, m, n) \\ \text{sna}(s, m, n) \end{pmatrix} \right] = \begin{pmatrix} ux & -uy \\
uy & ux \end{pmatrix} \begin{pmatrix} a(u, x, y) & b(u, x, y) \\
a^{-1}(u, x, y)e^{ic(u,x,y)} \end{pmatrix} \begin{pmatrix} \text{sma}(s, m, n) \\ \text{sna}(s, m, n) \end{pmatrix}
\]

(19)

holds if and only if the identities of the assertion are satisfied. □
The multiplicative loop Q^* is homeomorphic either to $S^3 \times \mathbb{R}$ or to $S^1 \times \mathbb{R}$. We wish to study under which circumstances the loop Q^* has a connected normal subloop N^* such that the factor loop Q^*/N^* is homeomorphic either to the sphere S^3 or to S^1.

Theorem 3.4. Let Q be a locally compact connected topological quasifield having dimension two over its kernel. The multiplicative loop Q^* of Q has a one-dimensional connected normal subloop N^* consisting of real elements such that the factor loop Q^*/N^* is homeomorphic to S^3 or to S^1 if and only if N^* is the group $\{(u,0)^t \mid u > 0\}$ isomorphic to \mathbb{R} and $a(u,1,0) = 1$, $b(u,1,0) = 0 = c(u,1,0)$, $a(u,x,y) = a(1,x,y)$, $b(u,x,y) = b(1,x,y)$, $c(u,x,y) = c(1,x,y)$ for all $u > 0$, $x,y \in \mathbb{C}$, $x \bar{x} + y \bar{y} = 1$, or $a(u,0) = 1$, $b(u,0) = 0$, $a(u,t) = a(1,t)$, $b(u,t) = b(1,t)$, $c(u,t) = 0$ for all $t \in [0,2\pi)$. Then Q^* is a central extension of the normal subgroup N^* by a loop homeomorphic to S^3 or to S^1.

Proof. The left translations of a normal subloop N^* of Q^* generate a normal subgroup N of the group G topologically generated by all left translations of Q^* (cf. Lemma 1.7 in [NS1], p. 19). Since Q^*/N^* is homeomorphic to S^3 or to S^1 the subgroup N^* is homeomorphic to \mathbb{R}. The group topologically generated by the left translations of a proper loop homeomorphic to \mathbb{R} is the universal covering $PSL_2(\mathbb{R})$ of $PSL_2(\mathbb{R})$ (cf. [NS1], Section 18, p. 235). But $PSL_2(\mathbb{R})$ is not a subgroup of G listed in Proposition 3.1. Hence N^* is a group isomorphic to \mathbb{R} and the set Λ_{Q^*} of all left translations of Q^* must contain the group $\{(u,0)^t \mid u > 0\}$ as a normal subgroup. N^* has the form $\{(u,0)^t \mid u > 0\}$ which is a central subgroup of Q^* such that the intersection of a compact subloop $\{1\}$ as well as of $\{1\}$ of Q^* with N^* is 1. Hence Q^* is a central extension as in the assertion. According to (1) for all $u > 0$ one has $a(u,1,0) = 1$, $b(u,1,0) = 0$, $c(u,1,0) = 0$ if dim $Q^* = 4$ and $a(u,0) = 1$, $b(u,0) = 0$ if dim $Q^* = 2$. To obtain the necessary and sufficient conditions under which N^* is normal in Q^* we often use the fact that by (15) the element

$$
\begin{pmatrix}
ux \\
u y \\
u x \\
\end{pmatrix} \begin{pmatrix}
a(u,x,y) \\
0 \\
b(u,x,y) \\
\end{pmatrix} \begin{pmatrix}
a^{-1}(u,x,y)e^{ic(u,x,y)} \\
0 \\
1 \\
\end{pmatrix}
$$

belongs to the left translation of $(uxa(u,x,y),uya(u,x,y))^t$ with $u > 0$, $x,y \in \mathbb{C}$, $x \bar{x} + y \bar{y} = 1$ if dim $Q^* = 4$ and $x = \cos t$, $y = -\sin t$, the function c is constant 0 if dim $Q^* = 2$. For all elements $q_1 := (x,y)^t$ of S^3 or S^1, $q_2 := (v,w)^t$ of Q^* the condition $(N^* \cdot q_1) \cdot q_2 = N^* \cdot (q_1 \cdot q_2)$ of (1) holds if and only if

$$
\begin{pmatrix}
u u' \\
x v' \\
y w' \\
\end{pmatrix} = \begin{pmatrix}
u u \\
x 0 \\
y 0 \\
\end{pmatrix} \cdot \begin{pmatrix}
u x \\
x 0 \\
y 0 \\
\end{pmatrix}
$$

for all $x,y \in \mathbb{C}$, $x \bar{x} + y \bar{y} = 1$, $(v,w) \in \mathbb{C}^2 \setminus \{(0,0)\}$, or for all $x = \cos t$, $y = -\sin t$, $(v,w) \in \mathbb{R}^2 \setminus \{(0,0)\}$ with suitable $u,u' > 0$. This is equivalent to

$$
\begin{pmatrix}
ra(r,m,n)mv + rb(r,m,n)mw - ra^{-1}(r,m,n)w\bar{e}^{ic(r,m,n)} \\
rar(r,m,n)nv + rb(r,m,n)nw + ra^{-1}(r,m,n)w\bar{e}^{ic(r,m,n)} \\
\end{pmatrix} =
\begin{pmatrix}
u u'(a(1,x,y)xv + b(1,x,y)xw - a^{-1}(1,x,y)w\bar{e}^{ic(1,x,y)}) \\
u u'(a(1,x,y)yv + b(1,x,y)yw + a^{-1}(1,x,y)w\bar{e}^{ic(1,x,y)}) \\
\end{pmatrix}
$$
such that $ux = ra(r, m, n)m$, $uy = ra(r, m, n)n$ with $m + n\eta = 1$. As $u^2(x\bar{x} + y\bar{y}) = r^2a^2(r, m, n)(m\bar{m} + n\bar{n})$ we obtain $m = x$, $n = y$, $u = ra(r, x, y)$. Using this for all (x, y) of S^3 or S^1 and (v, w) of $C^2 \setminus \{(0, 0)\}$ or $R^2 \setminus \{(0, 0)\}$ we obtain

$$[(x(va(r, x, y) + wb(r, x, y)) - ywa^{-1}(r, x, y)e^{ic(r, x, y)}]
\times [y(va(1, x, y) + wb(1, x, y)) + \bar{x}wa^{-1}(1, x, y)e^{ic(1, x, y)}]
= [(y(va(r, x, y) + wb(r, x, y)) + \bar{x}wa^{-1}(r, x, y)e^{ic(r, x, y))}]
\times [x(va(1, x, y) + wb(1, x, y)) - ywa^{-1}(1, x, y)e^{ic(1, x, y)}].$$

The last equation holds if and only if for all (v, w) in $C^2 \setminus \{(0, 0)\}$ or in $R^2 \setminus \{(0, 0)\}$

$$(a(r, x, y)a^{-1}(1, x, y)e^{ic(1, x, y)} - a^{-1}(r, x, y)a(1, x, y)e^{ic(r, x, y)})(x\bar{x} + y\bar{y})vw
+ (b(r, x, y)a^{-1}(1, x, y)e^{ic(1, x, y)} - a^{-1}(r, x, y)b(1, x, y)e^{ic(r, x, y)})(x\bar{x} + y\bar{y})w^2 = 0$$

and hence

$$a(r, x, y)a^{-1}(1, x, y)e^{ic(1, x, y)} - a^{-1}(r, x, y)a(1, x, y)e^{ic(r, x, y)} = 0,$$
$$b(r, x, y)a^{-1}(1, x, y)e^{ic(1, x, y)} - a^{-1}(r, x, y)b(1, x, y)e^{ic(r, x, y)} = 0.$$

Multiplying the last two equations by $e^{-ic(1, x, y)}$ one obtains

$$a(r, x, y)a^{-1}(1, x, y) - a^{-1}(r, x, y)a(1, x, y)e^{ic(r, x, y)} = 0,$$
$$b(r, x, y)a^{-1}(1, x, y) - a^{-1}(r, x, y)b(1, x, y)e^{ic(r, x, y)} = 0.$$

Since $a(r, x, y)$ is positive for all $r > 0$ we get $c(r, x, y) = c(1, x, y)$ and hence $a(r, x, y) = a(1, x, y)$, $b(r, x, y) = b(1, x, y)$ for all $r > 0$, $x, y \in \mathbb{C}$, $x\bar{x} + y\bar{y} = 1$ or for all $x = \cos t$, $y = -\sin t$. If we take into account the obtained restrictions for the functions $a(r, x, y)$, $b(r, x, y)$, $c(r, x, y)$, a straightforward computation shows that the condition $(q_1 \cdot N^*) \cdot q_2 = q_1 \cdot (N^* \cdot q_2)$ of $[\mathbb{I}]$ holds for all elements $q_1 := (x, y)t$ of S^3 or S^1, $q_2 := (v, w)t$ of Q^\ast. This proves the assertion.
Let \(R \) denotes the group \(\text{Spin}_3(\mathbb{R}) \) if \(\dim Q = 4 \) or the group \(\text{SO}_2(\mathbb{R}) \) if \(\dim Q = 2 \) precisely if \(\Lambda_{Q^*} \) has the form
\[
\begin{pmatrix}
x & -\bar{y} \\
y & \bar{x}
\end{pmatrix}
\begin{pmatrix}
ua(u, 1, 0) & ub(u, 1, 0) \\
0 & ua^{-1}(u, 1, 0)e^{i\psi(u, 1, 0)}
\end{pmatrix}
\bigg| u > 0, \ x, y \in \mathbb{C}, \ x\bar{x} + y\bar{y} = 1 \quad \text{or} \quad x = \cos t, \ y = -\sin t, \ c(u, 1, 0) = 0 \bigg\}
\]
with the continuous functions \(a(u, 1, 0) > 0, b(u, 1, 0) \in \mathbb{C} \text{ or } \mathbb{R}, c(u, 1, 0) \in \mathbb{R} \) such that \(ua(u, 1, 0) \) is strictly monotone. In this case \(Q^* \) is decomposable.

Proof. If \(\dim Q = 4 \), then the assertion is proved in Proposition 10 of [16], whereas if \(\dim Q = 2 \), then the proof of the assertion is given in Proposition 15 of [15].

4. **Applications.** Although the group topologically generated by the left translations of any two-dimensional proper multiplicative loop is \(\text{GL}_2^+(\mathbb{R}) \) (cf. [15], Section 29, p. 345), here we show that the groups \(\text{GL}_2(\mathbb{C}), \text{Spin}_3(\mathbb{R}) \times \mathbb{C} \) and \(\text{SL}_2(\mathbb{C}) \times \mathbb{R} \) are realized as the group generated by the left translations of a four-dimensional multiplicative loop. The given examples consist of loops which are multiplicative loops of semifields, central extensions of \(\mathbb{R} \) by a loop defined on \(S^3 \) or which contain the group \(\text{Spin}_3(\mathbb{R}) \) illustrating Theorem 3.4 and Proposition 3.6.

There are two classes of four-dimensional semifields \(Q \) having the field \(\mathbb{C} \) as their kernel (cf. [15], Section 6). In the first class are the Rees algebras which are fully characterized in [15], Section 29.2. The multiplicative loop \(Q^* \) of a semifield \(Q \) in the second class is given by
\[
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
\star
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix}
= \lambda_{(x_1, x_2)}
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix}
= \begin{pmatrix}
x_1 & -cz_2 - x_2 \\
x_2 & x_1 + rz_2
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix},
\]
where \((x_1, x_2)^t, (y_1, y_2)^t \in \mathbb{C}^2 \setminus \{(0, 0)^t\}, \ r \geq 0 \text{ and } c = c_1 + ic_2 \in \mathbb{C}, c_2 \geq 0 \text{ are constants such that for all } v \in \mathbb{R} \text{ one has } 0 < P_{v,c}(v) = v^4 + (2Re c - r^2)v^2 - 2rv + |c|^2 - 1 \) (cf. [15], p. 83), \(\bar{z} \) is the complex conjugate of \(z \in \mathbb{C} \). The kernel \(K_r \) of the semifield \(Q_{(r,c)} \) defined by (21) is \(K_r = \{(k, 0)^t | k \in \mathbb{C}\} \) and the centre \(Z \) of \(Q_{(r,c)} \) is \(\{ (k, 0)^t | k \in \mathbb{R} \} \).

Proposition 4.1. The multiplicative loop \(Q^*_{(r,c)} \) is the direct product of the group \(\mathbb{R} \) and a loop \(L_{(r,c)} \) realized on \(S^3 \) and having the multiplication
\[
\begin{pmatrix}
x_1 & -cz_2 - x_2 \\
x_2 & x_1 + rz_2
\end{pmatrix}
\circ
\begin{pmatrix}
y_1 & -cy_2 - y_2 \\
y_2 & y_1 + ry_2
\end{pmatrix} = \begin{pmatrix}
z_1 & -cz_2 - z_2 \\
z_2 & z_1 + rz_2
\end{pmatrix},
\]
where \(z_1 = x_1y_1 - cxz_2y_2 - x_2y_2, z_2 = x_2y_1 + x_1y_2 + rz_2y_2, |\det(\lambda_{(x_1, x_2)})| = |\det(\lambda_{(y_1, y_2)})| = 1 = |\det(\lambda_{(z_1, z_2)})| \). The group generated by all left translations of \(Q^*_{(r,c)} \), respectively of \(L_{(r,c)} \), is the group \(\text{GL}_2(\mathbb{C}) \), respectively the group of complex \((2 \times 2)\)-matrices which have absolute value 1. The group generated by all translations of \(L_{(r,c)} \), respectively of \(Q^*_{(r,c)} \), is the group \(\text{SL}_4(\mathbb{R}) \), respectively the direct product \(\mathbb{R} \times \text{SL}_4(\mathbb{R}) \).

Proof. Let \(\lambda_{(x_1, x_2)} \) be a matrix in (21). If \(x_2 \neq 0 \) then
\[
\det(\lambda_{(x_1, x_2)}) \in \mathbb{C} \quad \text{and} \quad \lambda_{(x_1, x_2)}\lambda_{(x_1, x_2)^t} \notin \mathbb{R} \cdot I,
\]
where I is the identity matrix. Hence the group $G_{Q_{(r,c)}^*}$ generated by the left translations of $Q_{(r,c)}^*$ is the group $GL_2(\mathbb{C})$. The loop $Q_{(r,c)}^*$ has a central subgroup $Z_0^* = \{(k,0)^t \mid k > 0\} \cong \mathbb{R}$. The set $S_{(r,c)}$ of matrices

$$
\lambda_{(x_1,x_2)} = \begin{pmatrix} x_1 - c\bar{x}_2 - x_2 \\ x_2 - \bar{x}_1 + rx_2 \end{pmatrix}, \quad |\det(\lambda_{(x_1,x_2)})| = 1,
$$

topologically generates the group Δ of complex matrices A with $|\det(A)| = 1$ and the map $S_{(r,c)} \to S_{(r,c)}Z_0/Z_0$, where Z_0 is the group of the left translations by the elements of Z_0^*, is bijective. The product $\circ : S_{(r,c)} \times S_{(r,c)} \to S_{(r,c)}$ given by (22) in the assertion yields a loop $L_{(r,c)}$ diffeomorphic to S^3 because $L_{(r,c)}$ is a system of representatives with respect to the subgroup $\{(k_0 k^t e^t), k > 0, l \in \mathbb{C}, s \in \mathbb{R}\}$ in the group Δ. Hence the multiplicative loop $Q_{(r,c)}^*$ of $Q_{(r,c)}$ is isomorphic to the direct product of \mathbb{R} and $L_{(r,c)}$.

The group generated by all translations of the compact loop $L_{(r,c)}$ is $SL_4(\mathbb{R})$ (cf. [F11], Proposition 11). Since $Q_{(r,c)}^*$ is the direct product of \mathbb{R} and $L_{(r,c)}$, the group generated by all translations of $Q_{(r,c)}^*$ is the direct product $\mathbb{R} \times SL_4(\mathbb{R})$. This proves the assertion. \blacksquare

Let $\varphi : \mathbb{R} \to \text{Spin}_3(\mathbb{R})$, $\varphi(1) = 1$, be a continuous mapping and $\mathbb{H} = (\mathbb{R}^4, +, \cdot)$ be the skew field of quaternions. Then $\mathbb{H}_\varphi = (\mathbb{R}^4, +, \circ)$ with the multiplication \circ given by $0 \circ x = 0$ and for $m \neq 0$ by $m \circ x = m \cdot x\varphi(|m|) = m \cdot \varphi(|m|)^{-1} \cdot x \cdot \varphi(|m|)$ is a four-dimensional topological quasifield. The kernel K_φ of \mathbb{H}_φ is isomorphic to the field \mathbb{C} precisely if $\varphi(\mathbb{R}_{>0})$ lies in a subfield of \mathbb{H} isomorphic to \mathbb{C} (cf. [H1], pp. 234–238). The multiplicative loop \mathbb{H}_φ^* of \mathbb{H}_φ^* is defined by the multiplication

$$
m \circ x = M_{(m_1,m_2)}(x_1, x_2) = \begin{pmatrix} m_1 & -\bar{m}_2 \varphi(|m|)^2 \\ m_2 & \bar{m}_1 \varphi(|m|)^2 \end{pmatrix} (x_1, x_2),
$$

with $x = x_1 + jx_2$, $m = m_1 + jm_2$, $x_1, x_2, m_1, m_2 \in \mathbb{C}$.

Proposition 4.2. The set $\Lambda_{\mathbb{H}_\varphi^*}$ of all left translations of the loop \mathbb{H}_φ^* contains the group $\text{Spin}_3(\mathbb{R})$ and the group topologically generated by $\Lambda_{\mathbb{H}_\varphi^*}$ is $\text{Spin}_3(\mathbb{R}) \times \mathbb{C}$.

Proof. For each matrix $M_{(m_1,m_2)}$ one has $M_{(m_1,m_2)}^t \cdot \bar{M}_{(m_1,m_2)} = (m_1 \bar{m}_1 + m_2 \bar{m}_2) \cdot I \in \mathbb{R}I$, where I is the identity matrix, and $\det(M_{(m_1,m_2)}) = (m_1 \bar{m}_1 + m_2 \bar{m}_2)(\varphi(|m|)^2) \in \mathbb{C}^*$. Hence the group $G_{\mathbb{H}_\varphi^*}$ generated by the left translations of \mathbb{H}_φ^* is the group $\text{Spin}_3(\mathbb{R}) \times \mathbb{C}$ and $\varphi(u, x, y) = 1, b(u, x, y) = 0$ (cf. Proposition 3.1). Since the matrix $M_{(u,x,y)}$ in (2) coincides with $M_{(m_1,m_2)}$ given by (23) and $\det(M_{(u,x,y)}) = u^2 e^{i c(u,x,y)}$, we obtain $u = \sqrt{|\det(M_{(m_1,m_2)})|^2} = |m|$ and $e^{i c(u,x,y)} = \frac{\det(M_{(m_1,m_2)})}{u^2} = (\varphi(|m|))^2$. Hence the function c depends only on the variable $u = |m|$. According to Proposition 3.6 the set $\Lambda_{\mathbb{H}_\varphi^*}$ contains the group $\text{Spin}_3(\mathbb{R})$ and the assertion is proved. \blacksquare

Let Q be the quasifield given by formula (2) in [H2], p. 87. For $a_2 \neq 0$ the multiplication of Q is given by

$$
\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \circ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_1 x_1 - a_2 \bar{x}_2 + \frac{a_2 \varphi(a_2/|a_2|)}{\sqrt{1 + |\varphi(a_2/|a_2|)|^2}}(x_1 - x_1) \\ a_1 x_2 + a_2 \bar{x}_1 - \frac{a_2 \varphi(a_2/|a_2|)}{\sqrt{1 + |\varphi(a_2/|a_2|)|^2}}(x_2 - \bar{x}_2) \end{pmatrix},
$$

for $a_2 \neq 0$. The group G_Q generated by the left translations of Q^* is the group $GL_2(\mathbb{C})$. The loop Q^* has a central subgroup $Z_0^* = \{(k,0)^t \mid k > 0\} \cong \mathbb{R}$.
where $a_i, x_i \in \mathbb{C}, i = 1, 2,$ and $\varrho : S^1 \to \{il | l \in \mathbb{R}\}$ is a continuous non-constant function having pure imaginary values, $(a_i^1) \circ (x_i^1) = (a_i x_i)$ for $a_2 = 0$. The kernel K_1 of the quasifield Q_ϱ is $K_1 = \{(x) | x, y \in \mathbb{R}\}$ such that $(a_1^1) \circ (x) = (a_1 x - a_2 y)$. The coordinate change $T : \mathbb{C}^2 \to \mathbb{C}^2, (r + si, u + vi)^t \mapsto (r + ui, s + vi)^t$ transforms the kernel K_1 to $K_2 = \{(x + iy, 0)^t \mid x, y \in \mathbb{R}\} = \{(z, 0)^t \mid z \in \mathbb{C}\}$ and the multiplication of the loop Q_ϱ^* is given by

\[
\begin{pmatrix}
 a_{11} + ia_{12} \\
 a_{21} + ia_{22}
\end{pmatrix}
\circ
\begin{pmatrix}
 x_{11} + ix_{12} \\
 x_{21} + ix_{22}
\end{pmatrix}

= T^{-1}
\begin{pmatrix}
 a_{11} + ia_{21} -a_{12} + ia_{22} + \frac{2a_{21} \Im(\varrho(a_2/|a_2|))}{\sqrt{1 + (\Im(\varrho(a_2/|a_2|))^2} \\
 a_{12} + ia_{22} a_{11} - ia_{21} + \frac{2a_{22} \Im(\varrho(a_2/|a_2|))}{\sqrt{1 + (\Im(\varrho(a_2/|a_2|))^2}}
\end{pmatrix}
\begin{pmatrix}
 x_{11} + ix_{21} \\
 x_{12} + ix_{22}
\end{pmatrix}.
\]

Proposition 4.3. The group topologically generated by the left translations of Q_ϱ^* is the group $\text{SL}_2(\mathbb{C}) \times \mathbb{R}$. The loop Q_ϱ^* is a central extension of $Z_0^* = \{(c, 0)^t \mid c > 0\} \cong \mathbb{R}$ by a loop homeomorphic to S^3.

Proof. The assertion is proved in Proposition 13 of [F2].

Acknowledgments. This paper is supported by the EFOP-3.6.1-16-2016-00022 project. The project is co-financed by the European Union and the European Social Fund.

References

