
MAPS ON POSITIVE DEFINITE MATRICES PRESERVING BREGMAN
AND JENSEN DIVERGENCES

LAJOS MOLNÁR, JÓZSEF PITRIK, AND DÁNIEL VIROSZTEK

ABSTRACT. In this paper we determine those bijective maps of the set
of all positive definite n ×n complex matrices which preserve a given
Bregman divergence corresponding to a differentiable convex func-
tion that satisfies certain conditions. We cover the cases of the most
important Bregman divergences and present the precise structure of
the mentioned transformations. Similar results concerning Jensen di-
vergences and their preservers are also given.

1. INTRODUCTION

In a series of papers [3, 8, 12, 9] the first author and his coauthors de-
scribed the structures of surjective maps of the positive definite cones in
matrix algebras, or in operators algebras which can be considered gener-
alized isometries meaning that they are transformations which preserve
"distances" with respect to given so-called generalized distance mea-
sures. This latter notion stands for any function d : X ×X → [0,∞) on
any set X with the mere property that for x, y ∈ X we have d(x, y) = 0 if
and only if x = y . We recall that in several areas of mathematics not only
metrics are used to measure nearness of points but also more general
functions of this latter kind.

In [12, 9] the considered generalized distance measures are of the form
d = dN ,g , where N (.) is a unitarily invariant norm on the underlying ma-
trix algebra or operator algebra, g : (0,∞) → C is a continuous function
with the properties

(a1) g (y) = 0 if and only if y = 1;
(a2) there exists a constant K > 1 such that

∣∣g (
y2

)∣∣≥ K
∣∣g (y)

∣∣, y > 0,
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and the generalized distance measure dN ,g is defined by

(1) dN ,g (X ,Y ) = N
(
g

(
Y −1/2X Y −1/2))

for all positive invertible elements X ,Y of the underlying algebra. In the
mentioned papers one can see several important examples of that sort
of generalized distance measures, many of them having backgrounds in
the differential geometry of positive definite matrices or operators. The
basic tools in describing the structure of the corresponding generalized
isometries have been so-called generalized Mazur-Ulam type theorems
and descriptions of certain algebraic isomorphisms (Jordan triple iso-
morphisms) of the positive definite cones in question.

In the present paper we determine the structures of generalized isome-
tries with respect to other important types of generalized distance mea-
sures. Namely, here we consider Bregman divergences and Jensen di-
vergences. These types of divergences have wide ranging applications
in several areas of mathematics. For example, in the recent volume [13]
on matrix information geometry 3 chapters are devoted to the study of
Bregman divergences. One feature of Jensen divergences which justifies
their importance is that Bregman divergences can be considered as as-
ymptotic Jensen divergences (see Section 6.2 in [13]). We further mention
that the famous Stein’s loss and Umegaki’s relative entropy are among the
most important Bregman divergences. Our basic tool in this paper to de-
termine the corresponding preserver transformations is, just as above,
also algebraic in nature but rather different from what we have men-
tioned in the previous paragraph. Namely, here we use order isomor-
phisms.

Before presenting the results we fix the notation and terminology. In
what follows Mn denotes the algebra of all n ×n complex matrices and
Pn stands for the positive definite cone in Mn , i.e., the set of all positive
definite matrices in Mn . Whenever convenient, in the paper we use the
equivalence of the language of matrices and that of linear operators on
Cn .

We next define the two basic concepts what we consider in this pa-
per, Bregman divergence and Jensen divergence. Both concepts are con-
nected to convex real functions. Let f be a convex function on the in-
terval (0,∞). It is known that f is necessarily continuous and the set of
points where f is differentiable has at most countable complement. It is
a remarkable fact that if f is everywhere differentiable then its derivative
f ′ is automatically continuous (see e.g. [15, Corollary 25.5.1]).
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For a differentiable convex function f on (0,∞), the Bregman f -
divergence on Pn is

H f (X ,Y ) = Tr
(

f (X )− f (Y )− f ′(Y )(X −Y )
)

, X ,Y ∈Pn ,

see e.g. formula (5) in [14]. If limx→0+ f (x) and limx→0+ f ′(x) exist,
then f , f ′ have continuous extensions onto [0,∞) and the Bregman f -
divergence is well-defined and finite for any pair of positive semidefinite
matrices, too.

For a convex function f on (0,∞) and for given λ ∈ (0,1), the Jensen
λ− f -divergence on Pn is defined by

J f ,λ(X ,Y ) = Tr
(
λ f (X )+ (1−λ) f (Y )− f (λX + (1−λ)Y )

)
, X ,Y ∈Pn .

If limx→0+ f (x) exists, then the Jensen λ − f -divergence is also well-
defined and finite for any pair of positive semidefinite matrices.

It is well-known that H f and J f ,λ are always nonnegative and they are
generalized distance measures (in the sense we use in this paper) if and
only if f is strictly convex.

Our main aim is to describe the "symmetries" of the positive definite
cone Pn that preserve above type of divergences. This means that we are
looking for the structure of all bijective maps φ :Pn →Pn for which

H f
(
φ(X ),φ(Y )

)= H f (X ,Y ), X ,Y ∈Pn

or
Jλ, f

(
φ(X ),φ(Y )

)= Jλ, f (X ,Y ), X ,Y ∈Pn

holds.

2. THE RESULTS

We now turn to our results. It is useful to examine first the question that
how different the present problem is from the ones we have considered in
the papers [3, 8, 12, 9]. To see clearly the differences we determine below
which Bregman divergences, respectively which Jensen divergences are
of the form (1). Let us begin with the case of Bregman divergences.

One of the most important Bregman divergence is the one usually
denoted by l which corresponds to the strictly convex function f (x) =
− log x, x > 0 and is called Stein’s loss. Apparently, we have

l (X ,Y ) =−Tr
(
log X − logY −Y −1(X −Y )

)= Tr X Y −1 − logdet X Y −1 −n

for all X ,Y ∈Pn , where we have used the identity Tr◦ log = log◦det onPn .
On the other hand, the continuous function g (y) = y − log y −1, y > 0 is
nonnegative, satisfies the conditions (a1), (a2) (with constant K = 2), and
with the trace norm ‖.‖1 we easily get

d‖.‖1,g (X ,Y ) = ∥∥g
(
Y −1/2X Y −1/2)∥∥

1 = l (X ,Y ), X ,Y ∈Pn .
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In the next proposition we prove that Stein’s loss is essentially the only
Bregman divergence on Pn which is a generalized distance measure of
the form (1). Observe that any distance measure of the form (1) is invari-
ant under multiplication of the variables X ,Y by the same positive scalar
t .

Proposition 1. Let f be a differentiable convex function on (0,∞). Assume
that the Bregman f -divergence H f on Pn is homogeneous of degree 0, i.e.,
it satisfies

(2) H f (t X , tY ) = H f (X ,Y ) X ,Y ∈Pn , t > 0.

Then we have f (x) = a log x +bx + c, x > 0 with some real scalars a,b,c
and a ≤ 0.

Proof. We plug scalar multiples of the identity X = xI ,Y = y I , x, y > 0
into the equality (2) and obtain

(3) f (t x)− f (t y)− f ′(t y)t (x − y) = f (x)− f (y)− f ′(y)(x − y), t > 0.

Choosing t = 1/y and reordering this equality we have

f ′(y) = (1/(x − y))( f (x)− f (y)− f (x/y)+ f (1)+ f ′(1)((x/y)−1)))

implying that f is twice continuously differentiable. Differentiating (3)
with respect to x twice we obtain f ′′(x) = f ′′(t x)t 2, x, t > 0. In particular,
it follows that f ′′(t ) is a constant multiple of t−2, t > 0. We infer that
f (t ) = a log t +bt + c, t > 0 holds with some real constants a,b,c. By the
convexity of f we have a ≤ 0. �

Concerning the appearance of the function x 7→ bx + c in the above
proposition we note that adding an affine function to a given convex
function f does not change the corresponding Bregman divergence (the
same holds for Jensen divergence, too), hence that part simply does not
count.

We next examine the case of Jensen divergences. Again, let f (x) =
− log x, x > 0 and pick λ ∈ (0,1). It is easy to see that the corresponding
Jensen divergence is

J− log,λ(X ,Y ) = logdet(λX + (1−λ)Y )− logdet X λY 1−λ, X ,Y ∈Pn

which can also be written as

J− log,λ(X ,Y ) = logdet
(
λY −1/2X Y −1/2 + (1−λ)I

)− logdet
(
Y −1/2X Y −1/2)λ

= Tr
(
log

((
λY −1/2X Y −1/2 + (1−λ)I

)(
Y −1/2X Y −1/2)−λ)) , X ,Y ∈Pn .

These divergences are scalar multiples of the Chebbi-Moakher log-
determinant α-divergences, see [2, 12]. As mentioned in [12] (see pages
146-147) the continuous function gλ(y) = log

(
(λy + (1−λ))/yλ

)
, y > 0 is
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nonnegative, satisfies (a1), (a2) (with constant K = 2) and, moreover, we
have

J− log,λ(X ,Y ) = ∥∥g
(
Y −1/2X Y −1/2)∥∥

1 , X ,Y ∈Pn .

This means that the Jensen divergences J− log,λ are also of the form (1).
Let us insert the remark here that in the particular case λ = 1/2 the

above Jensen divergence was considered and called S-divergence in the
paper [16] of Sra. He proved the interesting fact there that the square root
of this divergence is a true metric and proposed to use it as a convenient
substitute for the geodesic distance d‖.‖2,log (‖.‖2 standing for the Hilbert-
Schmidt or Frobenius norm) originating from the natural Riemann geo-
metric structure on Pn .

Continuing the discussion, above we have seen that the divergences
J− log,λ are of the form (1). In what follows we show that they are essen-
tially the unique Jensen divergences with this property.

Proposition 2. Let f be a convex function on (0,∞) and pick a number
λ ∈ (0,1). Assume that the corresponding Jensen λ− f divergence is homo-
geneous of order 0, i.e., it satisfies

(4) J f ,λ(t X , tY ) = J f ,λ(X ,Y ) X ,Y ∈Pn , t > 0.

Then we have f (x) = a log x +bx + c, x > 0 with some real scalars a,b,c
and a ≤ 0.

Proof. Just as above, plugging scalar multiples of the identity X = xI ,Y =
y I , x, y > 0 into the equality (4) we have

(5)
λ f (t x)+ (1−λ) f (t y)− f (λt x + (1−λ)t y)

=λ f (x)+ (1−λ) f (y)− f (λx + (1−λ)y), t > 0.

We assert that f is differentiable. In fact, choosing x = 1 we have

f (t ) = (1/λ)(λ f (1)+ (1−λ) f (y)− f (λ+ (1−λ)y)

−(1−λ) f (t y)+ f (λt + (1−λ)t y)).

The result [5, 11.3. Theorem] of Járai on the regularity of solutions of
functional equations applies and tells us that f is necessarily continu-
ously differentiable. Differentiating (5) with respect to t we have

0 =λ f ′(t x)x + (1−λ) f ′(t y)y − f ′(λt x + (1−λ)t y)(λx + (1−λ)y)

implying the equality

λ f ′(t x)x + (1−λ) f ′(t y)y = f ′(λt x + (1−λ)t y)(λx + (1−λ)y)

for all positive t , x, y . Choosing t = 1 we infer

λ f ′(x)x + (1−λ) f ′(y)y = f ′(λx + (1−λ)y)(λx + (1−λ)y).
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This means that the function h(x) = f ′(x)x, x > 0 is affine and hence it is
of the form h(x) = bx+a, x > 0. It follows that f (x) = a log x+bx+c, x > 0
with some real scalars a,b,c. Again, the convexity of f implies a ≤ 0. �

The above results can be considered as characterizations (hope-
fully a bit interesting) of the Stein’s loss and the Chebbi-Moakher log-
determinant α-divergences.

We now turn to the descriptions of the corresponding generalized
isometries, i.e., transformations preserving the considered divergences.
We begin with a general result relating to Bregman divergences.

We first mention the easy fact that both kinds of divergences are clearly
invariant under unitary and antiunitary congruence transformations.
These are maps of the form A 7→ U AU∗, where U is a unitary or an an-
tiunitary operator on Cn . In fact, this follows from the following. For any
continuous function f on (0,∞) and for any unitary or antiunitary op-
erator U on Cn we have that f (U AU∗) = U f (A)U∗ holds for every pos-
itive definite A. This is the consequence of the fact that on the spec-
trum of A the function f coincides with a polynomial p and hence we
have f (U AU∗) = p (U AU∗) = Up(A)U∗ = U f (A)U∗. Our theorems be-
low show that in many cases only the unitary and antiunitary congruence
transformations preserve the Bregman divergence.

Theorem 3. Let f be a differentiable convex function on (0,∞) such that
f ′ is bounded from below and unbounded from above. Let φ : Pn → Pn be
a bijective map which satisfies

H f
(
φ(A),φ(B)

)= H f (A,B) , A,B ∈Pn .

Then there exists a unitary or antiunitary operator U : Cn → Cn such that
φ is of the form

φ(A) =U AU∗, A ∈Pn .

Proof. First we recall that since f is convex and everywhere differen-
tiable, f ′ is continuous. By the convexity of f , its derivative f ′ is mono-
tonically increasing. The assumption that f ′ is bounded from below im-
plies that limx→0+ f ′(x) exists and is finite. Hence f ′ can be continu-
ously extended onto [0,∞). The same holds for f , too. Indeed, f (x) =
f (1)+∫ x

1 f ′(t )dt , x > 0 and
∫ x

1 f ′(t )dt is convergent as x tends to 0 by the
boundedness of f ′ on (0,1].

In the rest of the proof we shall need the following characterization of
the usual order ≤ on Pn .

Claim A. Let B ,C ∈Pn . The set

(6)
{

H f (B , A)−H f (C , A)|A ∈Pn
}

is bounded from below if and only if B ≤C .
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To prove the claim we first compute

(7)

H f (B , A)−H f (C , A)

= Tr f (B)−Tr f (A)−Tr f ′(A)(B − A)

−Tr f (C )+Tr f (A)+Tr f ′(A)(C − A)

= Tr f (B)−Tr f (C )+Tr f ′(A)(C −B).

Let k denote a lower bound of f ′. Assume B ≤C . Then by the inequality

f ′(A) ≥ kI , A ∈Pn ,

we have that

Tr f ′(A)(C −B) ≥ TrkI (C −B) = k Tr(C −B)

holds for every A ∈ Pn which shows that the set (6) is bounded from be-
low. Conversely, if B 6≤ C , then there exists a unit vector x ∈ Cn such that
〈B x, x〉 > 〈C x, x〉 . Let Px denote the orthogonal projection onto the one-
dimensional subspace generated by x. For any t > 0 we have
(8)
Tr f ′ (tPx + (I −Px)) (C −B) = f ′(t )〈(C −B)x, x〉+ f ′(1)Tr(I −Px) (C −B).

Since 〈(C −B)x, x〉 < 0 and
{

f ′(t )|t > 0
}

is unbounded from above, hence
the first term on the right hand side of (8) is unbounded from below. By
(7), it follows that that the set{

H f (B , A)−H f (C , A)|A ∈Pn
}

is unbounded from below. This proves our claim.
Since the bijective map φ : Pn → Pn preserves the Bregman f -

divergence, using the above characterization of the order we obtain that
φ is an order automorphism, i.e., for any B ,C ∈ Pn we have B ≤ C if and
only if φ(B) ≤φ(C ).

By the result [7, Theorem 1] of the first author, φ, just as any order au-
tomorphism of Pn , is of the form

φ(A) = T AT ∗, A ∈Pn ,

where T is an invertible linear or conjugate-linear operator on Cn . We
may suppose that T is linear, since if we are done with this, the case of
conjugate-linear T is not difficult to handle.

We show that T is unitary. Assume on the contrary that T is not unitary.
Then T ∗T 6= I . Consider the polar decomposition T =U P of T where P =p

T ∗T is positive definite and U = T P−1 is unitary. Since the Bregman
f -divergence is invariant under unitary congruences, hence we have

(9)
H f (A,B) = H f

(
φ(A),φ(B)

)= H f
(
T AT ∗,T BT ∗)

= H f
(
U PAPU∗,U PBPU∗)= H f (PAP,PBP )
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for all A,B ∈ Pn . Since T is not unitary, hence P 6= I , and thus P has an
eigenvalue different from 1. Without serious loss of generality we may
assume that P has an eigenvalue greater than 1 for the following rea-
son. The map A 7→ PAP is a bijection of Pn which preserves the Bregman
f -divergence. Therefore, the inverse transformation A 7→ P−1 AP−1 pre-
serves the Bregman f -divergence as well. If P does not have any eigen-
value greater than 1, P−1 must have one.

Suppose that P v = λv for some λ > 1 and unit vector v ∈ Cn . Let Qv

be the orthogonal projection onto the one-dimensional subspace gen-
erated by v. By (9), the transformation A 7→ PAP preserves the Bregman
f -divergence and so does any of its powers A 7→ P n AP n . Hence

H f
(
λ2Qv ,Qv

)= H f
(
P nλ2Qv P n ,P nQv P n)

(10) = H f
(
λ2(n+1)Qv ,λ2nQv

)
holds for any n ∈N.

We now consider the symmetrized Bregman f -divergence H f (A,B)+
H f (B , A) which can be written in the following convenient form

H f (A,B)+H f (B , A) = Tr f (A)−Tr f (B)−Tr f ′(B)(A−B)

+Tr f (B)−Tr f (A)−Tr f ′(A)(B − A) = Tr
(

f ′(A)− f ′(B)
)

(A−B).

By (10) we have

H f
(
λ2Qv ,Qv

)+H f
(
Qv ,λ2Qv

)
= H f

(
λ2(n+1)Qv ,λ2nQv

)+H f
(
λ2nQv ,λ2(n+1)Qv

)
= Tr

(
f ′(λ2(n+1)Qv )− f ′(λ2nQv )

)(
λ2(n+1)Qv −λ2nQv

)
= (

f ′ (λ2(n+1))− f ′ (λ2n))
λ2n (

λ2 −1
)

for any n ∈N. This means that
(

f ′(λ2(n+1))− f ′ (λ2n
))
λ2n is independent

of n, that is,

f ′ (λ2(n+1))− f ′ (λ2n)= c(
λ2

)n

holds for some constant c. Therefore,

lim
x→∞ f ′(x) = lim

n→∞ f ′ (λ2(n+1))= lim
n→∞

(
f ′(1)+

n∑
k=0

(
f ′

(
λ2(k+1)

)
− f ′

(
λ2k

)))

= f ′(1)+ lim
n→∞

n∑
k=0

c(
λ2

)k
= f ′(1)+ c

∞∑
n=0

(
λ−2)n <∞.

which contradicts the assumption that f ′ is unbounded from above. The
proof of the theorem is complete. �



9

The probably most important Bregman f -divergences on Pn corre-
spond to the following functions: x 7→ xp (p > 1), x 7→ x log x − x, x 7→
− log x. Unfortunately, the general theorem above covers only the case
of the first type of functions. Indeed, the second function has derivative
which is neither bounded from below nor unbounded from above and
the derivative of the third one is not bounded from below. Fortunately,
the Bregman divergence related to the third function, i.e., Stein’s loss is
of the form (1) and the corresponding preservers were characterized in
[12]. By [12, Theorem 2] a surjective mapφ :Pn →Pn preserves the Stein’s
loss if and only if there is an invertible linear or conjugate linear operator
T :Cn →Cn such that φ is of the form

φ(A) = T AT ∗, A ∈Pn .

In what follows we characterize the preservers of Umegaki’s relative en-
tropy or, in other words, von Neumann divergence which is the Bregman
divergence corresponding to the function x 7→ x log x − x. It is clear that
this divergence equals

Tr
(

A(log A− logB)− (A−B)
)

, A,B ∈Pn .

The result reads as follows.

Theorem 4. Let φ :Pn →Pn be a surjective map which satisfies

(11)
Tr

(
φ(A)

(
logφ(A)− logφ(B)

)− (
φ(A)−φ(B)

))
= Tr(A(log A− logB)− (A−B)), A,B ∈Pn .

Then there exists a unitary or antiunitary operator U : Cn → Cn such that
φ is of the form

φ(A) =U AU∗, A ∈Pn .

Proof. We begin with the following general observation. Assume that f is
a strictly convex differentiable function on (0,∞). We assert that for any
B ,C ∈Pn , the set {

H f (A,B)−H f (A,C )|A ∈Pn
}

is bounded from below if and only if f ′(B) ≤ f ′(C ). Indeed, we have

H f (A,B)−H f (A,C )

= Tr
(

f ′(C )− f ′(B)
)

A+Tr
(

f (C )− f (B)− (
f ′(C )C − f ′(B)B

))
which is easily seen to be bounded from below if and only if f ′(C ) −
f ′(B) ≥ 0.

Therefore, for any surjective (and hence, by the strict convexity of f ,
bijective) map φ : Pn → Pn which preserves the Bregman f -divergence,
we obtain that φ has the property that

f ′(B) ≤ f ′(C ) ⇐⇒ f ′ (φ(B)
)≤ f ′ (φ(C )

)
.



10 LAJOS MOLNÁR, JÓZSEF PITRIK, AND DÁNIEL VIROSZTEK

This means that the transformation A 7→ f ′
(
φ

(
f ′−1(A)

))
is an order au-

tomorphism of the set of all self-adjoint operators on Cn with spectrum
contained in the range of f ′.

In our particular case we have f ′ = log, therefore A 7→ log
(
φ

(
e A

))
is

an order automorphism of the set of all self-adjoint operators on Cn . By
[6, Theorem 2] we have an invertible linear or conjugate-linear operator
T :Cn →Cn and a self-adjoint linear operator X :Cn →Cn such that

log
(
φ

(
e A))= T AT ∗+X

or

(12) φ(A) = eT log AT ∗+X , A ∈Pn .

We assume that T is linear, the conjugate-linear case is similar, not diffi-
cult to handle. Consider the polar decomposition T =U P of T where U
is unitary and P = p

T ∗T is positive definite. As already mentioned, the
unitary similarity transformation A 7→U AU∗ preserves Bregaman diver-
gences. Since

φ(A) = eU P (log A)PU∗+X =U eP (log A)P+U∗XUU∗, A ∈Pn ,

it follows that in (12) we can and do assume that T is a positive definite
operator. We prove that necessarily T = I holds. To see this, first assume
that T has an eigenvalue which is greater than 1. We know that
(13)

Tr
(
eT (log A)T+X (T (log A)T −T (logB)T )−

(
eT (log A)T+X −eT (logB)T+X

))
= Tr(A(log A− logB)− (A−B)), A,B ∈Pn .

Fixing A,B , write tB in the place of B where t > 0 is arbitrary. The above
equality gives us that

(14) a log t +Tre(log t )T 2+T (logB)T+X + c = d log t +et + f , t > 0

holds for some real constants a,b,c,d ,e, f . Select a real number µ such
that µI ≤ T (logB)T + X . Let λ be an eigenvalue of T which is greater
than 1 and let x be a corresponding unit eigenvector. Denote by Px the
rank-one projection onto the subspace generated by x. Then λ2Px ≤ T 2,
so for t ≥ 1 we have (log t )λ2Px +µI ≤ (log t )T 2 +T (logB)T + X . By the
monotonicity of trace functions (see [1, 2.10. Theorem]) this implies that

Tre(log t )λ2Px+µI ≤ Tre(log t )T 2+T (logB)T+X , t ≥ 1.

Therefore, the function t 7→ Tre(log t )T 2+T (logB)T+X , t ≥ 1 can be minorized
by a functionαtλ

2+βwith some positiveα and real numberβ. Sinceλ2 >
1, considering the equality (14) and letting t tend to infinity, we easily
obtain a contradiction. Therefore, the eigenvalues of T are all less than
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or equal to 1. However, the inverse of φ also preserves the von Neumann
divergence and we have

φ−1(A) = eT −1(log A)T −1−T −1 X T −1
, A ∈Pn

It follows that the eigenvalues of T −1 are also not greater than 1. We con-
clude that T = I .

We finally prove that X = 0. Let A = I and B be any element ofPn which
commutes with X . We obtain from (13) that

Tre X (− logB +B − I ) = Tr(− logB +B − I ).

By the properties of the function x 7→ − log x + x − 1, x > 0 (strictly in-
creasing for x ≥ 1, and takes the value 0 at 1) it is easy to see that any
positive semidefinite operator D which commutes with X can be written
as D =− logB +B − I with some positive definite B which commutes with
X . Consequently, we have

Tre X D = TrD

for any positive semidefinite operator D on Cn . This clearly implies that
e X = I , i.e., X = 0. The proof of the theorem is complete. �

Let us mention here that the structure of all surjective maps on the
set of nonsingular density operators (i.e., positive definite operators with
trace 1) which preserve the relative entropy was determined in [7, Theo-
rem 3]. The conclusion there is analogous to the conclusion here, those
maps are unitary or antiunitary congruence transformations. Further-
more, the fundamental idea of the proof there is basically the same as
here although the details are rather different.

We now turn to the preservers of Jensen divergences. Our general result
reads as follows.

Theorem 5. Let f be a differentiable strictly convex function on (0,∞),
assume limx→0+ f (x) exists and finite and f ′ is unbounded from above.
Pick λ ∈ (0,1). If φ :Pn →Pn is a surjective map which satisfies

J f ,λ
(
φ(A),φ(B)

)= J f ,λ (A,B) , A,B ∈Pn ,

then there exists a unitary or antiunitary operator U : Cn → Cn such that
φ is of the form

φ(A) =U AU∗, A ∈Pn .

Proof. Observe first that, by the assumptions on the function, f is mono-
tonically increasing for large enough values of its variable. Next, we verify
the following.

Claim B. For any B ,C ∈Pn , the set{
J f ,λ(A,B)− J f ,λ(A,C )|A ∈Pn

}
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is bounded from below if and only if B ≤C .
To prove the claim first observe that

J f ,λ(A,B)− J f ,λ(A,C ) = (1−λ)
(
Tr f (B)−Tr f (C )

)+
+Tr f (λA+ (1−λ)C )−Tr f (λA+ (1−λ)B) , A ∈Pn .

Assume now that B ≤C and that there is a sequence (Ak ) in Pn such that

Tr f (λAk + (1−λ)C )−Tr f (λAk + (1−λ)B) →−∞.

Denote µ(k)
i , i = 1, . . . ,n the eigenvalues of λAk + (1−λ)B and λ(k)

i , i =
1, . . . ,n the eigenvalues of λAk + (1−λ)C both ordered in increasing or-
der. By the Weyl inequality (see e.g. [4, 4.3.3. Corollary]) it follows that

µ(k)
i ≤ λ(k)

i for all i and k. Moreover, we have
∑

i

(
f
(
λ(k)

i

)
− f

(
µ(k)

i

))
→

−∞ which implies that the sequence
(

f
(
λ(k)

i

)
− f

(
µ(k)

i

))
is not bounded

from below for some i = 1, . . . ,n and hence it has a subsequence(
f
(
λ

(kl )
i

)
− f

(
µ

(kl )
i

))
→ −∞. Since f is bounded from below, we deduce

that f
(
µ

(kl )
i

)
→ ∞. This implies that µ(kl )

i → ∞ and hence f
(
λ

(kl )
i

)
−

f
(
µ

(kl )
i

)
≥ 0 for all but finitely many indexes l which is a contradiction.

Conversely, if B 6≤ C , then there exists a unit vector x ∈ Cn such that
〈B x, x〉 > 〈C x, x〉 . Set ε = 〈(B −C )x, x〉 and let Px denote the orthogonal
projection onto the one-dimensional subspace generated by x. Let m be
a positive number such that mI − (1−λ)C is positive definite. For any
t > 0 set

At := 1

λ
(mI + tPx − (1−λ)C ) .

Now

(15)

J f ,λ(At ,B)− J f ,λ(At ,C ) = (1−λ)
(
Tr f (B)−Tr f (C )

)
+Tr f (λAt + (1−λ)C )−Tr f (λAt + (1−λ)B)

= (1−λ)
(
Tr f (B)−Tr f (C )

)
+Tr f (mI + tPx)−Tr f (mI + tPx + (1−λ)(B −C )) .

Let {x, y2, y3, . . . , yn} be an orthonormal basis in Cn . For 2 ≤ j ≤ n, denote
by a j j the diagonal matrix elements of mI + tPx + (1−λ)(B −C ) relative
to this basis, that is,

a j j := 〈(mI + tPx + (1−λ)(B −C )) y j , y j 〉 = 〈(mI + (1−λ)(B −C )) y j , y j 〉 .

Note that a j j is independent of t for 2 ≤ j and

〈(mI + tPx + (1−λ)(B −C )) x, x〉 = m + t + (1−λ)ε.
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By Peierls inequality (see [1, 2.9. Theorem]), for the convex function f we
have

f (m + t + (1−λ)ε)+
n∑

j=2
f (a j j ) ≤ Tr f (mI + tPx + (1−λ)(B −C )) .

On the other hand, it is apparent that

Tr f (mI + tPx) = f (m + t )+ (n −1) f (m).

Therefore, by (15),

J f ,λ(At ,B)− J f ,λ(At ,C ) ≤ f (m + t )− f (m + t + (1−λ)ε)+K (B ,C ),

where

K (B ,C ) = (1−λ)
(
Tr f (B)−Tr f (C )

)+ (n −1) f (m)−
n∑

j=2
f (a j j )

is independent of the parameter t . Since f ′ is unbounded from above,
hence

lim
t→∞ f (m + t )− f (m + t + (1−λ)ε) =−∞,

and this completes the proof of our claim.
Using the characterization of the order given in Claim B, we see that

the transformation φ is an order automorphism of Pn and hence it is of
the form

φ(A) = T AT ∗, A ∈Pn ,

where T is an invertible linear or conjugate-linear operator on Cn . We
consider only the case where T is linear and prove that then T is neces-
sarily unitary.

As already mentioned, the unitary-antiunitary congruence transfor-
mations preserve the Jensen divergences. Hence, by polar decomposi-
tion, we can assume that T is a positive definite operator.

Any power of φ is also a divergence preserver, so for every positive in-
teger n we have that

(16)
Trλ f (T n AT n)+ (1−λ) f (T nBT n)− f (T n(λA+ (1−λ)B)T n)

= Trλ f (A)+ (1−λ) f (B)− f (λA+ (1−λ)B), A,B ∈Pn .

Since f is continuously extendible onto [0,∞), thus we can insert any
positive semidefinite operators A,B in the equality above. Assume T has
an eigenvalue, say s, which is greater than 1 and x is a corresponding unit
eigenvector. As before, denote by Px the orthogonal projection onto the
subspace generated by x. Plug A = Px and B = 0 into (16). We have

λ f
(
s2n)− f

(
λs2n)= c
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with some constant c. One can easily check that the function t 7→λ f (t )−
f (λt ) is monotonically increasing (just differentiate and use that f ′ is in-
creasing). Since s2n →∞, it follows that

λ f (t )− f (λt ) = c, t > 0.

We deduce λ f ′(t ) = f ′(λt )λ, t > 0 and this implies that f ′ is constant. We
obtain that f is affine, a contradiction. It follows that T has no eigenvalue
which is greater than 1. Since φ−1 also preserves the λ− f Jensen diver-
gence, we have that the eigenvalues of T −1 are also not greater than 1. It
follows that T = I and the proof of the theorem is complete. �

Let us again consider the three most important examples x 7→ xp (p >
1), x 7→ x log x−x, x 7→ − log x of generating functions. The first two do sat-
isfy the conditions in our theorem, hence the corresponding preservers
are unitary-antiunitary congruence transformations. As for the third one,
it does not satisfy the conditions (not bounded below), but the Jensen di-
vergence in that case is of the form (1), see the discussion before Propo-
sition 2. By [12, Theorem 2], a surjective map φ : Pn → Pn preserves the
corresponding Jensen divergence (i.e., Chebbi-Moakher log-determinant
α-divergence) if and only if there is an invertible linear or conjugate lin-
ear operator T :Cn →Cn such that φ is of the form

φ(A) = T AT ∗, A ∈Pn .

In closing the paper we finally remark that the main result in our pa-
per [10] where we have described the structure of all transformations on
any dense subset of density operators that preserve the Holevo bound is
closely related to Theorem 5 in the particular case where the function f is
x 7→ x log x−x, x > 0. Indeed, the Holevo bound of the ensemble {λ,1−λ}
is just the corresponding Jensen divergence. We admit that the proof in
[10] is of completely different character.
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