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Abstract. In what follows we want to illustrate how to use averages
to solve problems in Finsler geometry. We have two central topics which
are closely related to each other via the notion of generalized Berwald
manifolds. The linear connection on the base manifold is said to be com-
patible to the Finslerian metric if the parallel transport preserves the
Finslerian lenght of tangent vectors. The generalized Berwald manifolds
are Finsler spaces admitting compatible linear connections. The most
important special cases are Berwald manifolds with torsion free com-
patible connections, Wagner manifolds with semi-symmetric compatible
connections etc. The common feature of the compatible linear connec-
tions is that they must be metrical with respect to the averaged Rie-
mannian metric coming from integration of the Riemann-Finsler metric
on the indicatrix hypersurfaces. This central result allows us to consider
the compatible linear connections in a Riemannian environment, i.e. the
holonomy groups at the points of the base manifold can be interpreted as
subgroups in the Euclidean orthogonal group. Of course if a generalized
Berwald manifold is not a Riemannian space then the holonomy groups
can not be transitive on the unit spheres in the tangent spaces with
respect to the associated Riemannian metric. A continuity-type argu-
mentation shows that the same is true for the topological closures of the
holonomy groups at the points of the base manifold. Using the theory of
generalized conics it can be also proved that it is a sufficient condition for
a metrical linear connection of a Riemannian space to be the compatible
connection for a non-Riemannian generalized Berwald manifold. More-
over the indicatrices can be always considered as generalized conics in
the tangent spaces with respect to the Euclidean structure coming from
the associated Riemannian metric. One of the advantages of this new
approach is that we can avoid the classical theory of locally symmetric
Riemannian spaces fitting the case of the classical Berwald manifolds
because of the condition for the torsion being identically zero.

1. Introduction

There are several reasons why to use average (mean, mode, median,
ecpectable value etc.) in mathematics. An average is a measure of the
middle or typical value of a data set. The concept can be extended to func-
tions too. The average value of an integrable function on a set D of finite
positive measure is

f̂ =
1

µ(D)

∫
D
f dµ.

Supported by JP-8/2009, TÉT 10 − 1 − 2011 − 0065. The paper contains the mate-
rial of the lecture presented at 47th Symopsium on Finsler Geometry, 22-25 Nov. 2012,
Kagoshima, Japan.

1



ON GENERALIZED CONICS’ THEORY... 2

The general aim is to accumulate the information or to substitute more
complicated mathematical objects with relatively simple ones. The object
of the generalized conics’ theory in the Euclidean coordinate space Rn is
the investigation of subsets in the space all of whose points have the same
average distance from the set of focuses. The ”average” can be realized in
several ways from classical (discrete) means to integration over the set of
foci. In a significant part of the applications the common feature of functions
measuring the average distance is the convexity. They also satisfy a kind of
growth condition

lim
r→∞

inf

{
F (x)

r
| ∥x∥ = r

}
> 0.

These properties imply that the (lower) level sets of the form F (x) ≤ c
are compact convex subsets in the space bounded by compact convex hy-
persurfaces. They are called generalized conics1. The most important dis-
crete cases are polyellipses with the classical arithmetic mean to calculate
the average Euclidean distance from the elements of a finite point-set and
lemniscates (with the classical geometric mean to calculate the average Eu-
clidean distance from the elements of a finite point-set). Lemniscates in the
plane play a central role in the theory of approximation in the sense that
polynomial approximations2 of holomorphic functions can be interpreted as
approximations of curves with lemniscates [6], see also [22]. In terms of alge-
bra we speak about the roots of polynomials (in terms of geometry we speak
about the focuses of lemniscates). The polyellipses as additive versions of
lemniscates have no such kind of properties (the problem was posed by E.
Vázsonyi/Weiszfeld).

Definition 1. Let Γ = {x1, . . . ,xm} be a finite point-set in the Euclidean
coordinate space. If the average distance is measured as the arithmetic mean

A(x) :=
d(x,x1) + . . .+ d(x,xm)

m

of distances from the points of Γ then hypersurfaces of the form A(x)=const.
are called polyellipses/polyellipsoids with focal set Γ.

The result due to P. Erdős and I. Vincze [6] says that regular triangles
can not be approximated by polyellipses even if the number of focuses can
be arbitrary large, see also [23].

1The idea of generalization of classical conics is a periodic phenomenon in the history
of mathematics. There are lots of points of view of investigations. Generalized conics
(especially polyellipses as the additive versions of lemniscates) were investigated from the
viewpoint of approximation theory [6]. On the other hand these geometric objects appear
in optimization problems in a natural way [9], see also [14] and [10]. Another point of
view in the literature is the theory of equidistant sets [15].

2Apart from the classical results such as Mergelyan’s and Vituskin’s theorem related
to the so-called generalized lemniscates [22] there are some new trends [7] and [8] in
the literature. Another possibility to take more steps forward is to give their geometric
interpretations.



ON GENERALIZED CONICS’ THEORY... 3

Figure 1. Confocal ellipses with six foci in the plane.

2. Alternative geometries

In what follows we present the solution of the problem how to find alterna-
tives of the Euclidean geometry for subgroups in the Euclidean orthogonal
group O(n). This is closely related to the theory of generalized Berwald
manifolds (Berwald-, locally Minkowskian-, Wagner manifolds etc.). The
idea is prepared by the following theorem due to L. Bieberbach.

Theorem 1. [4] The holonomy group of any flat compact Riemannian man-
ifold is finite.

Let M be a flat compact Riemannian manifold and choose a point x of
M. In the sense of Bieberbach’s theorem we can find a finite system Γ of
elements in the tangent space TxM which is invariant under the holonomy
group Hx of the Lévi-Civita connection. Therefore polyellipsoids with Γ
as the focal set are also invariant. By parallel transports we can construct
a smoothly varying family of compact convex bodies to provide a Finsle-
rian environment for the Lévi-Civita connection: the Minkowski functionals
induced by the generalized conics in the tangent spaces form a Finslerian
fundamental function such that the parallel transport with respect to the
Lévi-Civita connection preserves the Finslerian lenght of tangent vectors.
This is just the notion of Berwald manifolds. Especially we have a flat con-
nection and the process results in a locally Minkowski manifold. In general
the holonomy group of a metrical linear connection is not finite. To adopt
the previous method to the general situation we should develop the theory
of conics with infinitely many focal points.

Definition 2. Let Γ ⊂ Rn be a bounded orientable submanifold with finite
positive measure with respect to the induced Riemannian volume form. The
average distance is measured as the integral

(1) A(x) :=
1

vol Γ

∫
Γ
γ 7→ d(x, γ) dγ.

Hypersurfaces of the form A(x)=const. are called generalized conics with Γ
as the set of focuses.
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According to the philosophy of integration (partitions, integral sums) con-
ics defined by the equations of type A(x)=constant are just limits of polyel-
lipsoids. Actually this is a purely topological way of the generalization – cf.
Weiszfeld’s problem of the topological closure of the set of polyellipses in
the plane. We summarize some further possibilities of the generalization:

1. Consider curves in the Grassmannian (the set of k-dimensional linear
subspaces) or the flag manifold (the collection of ordered sets of
linear subspaces) to admit higher dimensional linear subspaces as
focal objects (see parabolas).

2. Substitute the Euclidean distance in the integrand with another one:
using the distance coming from the taxicab norm we have applica-
tions in geometric tomography, see [22].

3. Integral of type (1) can be considered as the expectable value of
the random variable d2(x, ξ) for any uniformly distributed random
(vector) variable ξ on Γ. For different distributions, see [19].

In the preamble to his fourth problem presented at the International
Mathematical Congress in Paris (1900) Hilbert suggested the examination
of geometries standing next to Euclidean one in the sense that they satisfy
much of Euclidean’s axioms except some (tipically one) of them. In the clas-
sical non-Euclidean geometry the axiom taking to fail is the fameous parallel
postulate. Another type of geometry standing next to Euclidean one is the
geometry of normed spaces or, in a more general context, the geometry of
Minkowski spaces. The crucial test is not the parallelism but the congru-
ence via the group of linear isometries. Consider the standard n-dimensional
real coordinate space Rn as an Euclidean space equipped with the canonical
inner product and let G be a subgroup in the Euclidean orthogonal group
O(n). We present a general method to construct a compact convex body K
containing the origin in its interior such that

(A1) K is not a unit ball with respect to any inner product (ellipsoid
problem),

(A2) K is invariant under the subgroup G,
(A3) its boundary ∂K is a smooth hypersurface (regularity condition).

Definition 3. The Minkowski functional associated to K is defined as

L(v) := inf {t > 0 | 1
t
v ∈ K}.

The vector space equipped with such a functional is called a Minkowski space
with unit ball K; the boundary of K is formed by the unit vectors with respect
to L.

By the first condition (A1) the Minkowski space induced by the functional L
associated to K is not Euclidean. The second condition (A2) says that G is
a subgroup of the linear isometry group with respect to L. The third condi-
tion (A3) allows us to introduce the standard differential geometric objects
in the space such as, for example, the metric with components formed by
the second order partial derivatives of the energy function E = (1/2)L2. In
other words the Minkowski space Rn (with the functional L) is an alterna-
tive of the Euclidean geometry for the subgroup G. In case of differentiable
manifolds with Riemannian structures the subgroup G will be interpreted
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as the holonomy group of a metrical linear connection at some point of the
base manifold and the alternative geometry will be called Finsler geometry:
instead of the Euclidean spheres in the tangent spaces, the unit vectors form
the boundary of general convex sets containing the origin in their interiors
(M. Berger). One of the main applications of generalized conics’ theory is
to present convex bodies satisfying conditions (A1) - (A3).

2.1. The case of reducible subgroups – a survey. If the group is re-
ducible then there exists a non-trivial invariant linear subspace of dimension
k+1 in the coordinate space under the elements of the subgroup. This sub-
space cuts a k - dimensional sphere from the unit sphere in the embedding
space. In this case one of the spheres S1 ⊂ S2 ⊂ . . . ⊂ Sn−2 plays the role
of the set Γ of foci [20], see also [21]. Generalized conics with focal set Sn−1

are spheres because the focal set is invariant under the whole orthogonal
group. So do its levels.

Example 1. [20] see also [21]. As a basic example consider the space of
dimension three (circular conics). Let

(2) w : [0, 2π] → E3, w(t) := (cos t, sin t, 0)

be the unit circle S1 in the (x, y)-coordinate plane and

A1(x, y, z) :=
1

2π

2π∫
0

√(
x− cos t

)2
+
(
y − sin t

)2
+ z2 dt.

The surface of the form

(3) A1(x, y, z) =
8

2π
is a generalized conic.

Figure 2. The generalized conic surface (3).

According to the invariance of the focal set under the rotation around the
z-axis it is a revolution surface. To solve the ellipsoid problem by showing
that (3) is not an ellipsoid it is enough to prove that the generatrix

(4)

2π∫
0

√
cos2 t+

(
y − sin t

)2
+ z2 dt = 8
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Figure 3. The generatrix (pointstyle) and its approximat-
ing ellipse.

is not an ellipse. If y=0 then we have that

z = ±

√(
8

2π

)2

− 1.

On the other hand, if z=0 then the solutions of the equation

2π∫
0

√
cos2 t+

(
y − sin t

)2
dt = 8

are just y=+1 or - 1. Therefore the only possible ellipse has the parametric
form

(5) y(s) = cos s and z(s) =

√(
8

2π

)2

− 1 sin s.

The auxiliary function

v(s) :=

2π∫
0

√
cos2 t+

(
y(s)− sin t

)2
+ z2(s) dt

measures the difference between the generatrix and its approximating ellipse.
We have that

v(0) = v
(π
2

)
= 8 but v

(π
3

)
=

2

π

√
2
√
3
√

8 + π2 E

(
2
√
3π

3
√
8 + π2

)
,

where the symbol E refers to the elliptic integral

E(r) :=

π
2∫

0

√
1− r2 sin2 t dt.

Although explicite calculations are impossible we can succesfully apply some
recent results on elliptic integrals and the Gaussian hypergeometric function
presented by Alzer - Qui [3] and Richards [16] to distinguish the generatrix
and the approximating ellipse. The method is similar in case of higher
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dimensional spaces3. Finally we slightly modify the rate of the level in the
following way

(6) A1(x, y, z) = c >
8

2π
.

A continuity-type argumentation shows that the generalized conic (6) also
satisfies conditions (A1) and (A2). On the other hand the focal set is con-
tained in the interior of the conic. This means that the regularity condition
(A3) is also satisfied.

2.2. The case of irreducible subgroups.

Definition 4. The group G ⊂ O(n) is called transitive on the Euclidean
unit sphere if any two elements of the unit sphere can be transported into
each other by a transformation from G. G has dense orbits if there is at
least one unit vector v such that its orbit under G is a dense subset of the
Euclidean unit sphere.

If the subgroup G is transitive on the Euclidean unit sphere then there
are no alternatives. Using a continuity-type argumentation it can be easily
seen that if G has dense orbits, i.e. the closure of G is transitive then
the Euclidean geometry is the only possible one for G. In what follows we
suppose that G has no dense orbits.

Theorem 2. (H. C. Wang) If G has no dense orbits then its topological

closure is of dimension less or equal than (n−1)(n−2)
2 .

Proof. Using the closed subgroup theorem from the classical Lie-theory
the topological closure H is considered as a compact Lie-subgroup in O(n).
The proof of the Wang’s theorem is a simple induction. In case of n = 2 the
statement is true because dim H=1 implies the existence of a one-parameter
subgroup which obviously runs through the whole circle by its orbits. The
inductive step is based on the mapping Ω: g ∈ H 7→ g(v), where v is an
arbitrarily fixed unit vector. Differentiating at the identitiy we have that

dimH = dimTeH = dimKer Ω′(e) + Rank Ω′(e) = dimHv +Rank Ω′(e),

3In case of the unit sphere Sk in the coordinate (k+1) - plane (x1, . . . , xk+1, 0, . . . , 0)
the function measuring the average distance is

Ak(x) :=
1

Vol Sk

∫
Sk

γ 7→ d(x, γ) dγ =

1

Vol Sk

∫
Sk−1

γ 7→
( π

2∫
−π

2

√
D(x, γ, v) cosk−1(v) dv

)
dγ, where

D(x, γ, v) :=

k∑
i=1

(xi − γi cos(v))2 + (xk+1 − sin(v))2 + (xk+2)2 + . . .+ (xn)2.

The intersections of conics of the form Ak(x) = const. with the plane x1 = . . . = xk = 0
and xk+3 = . . . = xn = 0 are niveau’s of the function

fk(y, z) =

π
2∫

−π
2

√
1 + y2 + z2 − 2y sin t cosk−1 t dt

with variables y := xk+1 and z := xk+2, respectively. It can be considered as a correction
of the variables in [21], p. 820.
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where Hv := {g ∈ H | g(v) = v} is the stabilizer of the element v. Since
Ω obviously commutates with the left translations it has a constant rank.
Especially the rank is less than n− 1 because the group H is not transitive
on the unit sphere. By the same reason we can choose the element v in
such a way that the stabilizer is not transitive on the sphere Sn−2 in the
orthogonal complement to v. Therefore (using the inductive hypothesis for
the stabilizer group)

dimH ≤ (n− 2)(n− 3)

2
+ (n− 2) =

(n− 1)(n− 2)

2
as was to be proved. �
Remark 1. The bound is just the same as that in Wang’s theorem [28] with-
out translation parameters. The mapping Ω plays a central role in Simon’s
fundamental work [17] on the transitivity of holonomy systems too.

Corollary 1. If n = 2, 3 then for any subgroup G ⊂ O(n) having no dense
orbits there is a finite system of elements in Rn which is invariant under G.

Proof. Wang’s theorem states that the dimension of the topological clo-
sure H is zero or 1 (in O(3)). If H is of dimension zero then the unit com-
ponent is trivial (it contains only the identity). Because of its compactness
H has at most finitely many connected components. In other words it is a
finite subgroup. In case of dimension 1 the Lie algebra of H is generated by
the anti-symmetric matrix A. Its action can be given as Aw = v×w for some
uniquely determined element v. Therefore Av=0 which means that v is in-
variant under the elements of the unit component. The compactness implies
that H has only finitely many connected components and thus the system
consisiting of the image of v under elements from different components is
finite as was to be proved. �
Corollary 2. The alternative geometry of dimension two or three always can
be realized by Minkowski functionals induced by polyellipses/polyellipsoids.

In case of higher dimensional spaces the convex hulls of the orbits will
play the role of the focal set. Let G be a subgroup in O(n) having no dense
orbits and consider its topological closure H. Taking a point z on the unit
sphere the orbit P(z) under H is obviously invariant under any subgroup of
H; especially G. Like the case of reducible subgroups the explicite calculation
of integrals of the form

(7) A(x) :=

∫
conv P (z)

d2(x, γ) dγ

seems to be impossible in general. Therefore we follow another way to solve
the ellipsoid problem (A1) by the help of a theorem of alternatives, see
Theorem 3. Consider the function fz : w 7→ supg∈G d(w, g(z)). Since fz is
convex it follows that it is a continuous function and its infimum on the
unit sphere is attained at some point z*. Therefore we can formulate the
following definition.

Definition 5. The minimax point of z is such a point z* where the infimum
az := inf∥w∥=1 fz(w) is attained at.
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Corollary 3. To find the minimax point is just the solution of the optimiza-
tion problem subject to an equality constrain: minimize supg∈G ||w− g(z)||2
subject to ∥w∥ = 1.

Lemma 1. The function fz is constant on the sphere if and only if G has
dense orbits.

Proof. The condition says that fz(w) = az for any unit vector w. If fz
attains its infimum at w, then the antipodal point is just the position where
sup∥w∥=1 infg∈G d(w, g(z)) is attained at. Therefore w 7→ infg∈G d(w, g(z))
is also constant – especially it is identically zero which means that the orbit
of z under G is dense. �
Consider the function

s : R → R, s(t) :=

{
0 if t ≤ az

(t− az)e
− 1

t−az if t > az.

By the help of the standard calculus [12] it can be seen that it is a smooth
convex function on the real line. Define

m(t) := t+ s(t);

as we can see nothing happens as far as t ≤ az. If t > az then the function
m increases its value relative to the argument t. Therefore

A(x) :=

∫
conv P (z)

γ 7→ d(x, γ) dγ and A∗(x) :=

∫
conv P (z)

γ 7→ m(d(x, γ)) dγ

agree at the minimax point: c := A(z∗) = A∗(z∗) but one of the hyper-
surfaces A(x)=c or A*(x)=c must be different from the sphere unless the
mapping fz is constant. It is impossible because G has no dense orbits.
Therefore the ellipsoid problem (A1) is solved for irreducible subgroups be-
cause invariant ellipsoids under an irreducible subgroup in O(n) must be
Euclidean spheres.

Theorem 3. (Theorem of the alternatives [21]) If G has no dense orbits, z is
a point on the Euclidean sphere and c is the common value of the functions
A and A* at the minimax point z* then at least one of the hypersurfaces
A(x)=c or A*(x)=c induces a non-Euclidean Minkowski functional L such
that G is a subgroup of the linear isometries with respect to L.

The theorem of the alternatives motivates the following definition.

Definition 6. Let Γ ⊂ Rn be a bounded orientable submanifold of finite
positive measure with respect to the induced Riemannian volume form. If m
is a strictly monotone increasing convex function on the non-negative real
numbers with initial value m(0)=0 and

(8) Am(x) :=
1

vol Γ

∫
Γ
γ 7→ m(d2(x, γ)) dγ

then hypersurfaces of the form

(9) Am(x) = c

are called generalized conics with distorsion m.
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Remark 2. We have just realized the second possibility of generalizations:
substitute the Euclidean distance function in the integrand with another one.

Corollary 4. If G is reducible or it is irreducible without dense orbits then
an alternative geometry for G can be given by generalized conics of type (9)
in the space.

2.3. Alternatives of Riemannain geometry. Let M be a differentiable
manifold with local coordinates u1, ..., un on U ⊂ M . The induced coordi-
nate system on the tangent manifold consists of the functions

x1 := u1 ◦ π, . . . , xn = un ◦ π and y1 := du1, . . . , yn = dun,

where π : TM → M is the canonical projection.

Definition 7. A Finsler structure on a differentiable manifold M is a smoothly
varying family F : TM → R of Finsler-Minkowski functionals in the tangent
spaces satisfying the following conditions:

• the function F is of class at least C4 in all of its variables x1, ...,
xn and y1, ..., yn for any non-zero element v ∈ TM (i.e. it has an
open neighbourhood such that the restricted function is of class at
least C4 in all of its variables x1, ..., xn and y1, ..., yn),

• the Hessian matrix

gij =
∂2E

∂yj∂yi

of the energy function E := (1/2)F 2 with respect to the variables
y1, . . . , yn is positive definite at any non-zero element v ∈ TM .

Theorem 4. [21] Suppose that M is a connected Riemannian manifold and
∇ is a metrical linear connection on M. If x ∈ M and the holonomy group
Gx of ∇ has no dense orbits in the tangent space TxM then there is a
non-Riemannian Finsler manifold equipped with the fundamental function
F : TM → R such that the parallel transports with respect to ∇ preserve
the Finslerian lenght of tangent vectors and the unit spheres in the tangent
spaces are generalized conics of type (9).

Proof. In the sense of Corollary 4 there is a Gx - invariant generalized
conic of type (9) in TxM . Using parallel transports (with respect to ∇) a
smoothly varying family of compact convex bodies can be constructed to
provide a Finslerian environment for ∇: the Minkowski functionals induced
by the translated conics in the tangent spaces form a Finslerian fundamental
function such that the parallel transports with respect to ∇ preserve the
Finslerian lenght of tangent vectors. �

3. Averaged Riemannian metrics

Definition 8. A linear connection on the base manifold is compatible to
the Finslerian metric structure if and only if the parallel transport preserves
the Finslerian lenght of tangent vectors. Finsler spaces admitting such a
compatible linear connection are called generalized Berwald manifolds.
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In the previous section we investigated the problem how to find alternative
geometries for a subgroup G in the orthogonal group. Such a subgroup
was also interpreted as the holonomy group of a metrical linear connec-
tion at some point of a Riemannian manifold. The question how to build
a non-Euclidean/non-Riemannian metric structure from the Euclidean/Rie-
mannian one was answered by using group-invariant generalized conics and
parallel transports. In what follows we are interested in the converse prob-
lem: suppose that we have a generalized Berwald manifold with a compatible
linear connection ∇ on the base manifold. The converse problem is how to
find a Riemannian structure for ∇ to be metrical. This question will be
answered in terms of the averaged Riemannian metric [26], see also [1] and
[5].

Definition 9. Let f : TM → R be a zero homogeneous function and let us
define the average-valued function

Af (x) :=

∫
∂Kx

f µx,

where ∂Kx is the indicatrix hypersurface with respect to the Finsler-Minkow-
ski functional of the tangent space TxM ,

(10) dµ =
√

det gij dy1 ∧ . . . ∧ dyn

is the canonical volume form on the tangent space TxM as an oriented Rie-
mannian manifold equipped with the metric tensor g and

(11) µ =
√

det gij

n∑
i=1

(−1)i−1yidy1 ∧ . . . ∧ dyi−1 ∧ dyi+1 . . . ∧ dyn

denotes the induced volume form on the indicatrix hypersurface. Especially
the averaged Riemannian metric is defined as

(12) γ(v, w) :=

∫
∂K

g(v, w)µ.

To clarify that the averaged Riemannian metric (the average-valued func-
tion) is well-defined, i.e. the definition is independent of the coordinate
systems and local orientations we can refer to (10) and (11) as canonical Rie-
mannian densities instead of volume forms. In case of orientable Riemannian
manifolds like the tangent spaces (finite dimensional real vector spaces) and
indicatrices (compact convex hypersurfaces) the integral of functions will be
the same independently of using Riemannian volume forms or Riemannian
densities [12].

Example 2. [24] Let (M,α) be a Riemannian manifold and consider a
nonzero 1-form β on M such that its supremum norm is less than 1 at
each point of the manifold. The Randers space constructed from (M,α) by
perturbation with β is defined as a Finsler manifold, where the fundamental
function is a simple sum F (v) := ∥v∥+β(v) of the Riemannian fundamental
function (the norm coming from the inner product) and β. The associated
Riemannian metric can be expressed as the combination

γ(X,Y ) = fα(X,Y ) + gβ(X)β(Y )

of the initial data, where



ON GENERALIZED CONICS’ THEORY... 12

1. In case of dimension 2 we have elliptic integrals of the second kind

f :=

2π∫
0

√
1 + ∥β♯∥ sin v

(
1− ∥β♯∥

1 + ∥β♯∥ sin v
cos2 v sin v

)
dv,

g :=

2π∫
0

1

∥β♯∥
√

1 + ∥β♯∥ sin v
(1 + 2 cos2 v sin v) +

1√
1 + ∥β♯∥ sin v

dv.

2. In case of higher dimensional Randers manifolds

f :=

π
2∫

−π
2

vol Sn−2

(1 + ∥β♯∥ sin v)
n−3
2

cosn−2 v dv−

− ∥β♯∥
n− 1

π
2∫

−π
2

vol Sn−2

(1 + ∥β♯∥ sin v)
n−1
2

cosn v sin v dv,

g :=

π
2∫

−π
2

vol Sn−2

∥β♯∥(1 + ∥β♯∥ sin v)
n−1
2

(1 +
n

n− 1
cos2 v) sin v cosn−2 v dv+

+

π
2∫

−π
2

vol Sn−2

(1 + ∥β♯∥ sin v)
n−1
2

cosn−2 v dv.

From the viewpoint of the generalized Berwald manifolds’ theory the key
result can be formulated as follows.

Theorem 5. [26] If ∇ is a linear connection on the manifold M such that
the parallel transport with respect to ∇ preserves the Finslerian length of
tangent vectors then it must be metrical with respect to the averaged Rie-
mannian metric.

The averaged Riemannian metric allows us to detect linear connections on
the base manifod which are compatible to the Finslerian metric structure in
the following way:

1 Compute the averaged Riemannian metric of the Finslerian struc-
ture.

2. Find the group Hx of orthogonal transformations leaving the Fins-
lerian indicatrix at the point x invariant – it is obviously a closed
subgroup in O(n).

3. If Gx is the holonomy group of any compatible linear connection at
the point x then Gx ⊂ Hx.

We can formulate two important problems related to compatible connec-
tions: the problem of unicity and the problem of intrinsic characterization,
i.e. how to express them in terms of the canonical data of the Finsler
manifold. It is well-known that metrical linear connections are uniquely
determined by the torsion tensor. Consider the decomposition

T (X,Y ) := T1(X,Y ) + T2(X,Y ),
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where

T1 := T (X,Y )− T2(X,Y ) and T2 :=
1

n− 1

(
T̃ (X)Y − T̃ (Y )X

)
.

The traceless part T1 is automatically zero in case of n = 2. In case of
n ≥ 3 the traceless part can be divided into two further components A1 and
S1 by separating the axial (or totally antisymmetric) part A1 which means
that its lowered tensor with respect to the Riemannian metric is totally
antisymmetric. Then we have eight classes of linear connections with torsion
depending on that the terms A1, S1 and T2 are surviving or not [2]. This
results in eight classes of possible generalized Berwald manifolds. The most
important special cases are summarized in the following.

1. Classical Berwald manifolds with T = 0.

From the viewpoint of Riemannian holonomies the case of the Berwald
manifolds was systematically investigated by Z. Szabó [18]. He successfully
used the results on the holonomy of Riemannian manifolds together with
the foundations of symmetric Lie algebras, especially M. Berger’s and J.
Simon’s [17] results.

2. Exact Wagner manifolds with vanishing traceless part and exact
trace tensor

T̃ =
n− 1

2
dα

in the torsion (we can speak about closed Wagner manifolds via
the requirement of a closed trace tensor). Without extra conditions
of exactness and closedness of the trace tensor this is the case of
generalized Berwald manifolds admitting semi-symmetric compati-
ble linear connections.

In case of Wagner manifolds the torsion involves the exterior deriva-
tive of a function. The geometric meaning is the global (local) conformal
equivalence to a Berwald manifold via the exponent of the function α as
Hashiguchi-Ichijyō’s theorem [11] states. In 2001 M. Matsumoto [13] posed
the problem of conformal equivalence of Berwald manifolds. According to
Hashiguchi-Ichijyō’s theorem the unicity problem of the compatible linear
connection in a Wagner manifold is obviously related to the question whether
how many essentially different ways there are for a Finsler manifold to be
conformal to a Berwald manifold. In terms of Matsumoto’s problem: Is there
non-homothetic Berwald manifolds or not? All of these problems were solved
by using the construction of averaged Riemannian metrics [26], see also [24]
and [25]. In [27] we have completed the theory by solving the problems of
the unicity and the intrinsic characterization for semi-symmetric compatible
linear connections without extra conditions of exactness and closedness of
the trace tensor. Since the traceless part T1 is automatically zero in case of
n = 2 this means the full solution of the basic problems for two-dimensional
generalized Berwald manifolds.

3. If the torsion tensor has only the pure axial (anti-symmetric) com-
ponent then the linear connection has the same geodesics as the
Lévi-Civita connection and vice-verse.
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Finally we present a lower dimensional unicity theorem related to the case of
compatible linear connections with pure axial (anti-symmetric) components
in the torsions.

Theorem 6. Suppose that M is a three-dimensional non-Riemannian Finsler
manifold, ∇1 and ∇2 are compatible linear connections with pure axial com-
ponents in the torsions. Then ∇1 = ∇2.

Proof. Taking the difference tensor ∇2(X,Y ) − ∇1(X,Y ) = D(X,Y )
of the connections we have that γ(D(X,Y ), Z) = −γ(D(X,Z), Y ) because
both ∇1 and ∇2 is metrical with respect to the averaged Riemannian metric
γ. On the other hand they have the same geodesics as the Lévi-Civita
connection which implies that D(X,X) = 0. Since the parallel transports
(with respect to both ∇1 and ∇2) preserve the Finslerian lenght of tangent
vectors the mapping Yx 7→ Dx(X,Y ) is an element of the Lie algebra of the
group of orthogonal transformations leaving the Finslerian indicatrix at the
point x invariant for any vector field X. In the sense of Wang’s theorem this
group is of dimension zero or 1. Therefore we can choose a basis X1, X2

and X3 in TxM in such a way that X1 and X2 belong to the kernel of the
linear transformation Xx 7→ Dx(X, · ). We have that

D(X3, X1) = −D(X1, X3) = 0, D(X3, X2) = −D(X2, X3) = 0

and, by the anti-symmetry again, D(X3, X3) = 0, i.e. the difference tensor
is identically zero and the connections coincide. �

Example 3. The unicity of the compatible linear connection does not fol-
low in general. Consider a compatible linear connection ∇ to the Finslerian
metric structure on a connected manifold M and let τxz be the set of par-
allel transport along curves joining the points x and z. Since the indicatrix
hypersurface is invariant under the holonomy group of ∇ at x the holo-
nomy algebra acts trivially on the Finslerian fundamental function. By the
Ambrose-Singer theorem it is spanned by the elements

Rφ(v, w) := φ−1 ◦Rz(v, w) ◦ φ
as z runs through the points of the manifold, φ ∈ τxz and v, w ∈ TzM .
Therefore if

Dx(X,Y ) ∈ Linspan {Rφ(v, w) | z ∈ M,φ ∈ τxz and v, w ∈ TzM} Yx

for any point x in M then the connection

(13) ∇2(X,Y ) = ∇1(X,Y ) +D(X,Y )

is compatible to the Finslerian metric structure. Especially we put

D(X,Y ) = β(X)R(V,W )Y

for some 1-form β and fixed vector fields V and W on the manifold.
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