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We give a survey on the effective reduction theory of integral

polynomials of given discriminant and its applications

Z-equivalence and GL2(Z)-equivalence of integral polynomials

GL2(Z): multiplicative group of 2 × 2 integral matrices with

determinant ±1

- Two monic polynomials f , f ∗ ∈ Z[X ] are called Z-equivalent if

f ∗(X ) = f (X + a) for some a ∈ Z;
- Two polynomials f , f ∗ ∈ Z[X ] of degree n ≥ 2 are called GL2(Z)
-equivalent if there is

(
b a
d c

)
∈ GL2(Z) such that

f ∗(X ) = ±(dX + c)nf

(
bX + a

dX + c

)
=⇒ in both cases, f , f ∗ have the same discriminant

Z-equivalence is much stronger, Z-equivalent monic polynomials in Z[X ]

are clearly GL2(Z)-equivalent with ( 1 a
0 1 ) ∈ GL2(Z)

similar interpretation in terms of binary forms



2

For f ∈ Z[X ], H(f ) denotes the height of f , i.e. the maximum absolute

value of its coefficients.

The effective reduction theory we consider asks to find, for a given

polynomial f ∈ Z[X ], a Z-equivalent or GL2(Z)-equivalent
integral polynomial whose height is effectively bounded above in terms

of the degree and discriminant of f .

Classical results in case of degree ≤ 3

- Lagrange (1773), quadratic case, effective

- Hermite (1851), cubic case, effective

- Delone (1930), Nagell (1930), independently, monic, cubic case, in-

effective

General results, for arbitrary degree

- Birch and Merriman (1972), ineffective

- Győry (1973), independently, monic case, effective

- Evertse and Győry (1991), effective version of B–M (1972)
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−→ a great number of various consequences, applications and gene-

ralizations

Later

- significant progress with several new applications and generalizations

- very extensive literature with numerous papers and some books by

Evertse, Győry and others

- the first monograph on the subject:

J.-H. Evertse and K. Győry, Discriminant equations in Diophantine

number theory, Cambridge, 2017.

Since 2017

- many new results, survey of older and recent results and applications:

J.-H. Evertse and K. Győry, General effective reduction theory of in-

tegral polynomials of given non-zero discriminant and its applications,

arXiv: 2409.02627 math.NT 4 Sep 2024.

- a considerably extended version of the arXiv paper will be published

soon.
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I. Reduction of integral polynomials of degree ≤ 3 with given discri-

minant mod GL2(Z)-equivalence, resp. Z-equivalence

Reduction theory was initiated by Lagrange in terms of integral binary

forms. He proved the following theorem in terms of binary forms. We

present here an equivalent formulation for integral polynomials.

Lagrange (1773): For quadratic f ∈ Z[X ] with discriminant D ̸= 0,

there exists f ∗ ∈ Z[X ] GL2(Z)-equivalent to f such that H(f ∗) ≤ c(D)

with some effectively computable constant c(D).

Equivalently

There are only finitely many GL2(Z)-equivalence classes of quadratic poly-
nomials in Z[X ] with given non-zero discriminant + effective

Similar assertions for monic quadratic polynomials in Z[X ] with Z-equivalence
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Gauss (1801): more precise result

Hermite (1851): There are only finitely many GL2(Z)-equivalence classes
of cubic polynomials in Z[X ] with given non-zero discriminant

Delone (1930), Nagell (1930), independently: Up to Z-equivalence, there
are only finitely many irreducible cubic monic polynomials in Z[X ]

with given non-zero discriminant + ineffective

Problem: extend these results to the case of degree ≥ 3 resp. ≥ 4.
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II. Hermite’s attempt (1857) for extending the previous

reduction results to the general case

Hermite attempted to extend his theorem (1851) on cubic polynomials

to the case of arbitrary degree n ≥ 4, but without success. Instead, he

proved a theorem with a weaker equivalence, see Theorem A below.

Hermite equivalence of polynomials and Hermite’s finiteness theorem

Let f (X ) = c(X −α1) · · · (X −αn) ∈ Z[X ] with c ∈ Z\{0}, α1, . . . , αn ∈
Q. Then the discriminant of f : D(f ) = c2n−2

∏
1≤i<j≤n(αi − αj)

2 ∈ Z.

To f we associate the decomposable form

[f ](X ) := cn−1
n∏

i=1

(X1 + αiX2 + · · ·+ αn−1
i Xn) ∈ Z[X1, . . . ,Xn].

We have D(f ) = D([f ]) (Vandermonde).
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Hermite (1857): Two polynomials f , f ∗ ∈ Z[X ] of degree n are called by us

Hermite equivalent if the associated decomposable forms [f ] and [f ∗]

are GLn(Z)-equivalent, i.e.,

[f ∗](X ) = ±[f ](UX ) for some U ∈ GLn(Z).

=⇒ Hermite equivalent polynomials in Z[X ] have the same discriminant.

Hermite proved the following finiteness theorem on polynomials:

Theorem A (Hermite, 1857)

Let n ≥ 2,D ̸= 0. Then the polynomials f ∈ Z[X ] of degree n and of

discriminant D lie in finitely many Hermite equivalence classes.

+ ineffective
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Comparison of Hermite equivalence with GL2(Z)-equivalence
and Z-equivalence

In Bhargava, Evertse, Győry, Remete, Swaminathan (BEGyRS, 2023),

we have integrated Hermite’s long-forgotten notion of equivalence and his

Theorem A, corrected a faulty reference to Hermite’s result in Narkiewicz

excellent book ”The story of algebraic numbers in the first half of the

20th century”, Springer, 2018, and compared Hermite equivalence with

GL2(Z)-equivalence resp. Z-equivalence of integral polynomials.

For integral polynomials of degree n = 2 and 3, Hermite equivalence

and GL2(Z)-equivalence, resp. Z-equivalence coincide.

We proved in (BEGyRS, 2023) that if f , f ∗ ∈ Z[X ] are GL2(Z)-
equivalent, resp. Z-equivalent, then they are Hermite equivalent.



9

Further, for every n ≥ 4, there are infinitely many pairs (f , f ∗) of irreducible

primitive polynomials in Z[X ] with degree n such that f , f ∗ are Hermite

equivalent but GL2(Z)-inequivalent, resp. Z-inequivalent in the monic

case.

=⇒ GL2(Z)-equivalence, resp. Z-equivalence are stronger than Hermite

equivalence =⇒ Hermite’s Theorem A is weaker than Theorems of

Győry (1973) and Evertse and Győry (1991) below.

For convenience of presentation, we formulated in (BEGyRS, 2023)

the former and new results uniformly, in terms of integral polynomials,

instead of monic polynomials and binary forms.

These and some new results in the effective reduction theory inspired

us with Evertse to write a long joint survey paper and give this talk on

the subject, including several older and recent results, applications and

generaliztaions.
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III. Reduction theory of integral polynomials with given

discriminant: the general effective case

Significant breakthroughs in the 1970’s and 1990’s

Hermite’s original objective – proving that there are only finitely many

GL2(Z)-equivalence, resp. Z-equivalence classes of integral polynomials of

given degree and given non-zero discriminant – was finally achieved more

than a century later by Birch and Merriman (1972) and independently ,for

monic polynomials, in a more precise and effective form by Gy (1973).

The result of Birch and Merriman was subsequently made effective by

Evertse and Gy (1991).

In other words, Gy (1973) and Evertse and Gy (1991) together

solved the main problem of the effective reduction theory in full gene-

rality and in an effective way, which resulted in many significant con-

sequences and applications.
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Birch and Merriman proved the following.

Theorem B (Birch and Merriman, 1972)

Let n ≥ 2,D ̸= 0. There are only finitely many GL2(Z)-equivalence classes
of polynomials in Z[X ] with degree n and discriminant D.

Proof, partly based on the finiteness of the number of solutions of

unit equations + some ineffective arguments =⇒ ineffective
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For monic polynomials, the corresponding result with Z-equivalence was
proved independently by Győry (1973) in an effective form.

Theorem C (Győry, 1973)

Let f ∈ Z[X ] be a monic polynomial of degree n ≥ 3 with discriminant

D ̸= 0. There is an f ∗ ∈ Z[X ], Z-equivalent to f , such that H(f ∗) ≤
c1(n,D) and n ≤ c2(D), where c1, c2 are effectively computable positive

numbers depending only on n,D, resp. on D.

Apart from the ineffectivity of Theorem B, Theorems B and C are

generalizations for n ≥ 3 of the theorems of Lagrange (1773), case n = 2,

and Hermite (1851), case n = 3.
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The proof is based on a combination of an effective result of Győry

(1973), proved by Baker’s method, on unit equations and a so-called graph

method of Győry.

Corollary (Gy, 1973)

Let D ̸= 0. There are only finitely many Z-equivalence classes of monic

polynomials in Z[X ] with discriminant D, and a full set of representatives

of these classes can be effectively determined.

Note that here the degree of the monic polynomials under consideration

is not fixed.

Theorem C confirmed a conjecture of Nagell (1967,68) in an effective

form. Further, it made effective and significantly generalized the theorems

of Delone (1930) and Nagell (1930) obtained in the cubic case.
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Effective/explicit version of Theorem B and

explicit version of Theorem C

First effective version of Theorem B (Birch and Merriman): Evertse

and Gy (1991) in a quantitative form. In 2017, improved and completely

explicit version:

Theorem D (Evertse and Gy (2017))

Let f ∈ Z[X ] be a polynomial of degree n ≥ 2 and discriminant D ̸= 0.

Then f is GL2(Z)-equivalent to a polynomial f ∗ ∈ Z[X ] for which

H(f ∗) ≤ exp{(42n3)25n
2

· |D|5n−3}. (3.1)

Further (Gy, 1974):

n ≤ 3 + 2 log |D|/ log 3.
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First explicit version of Theorem C: Gy (1974). In the proof, this was

the first explicit application of Baker’s method to unit equations.

Improved version:

Theorem E (Evertse and Gy, 2017)

Let f ∈ Z[X ] be a monic polynomial of degree n ≥ 2 and discriminant

D ̸= 0. Then f is Z-equivalent to a polynomial f ∗ ∈ Z[X ] for which

H(f ∗) ≤ exp{n208n
2+19(|D|(log |D|)n)n−1}. (3.2)

Further (Gy, 1974):
n ≤ 2 + 2 log |D|/ log 3.

Clearly, Theorems B, D, and in the monic case Theorems C, E are much

more precise and deeper than Theorem A of Hermite.

The exponential feature of the bounds in (3.1) and (3.2) is a consequence

of the use of Baker’s method. It is likely that the bounds in (3.1) and

(3.2) can be replaced by some polynomial expressions in terms of |D|; cf.
Conjecture 15.1 and Theorem 15.1.1 in Evertse and Győry (2017).
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IV. Consequences of Theorem C of Győry (1973) in algebraic number theory, and

in particular for monogenic number fields and monogenic orders

Important breakthrough; general effective finiteness theorems for monogenity

and power integral bases of number fields.

K number field, n = [K : Q], discriminant DK , ring of integers OK ; for α ∈ OK ,

fα(X ) ∈ Z[X ] minimal (monic) polynomial of α =⇒DK/Q(α) := D(fα) discriminant of α,

I (α) := [OK : Z[α]] index of α; we have
(4.1)

DK/Q(α) = I 2(α) · DK (4.2)

Definition

- α, α∗ ∈ OK equivalent if α∗ = ±α + a, a ∈ Z ⇒ DK/Q(α) = DK/Q(α
∗),

I (α) = I (α∗)

- K monogenic if OK = Z[α] for some α ∈ OK ⇔ {1, α, . . . , αn−1} power

integral basis in K , and k ≥ 1 times monogenic if OK = Z[α1] = · · · =
Z[αk ] for some pairwise inequivalent α1, . . . , αk ∈ OK ; k multiplicity of

monogenity
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Most important consequences of Theorem C (Gy, 1973): effective

finiteness theorems in Gy (1973, 74, 76, 78a, 78b), i.e. in Part I-V of Gy

(1973)

for algebraic integer α, D(α) := DK/Q(α), where K = Q(α)

Corollary 1 of Theorem C

Up to equivalence, there are only finitely many algebraic integers with given

non-zero discriminant + effective. (This is Corollary 3 in Győry (1973);

for the finiteness part see also the ineffective Corollary of Theorem 2 in

Birch and Merriman (1972).)

In given number field K :

Corollary 2 of Theorem C

Up to equivalence, there are only finitely many α ∈ OK with given index

I + effective and quantitative
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The most significant consequence of Theorem C

Corollary 3 of Theorem C (Gy, 1973)

Up to equivalence, there only finitely many α ∈ OK with OK = Z[α] ⇔
{1, α, . . . , αn−1} power integral basis + effective and quantitative (apply

Corollary 2 with I = 1.)

breakthrough =⇒ the first general effective algorithm for deciding

the monogenity resp. multiplicity of monogenity of a number field

and, up to equivalence, determining all power integral bases in K +

generalizations for orders (Part III) and for the relative case (Part IV)
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An important reformulation of Corollaries 2 and 3 of Theorem C in

terms of index form equations

Hensel (1894): To every integral basis {1, ω2, . . . , ωn} of K there corres-

ponds a form I (X2, . . . ,Xn) of degree n(n − 1)/2 in n − 1 variables with

coefficients in Z such that for α ∈ OK ,

I (α) = |I (x2, . . . , xn)| if α = x1 + x2ω2 + · · ·+ xnωn with x1, . . . , xn ∈ Z (4.3)

I (X2, . . . ,Xn) is called an index form, and for given non-zero I ∈ Z

I (x2, . . . , xn) = ±I in x2, . . . , xn ∈ Z (4.4)

an index form equation.
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In view of (4.3), Corollary 2 is equivalent to

Corollary 4 of Theorem C

For given I ∈ Z \ {0} the index form equation (4.4) has only finitely many

solutions, and they can be, at least in principle, effectively determined

(Part III of Gy; 1973).

In particular, for I = 1 we get the following equivalent reformulation of

Corollary 3

Corollary 5 of Theorem C

The index form equation

I (x2, . . . , xn) = ±1 in x2, . . . , xn ∈ Z (4.5)

has only finitely many solutions + effective and quantitative (Part III).

The best known bound for the solutions of (4.5):

max
2≤i≤n

|xi | < exp{10n
2

(|DK |(log |DK |)n)n−1}, (4.6)

see Evertse and Gy (2017).
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V. Algorithmic resolution of index form equations,

application to (multiply) monogenic number fields

K number field of degree n ≥ 3, OK ring of integers, I (X2, . . . ,Xn) an

index form over K

I (x2, . . . , xn) =± 1 in x2, . . . , xn ∈ Z (4.5)

(4.6) exponential bound for maxi |xi | too large for practical use

If |DK | is not too large, there are methods for solving (4.5) in concrete

cases ⇔ for computing all generators of power integral bases in K , up to

degree n ≤ 6 in general, and for many special higher degree fields up to

about degree 15 ⇒ for deciding how many times K is monogenic. Bre-

akthrough in the 1990’s, practical algorithms, computational results

and tables.

For n = 3, 4, (4.5) =⇒ Thue equations of degree ≤ 4, efficient algorithm;

n = 3, (4.5) =⇒ cubic Thue quation (Gaál, Schulte 1989);

n = 4, (4.5) =⇒ one cubic and some quartic Thue equations (Gaál,

Pethő, Pohst, 1991–96), many very interesting results
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Refined version of the general approach combined with reduction

and enumeration algorithms

In general, for n ≥ 5, a refined version of the general approach involving

unit equations is needed. Since

(4.5) ⇐⇒ DK/Q(α) = DK ⇐⇒ D(fα) = DK in α ∈ OK

with minimal polynomial fα ∈ Z[X ], in case of concrete equations (4.5),

the basic idea of the proof of Theorem C must be combined with some

reduction and enumeration algorithms.

Refined version of the general method: reduction to unit equations

but in considerably smaller subfields in the normal closure L of K , and use

of Baker’s method; cf. Gy (1998, 2000), see also Evertse and Gy (2017).
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The bounds in concrete cases are still too large. Hence reduction algo-

rithm is needed, reducing the Baker’s bound in several steps if necessary

by refined versions of the L3-algorithm; cf. de Weger; Wildanger.

The last step is to apply enumeration algorithm, determining the small

solutions under the reduced bound ; cf. Wildanger; Gaál and Pohst; Bilu,

Gaál and Gy.

Combining the refined version with reduction and enumeration algo-

rithms, for n = 5, 6 Gaál and Győry (1999), resp. Bilu, Gaál and Győry

(2004) =⇒ algorithms for determining all power integral bases =⇒ chec-

king the monogenity and the multiplicity of the monogenity of K .
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Examples: Resolution of index form equations (4.5), in the most difficult

cases when K = Q(α), degree n, totally real, with Galois group Sn, fα ∈
Z[X ] primitive minimal polynomial of α =⇒ all power integral bases =⇒
multiplicity of the monogenity of K :

n = 3, fα(X ) = X 3 − X 2 − 2X + 1, K 9 times monogenic (Gaál,

Schulte, 1989);

n = 4, fα(X ) = X 4 − 4X 2 − X + 1, K 17 times monogenic (Gaál, Pethő,

Pohst, 1990’s);

n = 5, fα(X ) = X 5 − 5X 3 + X 2 + 3X − 1, K 39 times monogenic (Gaál,

Gy, 1999); ≈ 8h

n = 6, fα(X ) = X 6 − 5X 5 +2X 4 +18X 3 − 11X 2 − 19X +1, K , 45 times

monogenic (Bilu, Gaál, Gy, 2004); hard computation

For n ≥ 7, the above algorithms do not work in general. Hence, for n ≥ 7,

further improvements would be needed.
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VI. Further consequences of Theorem D of (Evertse and Gy, 1991, 2017) in

algebraic number theory, and in particular for rationally monogenic orders

Theorem D can be applied to algebraic numbers that are not necessarily

algebraic integers. Given an algebraic number α, we denote by fα its

primitive minimal polynomial, i.e.,

fα = a0X
n + a1X

n−1 + · · ·+ an = a0(X − α(1)) · · · (X − α(n)) ∈ Z[X ], (6.1)

where a0 > 0, gcd(a0, . . . , an) = 1 and α(1) = α, . . . , α(n) are the conjuga-

tes of α. We recall that the height and discriminant of α are defined by

those of fα, i.e.,
H(α) := H(fα), D(α) := D(fα).

Two algebraic numbers α, β are called GL2(Z)-equivalent if

β =
aα+ b

cα+ d
with

(
a b

c d

)
∈ GL2(Z).

If α, β are GL2(Z)-equivalent then so are fα, fβ while conversely, if fα, fβ

are GL2(Z)-equivalent then α is GL2(Z)-equivalent to a conjugate of β.
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Now Theorem D implies at once

Theorem 6.1 (Evertse and Gy, 1991)

Every algebraic number α of degree n ≥ 2 and discriminant D ̸= 0 is

GL2(Z)-equivalent to an algebraic number β with

H(β) ≤ c(n, |D|),
where c is an effectively computable positive number.

Further, by Theorem 1 of Gy (1974), we have

n ≤ 2 log |D|/ log 3

Rationally monogenic orders

Monogenic orders Z[α], where α is an algebraic integer, can be generalized

to so-called rationally monogenic orders Zα, where α is not necessarily

integral.

Let α be a non-zero, not necessarily integral algebraic number of degree

n ≥ 3, and fα its primitive minimal polynomial given by (6.1).
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Define Zα to be the Z-module with basis

1, ω2 := a0α, ω3 := a0α
2+a1α, . . . , ωn := a0α

n−1+a1α
n−2+ · · ·+an−2α.

This Z-module was introduced by Birch and Merriman (1972), Zα ⊂ ring

of integers of Q(α), and

D(Zα) = D(fα) = D(α). (6.2)

Nakagawa (1989): Zα order in Q(α).

Del Corso, Dvornicich, Simon (2005): Zα = Z[α] ∩ Z[α−1]

If α algebraic integer =⇒ Zα = Z[α]
If α, β algebraic and GL2(Z)-equivalent =⇒ Zα = Zβ

Definition

An order O in a number field K rationally monogenic if there is α s.t.

O = Zα =⇒ monogenic orders are rationally monogenic

Evertse (2023): Every number field K of degree ≥ 3 has infinitely many

orders that are rationally monogenic but not monogenic.
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The following theorem follows directly from Theorem 6.1 (Evertse and

Gy, 1991) and (6.2).

Theorem 6.2 (Evertse and Gy, 202?)

Let O be an order in a number field K, and denote by D(O) its discri-

minant. Then every α such that Zα = O is GL2(Z)-equivalent to some

β ∈ K of height H(β) ≤ c(n, |D(O|), where c denotes the same effectively

computable positive number as in Theorem 6.1.

This is an analogue of Corollary 3 of Theorem C (Gy, 1973) and its

generalization for orders, see also Remark 2 in Section 4.

Theorem 6.2 implies that for given order O in K , it can be effectively

decided whether there is α such that O = Zα. Moreover, there are only

finitely many GL2(Z)-equivalence classes of α ∈ K such that Zα = O, and

a full system of representatives of those can be effectively determined.
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VII. Further generalizations, consequences and applications of the effective

reduction theory

Generalizations for

- algebraic number field case, p-adic case, finite étale algebras, finitely gene-

rated case

- analogous results over function fields
Consequences, applications to

- classical Diophantine equations (Thue equations, Thue–Mahler equations,

Mordell equation, elliptic equations, superelliptic equations,

- discriminant form equations, more general decomposable form equations)

- arithmetic properties of discriminants and indices of algebraic integers,

- effective version of Shafarevich’ conjecture/Faltings’ theorem for hyperel-

liptic curves,

- root separation of integral polynomials

- effective version of Hermite’s Theorem A

- canonical number systems in number fields and orders

- irreducible polynomials

- and many others
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Related topics, not strictly belonging to the effective

reduction theory

- multiply monogenic and rationally monogenic orders; uniform upper

bounds for the multiplicity of (rational) monogenicity of orders

- distribution of monogenic and non-monogenic number fields;

- arithmetic characterization of monogenic and multiply monogenic

number fileds. Hasse problem, great number of interesting speci-

al results, the problem has not yet been solved in full generality

Thank you for your attention!
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Dear Jan-Hendrik,

Many thanks for our long and very fruitful collaboration which resulted

in 35 joint papers and the books

- J.-H. Evertse and K. Győry, Unit Equations in Diophantine Number

Theory, Cambridge, 2015

- J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine

Number Theory, Cambridge, 2017

- J.-H. Evertse and K. Győry, Effective Results and Methods for Diop-

hantine Equations over Finitely Generated Domains, Cambridge, 2022

Best wishes,

Kálmán


