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Abstract. Several classical problems are related to mixed polynomial-
exponential equations. Such equations have been also considered
recently by many authors. In the present paper, extending a the-
orem of the second and last authors, we completely solve the title
equation in positive integers a, b, y, n with n ≥ 4 for all values of
x, z with 1 ≤ x, z ≤ 50 and x 6≡ z (mod 2). It is interesting to note
that apparently deep effective tools (e.g. Baker’s method) alone
are not sufficient to handle the problem completely. In our argu-
ments we combine local arguments and Baker’s method to prove
our results.

1. Introduction

Diophantine equations of mixed polynomial-exponential type are of
classical and recent interest. Here we only give a brief introduction on
them; for a more detailed description of history and results see e.g. [7]
and the references there.

One of the classical examples of such equations is the Ramanujan-
Nagell equation (see Ramanujan [11] and Nagell [10]). A problem of
recent interest, leading to such type of equations, is to describe perfect
powers having only few digits written in some bases. See for example
the papers of Szalay [13], Bennett, Bugeaud and Mignotte [2, 3], Cor-
vaja and Zannier [5] and Bennett and Bugeaud [1] and the references
there. Among other things, in these papers diophantine equations of
type

(1) 1 + xa1 + xb2 = yn

are investigated. However, in these results it is always necessary to
assume that gcd(x1, x2) > 1. The case x1 = x2 is of particular interest.
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At this point we mention that in some papers equations of type (1), but
with one more term xc3 appearing on the left hand side are considered.
Here we do not give details, only refer to [3] and the references there.

Apparently, the case where gcd(x1, x2) = 1 is more difficult. At least,
even the special case x1 = 2, x2 = 3 and n = 2 could not be handled
by deep methods of Corvaja and Zannier [5]. This particular case has
been settled by Leitner [9].

In this paper we completely solve the equation

(2) 1 + xa + zb = yn

in positive integers a, b, y, n with n ≥ 4, for all values of x and z with
1 ≤ x, z ≤ 50 and x 6≡ z (mod 2). In this way we also avoid the
condition of non-coprimality of x1 and x2 in (1). Our results yield a
considerable extension of recent results of the second and last authors
[7], where the special case x = 2 was considered.

To prove our results, we also need to considerably extend the meth-
ods used in [7], and we also have to use serious computational facilities.
It seems that classical effective tools, e.g. Baker’s method, are not suf-
ficient alone to handle (2). To solve (2) we combine Baker’s method by
local methods in the following way. First by a local argument we show
that in every solution, one of a and n is at most five in (2). If n ≤ 5
then by involved local arguments using congruences we find all solu-
tions. Note that here it is not automatic to find appropriate moduli;
this is done by careful considerations: the prime divisors of our moduli
must have rather special properties. If a ≤ 5 then we have one expo-
nential variables less on the left hand side, and we can apply Baker’s
method to bound n; in fact, we get that n < 15000 in this case. Then
for the ’small’ values of n the remaining equations are solved through
Thue equations of small degrees. In this part the corresponding pro-
cedures of the program package Magma [4] are used, too. Finally, for
the larger values of n (up to the bound obtained) we apply the above
described local method again.

2. The main result

Our main purpose is to solve equation (2) in positive integers a, b, y, n
with n ≥ 4, where x, z are integers with 1 ≤ x, z ≤ 50 and x 6≡ z
(mod 2). Clearly, without loss of generality we may assume that x is
even, z is odd and n = 4, 6, 9 or n is a prime with n ≥ 5.

The main result of the paper is the following.

Theorem 2.1. Consider the equation

(3) 1 + xa + zb = yn
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in positive integers a, b, y, n with n = 4, 6, 9 or n ≥ 5 prime, where x
is even, z is odd and 1 ≤ x, z ≤ 50. All solutions to (3) are given by
(x, a, z, b, y, n) ∈ {(14, 1, 1, b0, 2, 4), (30, 1, 1, b0, 2, 5), (2, 3, 7, 1, 2, 4),
(2, 2, 11, 1, 2, 4), (2, 1, 13, 1, 2, 4), (4, 1, 11, 1, 2, 4), (6, 1, 3, 2, 2, 4),
(6, 1, 9, 1, 2, 4), (6, 3, 39, 1, 4, 4), (8, 1, 7, 1, 2, 4), (10, 1, 5, 1, 2, 4),
(12, 1, 3, 1, 2, 4), (12, 1, 3, 5, 4, 4), (30, 1, 15, 2, 4, 4), (2, 2, 3, 3, 2, 5),
(2, 4, 15, 1, 2, 5), (2, 3, 23, 1, 2, 5), (2, 2, 27, 1, 2, 5), (2, 1, 29, 1, 2, 5),
(4, 1, 3, 3, 2, 5), (4, 2, 15, 1, 2, 5), (4, 1, 27, 1, 2, 5), (6, 1, 5, 2, 2, 5),
(6, 1, 25, 1, 2, 5), (8, 1, 23, 1, 2, 5), (10, 1, 21, 1, 2, 5), (10, 3, 23, 1, 4, 5),
(12, 1, 19, 1, 2, 5), (14, 1, 17, 1, 2, 5), (16, 1, 15, 1, 2, 5), (18, 1, 13, 1, 2, 5),
(20, 1, 11, 1, 2, 5), (22, 1, 3, 2, 2, 5), (22, 1, 9, 1, 2, 5), (24, 1, 7, 1, 2, 5),
(26, 1, 5, 1, 2, 5), (28, 1, 3, 1, 2, 5), (2, 5, 31, 1, 2, 6), (2, 4, 47, 1, 2, 6),
(4, 2, 47, 1, 2, 6), (6, 2, 3, 3, 2, 6), (6, 2, 27, 1, 2, 6), (14, 1, 7, 2, 2, 6),
(14, 1, 49, 1, 2, 6), (16, 1, 47, 1, 2, 6), (18, 1, 45, 1, 2, 6), (20, 1, 43, 1, 2, 6),
(22, 1, 41, 1, 2, 6), (24, 1, 39, 1, 2, 6), (26, 1, 37, 1, 2, 6), (28, 1, 35, 1, 2, 6),
(30, 1, 33, 1, 2, 6), (32, 1, 31, 1, 2, 6), (34, 1, 29, 1, 2, 6), (36, 1, 3, 3, 2, 6),
(36, 1, 27, 1, 2, 6), (38, 1, 5, 2, 2, 6), (38, 1, 25, 1, 2, 6), (40, 1, 23, 1, 2, 6),
(42, 1, 21, 1, 2, 6), (44, 1, 19, 1, 2, 6), (46, 1, 17, 1, 2, 6), (48, 1, 15, 1, 2, 6),
(50, 1, 13, 1, 2, 6), (2, 1, 5, 3, 2, 7), (6, 1, 11, 2, 2, 7), (10, 2, 3, 3, 2, 7),
(10, 2, 27, 1, 2, 7), (46, 1, 3, 4, 2, 7), (46, 1, 9, 2, 2, 7), (22, 2, 3, 3, 2, 9),
(22, 2, 27, 1, 2, 9), (22, 1, 45, 2, 2, 11)}, where b0 is any positive integer.

3. Some lemmas and the proof of Theorem 2.1

To prove Theorem 2.1 we need some notation and several lemmas.
The proof will be obtained as a simple combination of these lemmas.

For a non-zero integer k and a prime p we denote by ordp(k) the
p-adic order of k, that is, ordp(k) is the largest non-negative integer
such that pordp(k) divides k.

Lemma 3.1. Let x, z be integers with 1 ≤ x, z ≤ 50, x even, z odd.
Then all solutions to equation (3) in integers a, b, y, n with n = 4, 6, 9
or n ≥ 5 prime satisfy min(a, n) ≤ 5.

Proof. Assume that a > 5. A short computation shows that

1 ≤ ord2(1 + zb) ≤ 5

for every odd z with 1 ≤ z < 50. Indeed, if b is even then zb ≡ 1
(mod 4), so ord2(1 + zb) = 1. Further, we have z16 ≡ 1 (mod 64) for
any odd integer z. Thus for z odd we have zk ≡ zk+16 (mod 64) for
every k ∈ Z. So if b is odd, we only have to check that 1 + zb 6≡ 0
(mod 64) for z odd with 1 ≤ z < 50, and 0 ≤ b ≤ 15. This can be
done in Magma [4] in a few seconds.
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Now, by ord2(1 + zb) ≤ 5, x even and a > 5 we get

1 ≤ ord2(1 + xa + zb) ≤ 5,

which together with equation (3) shows that y is even and n ≤ 5. This
completes the proof of Lemma 3.1. �

3.1. The case a ≤ 5. First we give sharp upper bounds for n in
equation (3) in this case. For this, we need to introduce some notation.
Put t = 1 + xa. Since a ≤ 5 we find that

t = 1 + xa ≤ 1 + 505 = 312, 500, 001.

Then, our original equation (3) takes the form

(4) zb + t = yn,

where b, y are positive integers with y ≥ 2, n ≥ 4 and t ≤ 1 + 505. In
Lemma 3.3 below we give upper bounds for n in equation (4). For this
purpose, we use Baker’s method of linear forms in logarithms of two
algebraic numbers. For an algebraic number α of degree d over Q, we
define the absolute logarithmic height of α by the following formula:

h(α) =
1

d

(
log |a0|+

d∑
i=1

log max
{

1, |α(i)|
})

,

where a0 is the leading coefficient of the minimal polynomial of α over
Z, and α(1), α(2), ... , α(d) are the conjugates of α in the field of complex
numbers.

Let α1 and α2 be multiplicatively independent algebraic numbers
with |α1| ≥ 1 and |α2| ≥ 1. Consider the linear form in two logarithms

Λ = b2 logα2 − b1 logα1,

where logα1, logα2 are any determinations of the logarithms of α1, α2

respectively, and b1, b2 are positive integers. We rely on the following
result due to Laurent [8].

Lemma 3.2 ([8], Corollary 2). Suppose that α1 and α2 are multiplica-
tively independent positive rational numbers greater than one. Then we
have

log |Λ| ≥ −25.2H(α1)H(α2) max{log h′ + 0.38, 10}2,
where

H(αi) = max{h(αi), logαi, 1} (i = 1, 2),

and

h′ =
b1

H(α2)
+

b2
H(α1)

.

Using Lemma 3.2 we show the following.
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Lemma 3.3. Let z, t be odd positive integers with 3 ≤ z ≤ 49 and
3 ≤ t ≤ 1 + 505. Let (b, y, n) be a solution of equation (4) with n ≥ 5
an odd prime. Then we have

n <

{
15, 000 if y = 2,

10, 000 if y > 2.

Proof. In the proof we will closely follow the method used in the first
part of Lemma 3.3 of [7]. Note, that for a non-zero rational number
α = u

v
we always have H(α) ≤ max{log |u|, log |v|, 1}.

If in equation (4) we have n | b then by writing b = nb1 (b1 ≥ 1), we
get from (4) that

(5) t = yn − (zb1)n = (y − zb1)(yn−1 + yn−2zb1 + · · ·+ (zb1)n−1).

Since t ≥ 3 > 0, equation (5) implies that y − zb1 ≥ 1, which together
with y ≥ 2 and (5) gives

t > 2n−1.

Therefore by t ≤ 1+505 we obtain n ≤ 29, which is much better bound
for n than stated. So, in what follows, we may write b occurring in (4)
in the form b = nB + r, where B and r are integers for which B ≥ 0
and 0 < r ≤ n− 1. Thus, equation (4) yields

(6)

∣∣∣∣zr (zBy
)n
− 1

∣∣∣∣ =
t

yn
.

Set

(7) Λ := r log z − n log
( y

zB

)
.

By (6) one can easily see that Λ 6= 0. Now, if
∣∣∣zr ( zBy )n − 1

∣∣∣ > 1
3

we

get by y ≥ 2 and (6) that

n <
log 3t

log 2
,

which by t ≤ 1+505 yields n ≤ 29. So, in what follows we may assume
that ∣∣∣∣zr (zBy

)n
− 1

∣∣∣∣ ≤ 1

3
.

It is well-known that for every w ∈ C for which |w− 1| ≤ 1/3 we have
| logw| < 2|w − 1|. Hence by (6) and (7) we get that

(8) |Λ| < 2t

yn
.

Now, we are going to derive a lower bound for |Λ| occurring in (7).
Since z and t are odd, it follows that in equation (4) we have z 6≡ y
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(mod 2). Thus the rational numbers y
zB

and z are multiplicatively
independent. Hence we may apply Lemma 3.2 on taking

α1 =
y

zB
, α2 = z, b1 = n, b2 = r.

By the inequality
∣∣∣zr ( zBy )n − 1

∣∣∣ ≤ 1
3

we obviously have that y > zB,

thus we may choose

H(α1) = H
( y

zB

)
≤

{
1, if y = 2,

log y, if y > 2
and H(α2) = H(z) = log z.

Since r < n and H(α1) ≥ 1 we obtain

h′ <
n

log z
+ n,

whence we get the lower bound

(9) |Λ| > −25.2 log zH(α1) max

{
log

(
n

log z
+ n

)
+ 0.38, 10

}2

.

On comparing (8) and (9) we infer that
(10)

n < 25.2 max

{
log

(
n

log z
+ n

)
+ 0.38, 10

}2

log z
H(α1)

log y
+

log 2t

log y
,

which, by y ≥ 2, implies that either

(11) n < 2520 log z
H(α1)

log y
+

log 2t

log 2
,

or

(12) n < 25.2

(
log

(
n

log z
+ n

)
+ 0.38

)2

log z
H(α1)

log y
+

log 2t

log 2
.

Since

H(α1)

log y
=

{
1

log 2
, if y = 2,

1, if y > 2

then by (11) and (12) a simple calculation gives an upper bound for n
valid for every t ≤ 1+505 and y ≥ 2. Namely, we may write n < 15, 000
if y = 2, and n < 10, 000 if y > 2. �

In the following we shall need Carmichael’s lambda function λ(m),
which (for m ≥ 2) is the smallest positive integer such that kλ(m) ≡ 1
(mod m) for all integers k coprime to m. For some properties of λ(m),
see e.g. [6] and the references given there.
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The next Lemma shows that for a ≤ 5 and 10 < n < n0 with
the bound n0 coming from Lemma 3.3 equation (3) possesses only one
solution. Namely, we have the following.

Lemma 3.4. Suppose that 1 ≤ a ≤ 5 and n > 10. Then equation (3)
(i) for y 6= 2 and n < 10000 prime has no solution,
(ii) for y = 2 and n < 15000 prime has the only solution

(x, a, z, b, y, n) = (22, 1, 45, 2, 2, 11).

Proof. (i) For fixed values of x, a, z, n we proceed as follows. For the
least prime m0 of the form m0 = 2in+ 1 with i ∈ N we put o := λ(m0)
and find all exponents b (mod o) for which

1 + xa + zb = yn (mod m0)

is solvable. If the list is empty, then there is no solution for the actual
choice of x, a, z, n. Otherwise, we put M := o and we take the next
prime of the form m1 = 2ni + 1 with i ∈ N, put o1 := λ(m1) and
M1 := lcm(M, o1). We list all possible exponents b (mod M1) for which
equation (3) is solvable modulo m0 ·m1 and we exclude all those values
of b (mod M1) for which (3) is unsolvable modulo M1.

So we may assume that we have a list of possible exponents b (mod M1)
for which the equation (3) is solvable modulo a suitable modulus µ
which is the product of some primes.

We continue the above process, taking new and new moduli of the
form mj = 2in + 1 with i ∈ N until we end up with an empty list of
possible values of exponents b (mod Mj), where Mj := lcm(M,λ(mj)).
Then we have proved that the original equation is unsolvable for the
given values of x, a, z, n. This method worked successfully for all pos-
sible tuples x, a, z, n with 1 ≤ a ≤ 5, 1 ≤ x, z ≤ 50, x even, z odd, and
10 < n ≤ 10000, except for (x, a, z, n) = (22, 1, 45, 11). Our algorithm
has been implemented in Magma [4]. It has worked efficiently enough,
the total running time was about 250 hours on an Intel Xeon X5680
(Westmere EP) processor. We mention that clearly, for fixed x and z
instead of Carmichael’s λ function one could work with the orders of
these numbers modulo the appropriate moduli. However, the use of λ
was more convenient, and it is still efficient enough.

It is clear because of the identity 1+221+452 = 211, for (x, a, z, n) =
(22, 1, 45, 11) the above method does not work. In this case we reduce
(3) to a Thue equation of the form

y11 − 45j · w11 = 23

where w = 45t and b = 11t + j, with j running through the values
0, 1, 2, . . . , 10. Then we solve all such equations by Magma [4]. For
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each fixed j the solution of the corresponding Thue equation took less
than 4 hours on an Intel Xeon X5680 (Westmere EP) processor. Since
these Thue equations have no solution with w being a power of 45 and
y 6= 2, the proof of statement (i) of the lemma is complete.

(ii) In the case when y = 2, for all possible fixed x, a, z, n we check
whether 2n−xa− 1 is a perfect power of z or not. The only case when
we get a positive answer is when (x, a, z, y, n) = (22, 1, 45, 2, 11). This
gives the solution (x, a, z, b, y, n) = (22, 1, 45, 2, 2, 11).

These computations were done in Magma [4] and they took around 4
minutes of CPU time on an Intel Xeon X5680 (Westmere EP) processor.

�

The next lemma is concerned with equation (3) for some ’small’
values of n in the case a ≤ 5.

Lemma 3.5. Suppose that 1 ≤ a ≤ 5 and n ∈ {4, 5, 6, 7, 9}. Then all
solutions (x, a, z, b, y, n) of equation (3) are those listed below
(x, a, z, b, y, n) ∈ {(14, 1, 1, b0, 2, 4), (30, 1, 1, b0, 2, 5), (2, 3, 7, 1, 2, 4),
(2, 2, 11, 1, 2, 4), (2, 1, 13, 1, 2, 4), (4, 1, 11, 1, 2, 4), (6, 1, 3, 2, 2, 4),
(6, 1, 9, 1, 2, 4), (6, 3, 39, 1, 4, 4), (8, 1, 7, 1, 2, 4), (10, 1, 5, 1, 2, 4),
(12, 1, 3, 1, 2, 4), (12, 1, 3, 5, 4, 4), (30, 1, 15, 2, 4, 4), (2, 2, 3, 3, 2, 5),
(2, 4, 15, 1, 2, 5), (2, 3, 23, 1, 2, 5), (2, 2, 27, 1, 2, 5), (2, 1, 29, 1, 2, 5),
(4, 1, 3, 3, 2, 5), (4, 2, 15, 1, 2, 5), (4, 1, 27, 1, 2, 5), (6, 1, 5, 2, 2, 5),
(6, 1, 25, 1, 2, 5), (8, 1, 23, 1, 2, 5), (10, 1, 21, 1, 2, 5), (10, 3, 23, 1, 4, 5),
(12, 1, 19, 1, 2, 5), (14, 1, 17, 1, 2, 5), (16, 1, 15, 1, 2, 5), (18, 1, 13, 1, 2, 5),
(20, 1, 11, 1, 2, 5), (22, 1, 3, 2, 2, 5), (22, 1, 9, 1, 2, 5), (24, 1, 7, 1, 2, 5),
(26, 1, 5, 1, 2, 5), (28, 1, 3, 1, 2, 5), (2, 5, 31, 1, 2, 6), (2, 4, 47, 1, 2, 6),
(4, 2, 47, 1, 2, 6), (6, 2, 3, 3, 2, 6), (6, 2, 27, 1, 2, 6), (14, 1, 7, 2, 2, 6),
(14, 1, 49, 1, 2, 6), (16, 1, 47, 1, 2, 6), (18, 1, 45, 1, 2, 6), (20, 1, 43, 1, 2, 6),
(22, 1, 41, 1, 2, 6), (24, 1, 39, 1, 2, 6), (26, 1, 37, 1, 2, 6), (28, 1, 35, 1, 2, 6),
(30, 1, 33, 1, 2, 6), (32, 1, 31, 1, 2, 6), (34, 1, 29, 1, 2, 6), (36, 1, 3, 3, 2, 6),
(36, 1, 27, 1, 2, 6), (38, 1, 5, 2, 2, 6), (38, 1, 25, 1, 2, 6), (40, 1, 23, 1, 2, 6),
(42, 1, 21, 1, 2, 6), (44, 1, 19, 1, 2, 6), (46, 1, 17, 1, 2, 6), (48, 1, 15, 1, 2, 6),
(50, 1, 13, 1, 2, 6), (2, 1, 5, 3, 2, 7), (6, 1, 11, 2, 2, 7), (10, 2, 3, 3, 2, 7),
(10, 2, 27, 1, 2, 7), (46, 1, 3, 4, 2, 7), (46, 1, 9, 2, 2, 7), (22, 2, 3, 3, 2, 9),
(22, 2, 27, 1, 2, 9)}, where b0 is any positive integer.

Proof. To prove this lemma for all fixed tuples (x, a, z, n) which fulfill
the assumptions of our lemma, for all values j = 0, 1, . . . , n−1 we solve
the Thue equations

yn − zj · wn = 1 + xa in y, w ∈ Z.
We check whether among the solutions we find some pairs (y, w) with
w being a perfect power of z. In this way we list all solutions of (3)
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which fulfill the conditions of our lemma. The computations were done
in Magma [4] and took around 340 hours CPU time on an Intel Xeon
X5680 (Westmere EP) processor. �

3.2. The case a > 5. In this case Lemma 3.1 yields that in equation
(3) we must have n ≤ 5. However, by our assumprions on n this means
that n = 4, 5.

Our last lemma shows that equation (3) has no solutions with n ∈
{4, 5} and a > 5.

Lemma 3.6. Suppose that n ∈ {4, 5}. Then equation (3) has no solu-
tion with a > 5.

Proof. First we recall that for any integer q the sequence 1, q, q2, q3, . . .
is ultimately periodic modulo m for any positive integer modulus m.
More precisely we have

qk ≡ qk+λ(m) (mod m),

where k is the tail length (i.e. the length of the part of the sequence
before the repeating part). The tail length is strictly smaller than the
maximal exponent in the prime factorization of the modulus. For more
detailed description of related properties we refer to [12].

For all possible values of x, z, n we reduce our equation modulo sev-
eral moduli. In fact our method is similar to that used in the proof
of Lemma 3.4. First take a modulus m (we shall list the used moduli
explicitly later on). We take o = λ(m) and list all possible pairs (a, b)
modulo o for which equation (3) is solvable modulo m, i.e. for which
1 + xa + zb is a perfect n-th power modulo m. If this list is empty,
then we are done for the given x, z, n. Otherwise, we choose another
modulus, say m′, and we write m1 for the least common multiple of
m,m′ and M for the least common multiple of the values o, λ(m′). We
extend the list of possible pairs (a, b) modulo o to a list of possible pairs
(a, b) modulo M , and exclude from this list all those pairs for which
1 + xa + zb is not a perfect n-th power modulo m′. If the list becomes
empty, then we are done, otherwise we take the next modulus, and
repeat the above procedure. Here we mention that at the extension
step of the list of possible pairs (a, b), whenever in a pair we have a ≤ 5
we replace it by a + M . The reason is that we have the assumption
a > 5, and since we are also using composite moduli it may happen
that for a ≤ 5 we have xa 6≡ xa+M (mod m′). Thus a solution of the
equation 1+xa+zb = yn with a ≤ 5 would make impossible to exclude
the corresponding pair (a, b), although for a > 5, as assumed in this
lemma there is no solution, and this can be checked locally.
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Taking the moduli 11, 8, 3, 5, 32, 9, 13, 32, 31, 41, 25, 61, 64, 181, 241,
49, 281, 631, 2521, 3361, 131, 2081, 2341, 8191 this procedure proves for
all possible values of x, z, n fulfilling the conditions of our lemma that
equation (3) has no solutions for a > 5.

We can see that in the list the moduli are not pairwise co-prime,
which from the theoretical point of view is a redundance. However,
using the moduli in this order makes the computation feasible, mean-
while if we would use 64 on the second place instead of 8 it would make
the computation extremely lengthy. Further, we note that (similarly
to the proof of Lemma 3.5) the use of λ is because of convenience, and
it could be avoided.

These computations were done in Magma [4] and they required about
40 seconds of CPU time on an Intel Xeon X5680 (Westmere EP) pro-
cessor. �

Now we are ready to prove our main result.

Proof of Theorem 2.1. Assume first that a ≤ 5 holds. In view of that
1 + xa ≤ 1 + 505 in this case, the solutions with n ≥ 10 are given by
the combination of Lemmas 3.3 and 3.4. Further, the solutions to (3)
with n < 10 are obtained by Lemma 3.5.

Suppose next that a > 5. Then by Lemma 3.1 we know that n ≤ 5
must be valid. Hence n = 4, 5, and the solutions to (3) are given by
Lemma 3.6. �
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