
ON THE DIOPHANTINE EQUATION 1 + 2a + xb = yn

LAJOS HAJDU AND ISTVÁN PINK

Abstract. Recently, mixed polynomial-exponential equations sim-
ilar to the one in the title have been considered by many authors.
In these results a certain non-coprimality condition plays an im-
portant role.

In this paper we completely solve the title equation for odd
positive integers x with x < 50. Since we avoid the mentioned
non-coprimality condition, this can be considered as a partial com-
pletion of the above mentioned results.

It seems that the deep effective tools (such as Baker’s method)
alone are not capable to handle the problem. We combine local
arguments and Baker’s method to prove our results.

1. Introduction

Mixed polynomial-exponential equations are of classical and recent
interest. One of the most famous equation of this type is the so-called
Ramanujan-Nagell equation

x2 + 7 = 2n

in positive integers x, n (see Ramanujan [20] and Nagell [19]). Later
this equation has been generalized to

x2 +D = yn

in positive integers x, y, n with n ≥ 3. Here the integer D is either
fixed, or is of the form D = ±pa11 · · · pass where p1, . . . , ps are given
primes and a1, . . . , as are unknown positive integers. For related results
we only refer to the papers of Schinzel and Tijdeman [21], Cohn [12],
Bugeaud, Mignotte and Siksek [10], Luca [18], Bugeaud and Muriefah
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[11], Bérczes and Pink [6], Le and Zhu [16] and Xiaowei [23], and the
references given there.

Recently the problem of perfect powers having few digits has been
investigated in several papers. We only mention the results of Bennett,
Bugeaud and Mignotte [4, 5], Corvaja and Zannier [13] and Bennett
and Bugeaud [3] (see also the references in these papers). Beside de-
riving certain finiteness results, the authors solve several diophantine
equations of the type

(1) 1 + xa1 + xb2 = yn.

Here we also mention a nice result of Szalay [22], where the above
equation is solved for x1 = x2 = n = 2.

Further, under certain restrictions even equations of type

(2) 1 + xa1 + xb2 + xc3 = yn

are considered; see e.g. [5] and the references there. However, in these
results it is always necessary to assume that gcd(x1, x2) (or in case of
equation (2) gcd(x1, x2, x3)) is greater than 1. The cases x1 = x2 and
x1 = x2 = x3 are of particular interest.

Much less is known about the solution of equation (1) when x1 and
x2 are coprime. In particular, even the special case x1 = 2, x2 = 3
and n = 2 could not be handled by the deep methods of Corvaja
and Zannier (see e.g. [13] and the references there). This particular
equation has been recently solved by local methods by Leitner [17].

In this paper we completely solve the equation

(3) 1 + 2a + xb = yn

in positive integers a, b, y, n with n ≥ 2, for all odd values of x with
0 < x < 50. Note that in particular, we avoid the condition of non-
coprimality of x1 and x2 in (1). Obviously, we may assume that n is
a prime in equation (3), so from this point on we shall do so without
any further mentioning.

We note that classical methods (e.g. Baker’s method) alone are ap-
parently not sufficient to handle (1) in its full generality. Our method
to handle (3) is the following. First by a local argument we show that
one of a and n must be small in (3). If n is small then we apply local
arguments again to find all solutions. If a is small then for the resulting
equations we apply Baker’s method to bound n, and we solve the re-
maining equations using local methods, and through elliptic equations
and Thue equations of small degrees. At this stage we make use of the
program package Magma [8], as well.
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Because of the relatively large number of cases, in our local con-
siderations we need to find efficiently moduli which witness that the
appropriate equations have no solutions. (For finding appropriate mod-
uli in special circumstances, see e.g. the papers of Brenner and Foster
[9], Alex and Foster [1, 2] and Leitner [17], and the references there.)
In doing so we shall use moduli composed of primes p such that p− 1
has only small prime factors (such as 2, 3, 5). The efficiency of such
moduli is implied by work of Erdős, Pomerance and Schmutz [14], and
have been successfully applied in case of purely exponential equations
(see [7]). See also [5], where a similar sieve is applied.

Finally, we mention that we believe that our method is capable to
solve equation (3) for other values of x, as well.

2. The main result

Our main result is the following.

Theorem 2.1. The only solutions to equation (3) with 0 < x < 50 odd
and yn > 100 are given by

(a, x, b, y, n) = (4, 43, 3, 282, 2), (7, 15, 1, 12, 2), (1, 5, 3, 2, 7).

Note that the solutions (a, x, b, y, n) to equation (3) with yn ≤ 100
are very easy to enumerate. The reason that we do not list them is
that there are many such solutions.

3. Some lemmas

To prove our theorem we need the following lemmas. The first is
a state-of-the-art lower bound for linear forms in the logarithms of
two algebraic numbers, due to Laurent (Theorem 2 of [15]). For an
algebraic number α of degree d over Q, we define as usual the absolute
logarithmic height of α by the formula

h(α) =
1

d

(
log |a0|+

d∑
i=1

log max
(
1, |α(i)|

))
,

where a0 is the leading coefficient of the minimal polynomial of α over
Z and the α(i)-s are the conjugates of α in the field of complex numbers.

Lemma 3.1. Let α1 and α2 be multiplicatively independent algebraic
numbers with |α1| ≥ 1, |α2| ≥ 1 and let h, ρ and µ be real numbers with
ρ > 1 and 1/3 ≤ µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log ρ, H =

h

λ
+

1

σ
,
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ω = 2

(
1 +

√
1 +

1

4H2

)
, θ =

√
1 +

1

4H2
+

1

2H
.

Consider the linear form Λ = b2 logα2 − b1 logα1, where b1 and b2 are
positive integers. Put

D = [Q(α1, α2) : Q] / [R(α1, α2) : R]

and assume that

h ≥ max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
,

ai ≥ max {1, ρ| logαi| − log |αi|+ 2Dh(αi)} (i = 1, 2),

and

a1a2 ≥ λ2.

Then

log |Λ| ≥

≥ −C
(
h+

λ

σ

)2

a1a2 −
√
ωθ

(
h+

λ

σ

)
− log

(
C ′
(
h+

λ

σ

)2

a1a2

)
with

C = C0
µ

λ3σ
, C ′ =

√
Cσωθ

λ3µ

where

C0 =

(
ω

6
+

1

2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4

3

(
1

a1
+

1

a2

)
λω

H

)2

.

We need the following corollary of Lemma 3.1 (see Corollary 2 of
[15]). For a non-zero rational number α = u/v (given in reduced form)
let H(α) = max{log |u|, log |v|, 1}.

Lemma 3.2. Suppose that α1 and α2 are multiplicatively independent
positive rational numbers with |α1| ≥ 1, |α2| ≥ 1 and assume that
α1, α2, logα1, logα2 are positive real numbers. Consider the linear form

(4) Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. Then

(5) log |Λ| ≥ −25.2 max{log h′ + 0.38, 10}2H(α1)H(α2),

where

h′ =
b1

H(α2)
+

b2
H(α1)

.
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In the course of the proof of our main result we have to solve com-
pletely several equations of the shape

(6) xb + t = yn,

where x, t are given odd positive integers and b, y, n are unknown pos-
itive integers with y ≥ 2 even and n ≥ 3 an odd prime. By using
Lemma 3.2 and Lemma 3.1 we derive relatively sharp explicit upper
bounds for n in equation (6).

Lemma 3.3. Let 3 ≤ x ≤ 47 and 3 ≤ t ≤ 33 be given odd, relatively
prime integers. Consider equation (6) in unknown positive integers
(b, y, n) with n ≥ 3 an odd prime. Then for y = 2 we have n < 14600,
for y > 2

n < nx =



2800, if x = 3,

5000, if 5 ≤ x ≤ 7,

7000, if 9 ≤ x ≤ 15,

8600, if 17 ≤ x ≤ 29,

10000, if 31 ≤ x ≤ 47

holds, and for y > 50000 we have n ≤ 2003.

Proof. First, by applying Lemma 3.2 we derive the indicated upper
bounds for n in equation (6) valid for y = 2 and y > 2, respectively.
Then, by using Lemma 3.1 we show that n ≤ 2003, provided that
y > 50000.

If in equation (6) we have n | b then by writing b = nb1 (b1 ≥ 1), we
get from (6) that

(7) t = yn − (xb1)n = (y − xb1)(yn−1 + yn−2xb1 . . .+ (xb1)n−1).

Since t ≥ 3 > 0, equation (7) implies that y − xb1 ≥ 1, which together
with y ≥ 2 and (7) gives

t > 2n−1.

Therefore by t ≤ 33 we obtain n < 1 + log 33/ log 2 < 7, which is a
much better bound for n than stated. So, in what follows, we may
write b occurring in (6) in the form b = nB + r, where B and r are
integers for which B ≥ 0 and 0 < r ≤ n− 1. Thus, equation (6) yields

(8)

∣∣∣∣xr (xBy
)n

− 1

∣∣∣∣ =
t

yn
.

Set

(9) Λ := r log x− n log(y/xB).
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Since for every z ∈ C for which |z−1| ≤ 1/3 we have | log z| < 2|z−1|,
we get by (8) and (9) that

(10) |Λ| < 2t

yn
.

Now, we are going to derive a lower bound for |Λ| occurring in (9).
Since x and t are relatively prime integers, it follows that in equation
(6) we have gcd(x, y) = 1. Thus the rational numbers y/xB and x
are multiplicatively independent. Hence we may apply Lemma 3.2 on
taking

α1 = y/xB, α2 = x, b1 = n, b2 = r.

By (6) we obviously have y > xB, thus we may choose

H(α1) = H(y/xB) =

{
1, if y = 2,

log y, if y > 2
and H(α2) = H(x) = log x.

Since r < n and H(α1) ≥ 1 we obtain

h′ <
n

log x
+ n,

whence we obtain the lower bound

(11) |Λ| > −25.2 max

{
log

(
n

log x
+ n

)
+ 0.38, 10

}2

log xH(α1).

On comparing (10) and (11) we infer that
(12)

n < 25.2 max

{
log

(
n

log x
+ n

)
+ 0.38, 10

}2

log x
H(α1)

log y
+

log 2t

log y
,

which, by y ≥ 2, implies that either

(13) n < 2520 log x
H(α1)

log y
+

log 2t

log 2
,

or

(14) n < 25.2

(
log

(
n

log x
+ n

)
+ 0.38

)2

log x
H(α1)

log y
+

log 2t

log 2
.

Since

H(α1)

log y
=

{
1

log 2
, if y = 2,

1, if y > 2

then by (13) and (14) a simple calculation gives an upper bound for n
valid for every t ≤ 33 and y ≥ 2. Namely, we may write n < 14600 if
y = 2, and n < nx if y > 2, where
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(15) nx =



2800, if x = 3,

5000, if 5 ≤ x ≤ 7,

7000, if 9 ≤ x ≤ 15,

8600, if 17 ≤ x ≤ 29,

10000, if 31 ≤ x ≤ 47.

In what follows we will show that in equation (6) we have n ≤ 2003,
provided that y > 50000. We may write b in equation (6) in the form
b = nB + r as above, but now with r ∈ Z for which 0 < |r| ≤ n−1

2
.

Since y > 50000, we may assume that B ≥ 1. Set

(16) Λr =

{
r log x− n log(y/xB), if r > 0

|r| log x− n log(xB/y), if r < 0.

By applying the same argument as above we obtain by (8) and (16)
that

(17) |Λr| <
2t

yn
.

Now, we are going to derive a lower bound for |Λr| using Lemma 3.1.
Choose α1 = y/xB, α2 = x, b1 = n, b2 = r if r > 0 and set α1 =
xB/y, α2 = x, b1 = n, b2 = |r| if r < 0. Then we have D = 1. In the
case when r < 0 using n ≥ 5, B ≥ 1, t ≤ 33 and 1 ≤ |r| ≤ n−1

2
we

obtain that in equation (6) we have xB > y. Thus, we may write

h(α1) = h(xB/y) = log(xB).

Further, by some routine calculus we find log(xB/y) < (n−1) log x/2n,
whence

ρ| log(xB/y)| − log |xB/y|+ 2h(xB/y) <
ρ+ 2

2
log x+ 2 log y.

Therefore we may choose

(18) a1 =
ρ+ 2

2
log x+ 2 log y and a2 = (ρ+ 1) log x.

By using the same argument as above we see that the values occurring
in (18) are convenient also for the case r > 0. In what follows, we
suppose that n > 2003 and by fixing the parameters (µ, ρ) occurring
in Lemma 3.1, we derive a lower bound for Λr defined in (16). We
give the details only in the case x = 47, since the proof for the values
3 ≤ x ≤ 45 is similar.

Suppose that

(19) n > 2003,
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and set x = 47. Further, choose µ = 0.58 and ρ = 7. Then we get that
σ = 0.9118 and λ = 0.9118 log 7 < 1.7743. Further, by (18) we obtain

(20) a1 = 4.5 log 47 + 2 log y and a2 = 8 log 47,

so, by y > 50000 we easily check that a1a2 > λ2 holds. Now, we are
going to derive an upper bound for the quantity

h1 = D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06.

Since D = 1, |r| < n/2 and y > 50000 we get by (20) that

h1 < log

(
n

8 log 47
+

n/2

4.5 log 47 + 2 log 50000

)
+log(0.9118 log 7)+1.81.

Hence we find that

(21) h1 < log n− 0.71.

Set

(22) h := log n− 0.71.

By (19) and (22) we see that

(23) h > log(2003)− 0.71 > 6.892,

which implies that h > 1.7743 > λ. Thus, the assumptions of Lemma
3.1 concerning the parameter h are satisfied. By (23) we may write for
the quantity H occurring in Lemma 3.1 the lower bound

H =
h

λ
+

1

σ
>

6.892

0.9118 log 7
+

1

0.9118
> 4.98.

Thus, we check that ω < 4.01006 and by λ = 0.9118 log 7 < 1.7743, H >
4.98 and y > 50000 we get C0 < 1.96. Further, by (9) of Section 3.1
and by (24) of Section 3.3 of [15] we have

(24)
√
ωθ ≤ (5 +

√
17)/4 < 2.3

and

(25) C ′ < 4C.

We check that in our case

(26) µ/λ3σ = 0.58/((log 7)3 · 0.91184) < 0.114

and

(27) h+ λ/σ = log n− 0.71 + log 7 < log n+ 1.24.
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By combining (25), (26), (27) with a1 = 4.5 log 47 + 2 log y, a2 =
8 log 47, C0 < 1.96, n < n47 = 10000 and using y > 50000 we obtain
that

(28) C ′
(
h+

λ

σ

)2

a1a2 < 2 log y.

By setting

(29) A := log n+ 1.24

and combining C0 < 1.96 with (20), (24), (26) and (28) we may write
that
(30)
log |Λr| ≥ −0.114 · 1.96(4.5 log 47 + 2 log y)(8 log 47)A2− 2.3A− 2 log y.

On comparing (30) with (17) we obtain by (29), t ≤ 33 and y > 50000
that

n < 24.8(log n+ 1.24)2 + 0.23(log n+ 1.24) + 3.

This by a simple calculation yields that n ≤ 2003, which contradicts
(19). So we find that in equation (6) we have n ≤ 2003, provided that
y > 50000. By applying the same approach as above for the values
3 ≤ x ≤ 45 we conclude that in each case under consideration we
always have that n ≤ 2003. Thus the lemma is proved. �

4. Proof of Theorem 2.1

In this section we give the proof of our main result.

Proof of Theorem 2.1. Observe first that since a is assumed to be pos-
itive, the left hand side of (3) is always even. Hence y must always
be even. Moreover, considering equation (3) modulo an appropriate
power of 2, we get that either a or n must be small. For example, if
x = 1 then modulo 4 we see that a ≥ 2 would yield that 2 | yn but
4 - yn, a contradiction. Thus a = 1 must hold in this case (yielding
the solution (a, x, b, y, n) = (1, 1, b, 2, 2)). By a similar argument, for
1 ≤ x ≤ 49 odd we get Table 1.

x modulus conclusion
1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49 4 a = 1

3, 11, 19, 27, 35, 43 8 a ≤ 2 or n = 2
7, 23, 39 16 a ≤ 3 or n = 3
15, 47 32 a ≤ 4 or n = 2

31 64 a ≤ 5 or n = 5

Table 1. Bounding a or n in equation (3).
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Assume first that for some given odd x with 1 ≤ x ≤ 49 we have
that n is bounded, according to Table 1. Then the resulting equation
is solved by a local argument. We explain our method by an example,
the situation is similar for the other cases. So consider the case x = 43,
and observe that then Table 1 gives n = 2. Take the modulus

m := 25 ·5 ·7 ·13 ·17 ·41 ·61 ·73 ·109 ·151 ·181 ·241 ·401 ·433 ·1801 ·2161.

Observe that for all the factors fi of m we have that ϕ(fi) is composed
exclusively of (at most) the primes 2, 3, 5. In this way we may intersect
the information obtained by considering (3) modulo fi separately. In
fact it turns out that if a ≥ 5 then the system of linear congruences

1 + 2a + 43b ≡ y2 (mod fi) (i = 1, . . . , 16)

has no solutions. (Observe the occurrence of f1 = 25 as a factor in m.)
In case of a < 5, we write b = 3u+ t with t = 0, 1, 2, and consider the
elliptic equations 43tz3 + c = y2 with c = 3, 5, 9, 17, where z = 43u.
Solving these equations with Magma [8], in this case we get the only
solution

(a, x, b, y, n) = (4, 43, 3, 282, 2).

When instead of n = 2 we have n = 3 or n = 5, then in the remaining
small cases equation (3) is reduced to Thue equations of degrees 3 or
5, respectively. These equations can also be handled by Magma. For
example, when x = 7 then by Table 1 we have n = 3. Now using the
modulus

m = 24 · 3 · 5 · 7
we get that our equation has no solutions, provided that a ≥ 4. In the
remaining cases a < 4 we just need to solve Thue equations of the form
7tz3 + c = y3 with t = 0, 1, 2, c = 3, 5, 9, z = 7u, b = 3u+ t.

In all the cases considered, this approach works. We summarize the
appropriate moduli in Table 2 (corresponding to the values of n coming
from Table 1). Note that if the corresponding condition does not hold
then (3) reduces to simple elliptic or Thue equations as above, which
are all solved by Magma.

Now we turn to the case where n is arbitrary, but a is bounded
according to Table 1. Some of the resulting equations

(31) xb + t = yn

where we write t for the possible values 1 + 2a, can be handled easily.
First of all, we do not need to consider the cases where x is a prime
power, hence x = 9, 25, 27, 49 can be excluded. The case x = 1 is trivial
and has already been discussed. We include all the other pairs (x, t) in
Table 3, which can be excluded using appropriate moduli. Namely, it
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x n modulus condition
3 2 24 · 32 · 5 · 7 · 13 a ≥ 4 and b ≥ 2
11 2 25 · 3 · 5 · 7 · 13 · 17 · 97 · 241 a ≥ 5
19 2 25 · 32 · 5 · 7 · 11 · 17 · 19 · 41 · 43 · 61· a ≥ 5

·73 · 109 · 181 · 211 · 337 · 421 · 631
27 2 24 · 32 · 5 · 7 · 13 a ≥ 4
35 2 22 · 3 · 52 · 7 · 61 a ≥ 2 and b ≥ 2
43 2 25 · 5 · 7 · 13 · 17 · 41 · 61 · 73 · 109 · 151· a ≥ 5

·181 · 241 · 401 · 433 · 1801 · 2161
7 3 24 · 3 · 5 · 7 a ≥ 4
23 3 22 · 32 · 7 · 13 · 37 a ≥ 2
39 3 22 · 32 · 7 · 13 a ≥ 2 and b ≥ 2
15 2 22 · 32 · 52 · 7 a ≥ 2 and b ≥ 2
47 2 26 · 3 · 52 · 11 · 13 · 61 a ≥ 6
31 5 22 · 11 · 31 · 41 · 61 · 101· a ≥ 2

·151 · 181 · 241 · 601

Table 2. Moduli yielding that (3) has no solutions for
x, under the indicated condition.

turns out that for these pairs either b or n is small. If b gets bounded,
then to find all solutions for the corresponding equation is trivial. If n
is bounded then we can reduce the problem to the solutions of elliptic
or Thue equations just as previously. All these equations were solved
by Magma.

(x, t) excl. mod (x, t) excl. mod (x, t) excl. mod
(3, 3) 3 (21, 3) 3 (39, 3) 3
(7, 3) 8 (23, 3) 8 (39, 5) 16
(7, 5) 8 (23, 5) 8 (39, 9) 8
(11, 3) 8 (31, 3) 8 (41, 3) 8
(15, 3) 3 (31, 5) 8 (43, 3) 8
(15, 5) 8 (31, 9) 16 (45, 3) 3
(15, 9) 16 (31, 17) 32 (47, 3) 8
(17, 3) 8 (33, 3) 3 (47, 5) 8
(19, 3) 8 (35, 3) 8 (47, 9) 16
(19, 5) 9 (35, 5) 8

Table 3. The easily excludable pairs (x, t) in (31).
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Thus we are left with the pairs (x, t) ∈ H to solve equation (31)
where

H = {(3, 5), (5, 3), (7, 9), (11, 5), (13, 3), (15, 17),

(23, 9), (29, 3), (31, 33), (37, 3), (43, 5), (47, 17)}.

By Lemma 3.3 in all these cases we get that n ≤ 2003, provided that
y > 50000.

Assume first that n ≤ 2003. If n ≤ 7 then we get elliptic or Thue
equations as before, and these equations can be solved by Magma. So
we may further suppose that n ≥ 11. In case of 11 ≤ n ≤ 2003, we can
solve all the occurring equations locally, by finding appropriate moduli
as earlier. However, this has to be done rather carefully, since for the
prime factors p of m we also need that n | p− 1. Here we applied the
following strategy. For a given (x, t) ∈ H, we found the first 6 primes
p - x such that n | p − 1, and the order of x modulo p is smaller than
p/6. Then testing the corresponding equation modulo the product of
these primes, we always got that there are no solutions other than those
given in the theorem. We could find appropriate primes in each case
to handle the pairs (x, t) with 11 ≤ n ≤ 2003.

Suppose next that n > 2003. Then we have y ≤ 50000. Since y ≥ 2
is even, working modulo 8 in equation (31) we may assume that b is
odd for every (x, t) ∈ H. We will use a local argument to reduce the
number of possibilities for y in equation (31). We explain our method
by an example, the situation is similar for the other cases. So consider
the case (x, t) = (47, 17). Then equation (31) becomes

(32) 47b + 17 = yn

where y ≥ 2 is even. Further, Lemma 3.3 implies that n < n0, where

n0 =

{
14600, if y = 2,

10000, if y > 2.

By a simple calculation we obtain that

(33) 47b + 17 ≡



2 (mod 3),

0, 4 (mod 5),

9, 12 (mod 13),

4, 13 (mod 17),

18 (mod 23).



ON THE DIOPHANTINE EQUATION 1 + 2a + xb = yn 13

Since n is an odd prime, (32) and (33) yields

(34) y ≡



1 (mod 3),

0, 4 (mod 5),

3, 4, 9, 10, 12 (mod 13),

4, 13 (mod 17),

2, 3, 4, 6, 8, 9, 12, 13, 16, 18 (mod 23).

The assertion (34) reduces the number of possibilities for y ≥ 2 to 67
cases. Finally, supposing b ≥ 5 and working modulo 475 in equation
(32) for the remaining 67 values of y ≥ 2 and for every odd prime
n < n0, we always get a contradiction. This shows that we necessarily
have b ∈ {1, 3} in (32), whence the solutions of (32) can be easily
listed. By repeating the above argument for every (x, t) ∈ H we could
determine all solutions of (32), and the theorem follows. �
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