Effective reduction theory of integral polynomials of given discriminant, and related topics

(survey with a brief historical overview)

K. Győry (Debrecen)

(partly joint work with J.-H. Evertse)

July, 2025 Leiden

We give a survey *on the* effective reduction theory of integral polynomials of given discriminant *and its* applications

\mathbb{Z} -equivalence and $GL_2(\mathbb{Z})$ -equivalence of integral polynomials

 $\mathit{GL}_2(\mathbb{Z})$: multiplicative group of 2 \times 2 integral matrices with determinant ± 1

- Two monic polynomials $f, f^* \in \mathbb{Z}[X]$ are called \mathbb{Z} -equivalent if $f^*(X) = f(X + a)$ for some $a \in \mathbb{Z}$;
- Two polynomials $f, f^* \in \mathbb{Z}[X]$ of degree $n \geq 2$ are called $GL_2(\mathbb{Z})$ -equivalent if there is $\begin{pmatrix} b & a \\ d & c \end{pmatrix} \in GL_2(\mathbb{Z})$ such that

$$f^*(X) = \pm (dX + c)^n f\left(\frac{bX + a}{dX + c}\right)$$

 \implies in both cases, f, f^* have the same discriminant

 \mathbb{Z} -equivalence is much stronger, \mathbb{Z} -equivalent monic polynomials in $\mathbb{Z}[X]$ are clearly $GL_2(\mathbb{Z})$ -equivalent with $\left(\begin{smallmatrix} 1 & a \\ 0 & 1 \end{smallmatrix}\right) \in GL_2(\mathbb{Z})$

similar interpretation in terms of binary forms

- For $f \in \mathbb{Z}[X]$, H(f) denotes the *height* of f, i.e. the maximum absolute value of its coefficients.
- The **effective reduction theory** we consider asks to find, for a given polynomial $f \in \mathbb{Z}[X]$, a \mathbb{Z} -equivalent or $GL_2(\mathbb{Z})$ -equivalent integral polynomial whose *height* is *effectively bounded above* in terms of the <u>degree</u> and <u>discriminant</u> of f.

Classical results in case of degree ≤ 3

- <u>Lagrange</u> (1773), quadratic case, **effective**
- Hermite (1851), cubic case, effective
- Delone (1930), Nagell (1930), independently, monic, cubic case, ineffective

General results, for arbitrary degree

- Birch and Merriman (1972), ineffective
- Győry (1973), independently, monic case, effective
- Evertse and Győry (1991), **effective** version of <u>B–M</u> (1972)

→ a great number of various consequences, applications and generalizations

Later

- **significant progress** with several new applications and generalizations
- very extensive literature with numerous papers and some books by Evertse, Győry and others
- the first monograph on the subject:
 - J.-H. Evertse and K. Győry, Discriminant equations in Diophantine number theory, Cambridge, 2017.

Since 2017

- many new results, survey of older and recent results and applications:
 J.-H. Evertse and K. Győry, General effective reduction theory of integral polynomials of given non-zero discriminant and its applications, arXiv: 2409.02627 math.NT 4 Sep 2024.
- a considerably extended version of the arXiv paper will be published soon.

I. Reduction of integral polynomials of degree ≤ 3 with given discriminant mod $GL_2(\mathbb{Z})$ -equivalence, resp. \mathbb{Z} -equivalence

<u>Reduction theory</u> was initiated by <u>Lagrange</u> in terms of integral binary forms. He proved the following theorem in terms of binary forms. We present here an equivalent formulation for integral polynomials.

<u>Lagrange</u> (1773): For quadratic $f \in \mathbb{Z}[X]$ with discriminant $D \neq 0$, there exists $f^* \in \mathbb{Z}[X]$ $GL_2(\mathbb{Z})$ -equivalent to f such that $H(f^*) \leq c(D)$ with some effectively computable constant c(D).

Equivalently

There are only finitely many $GL_2(\mathbb{Z})$ -equivalence classes of quadratic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant + effective

Similar assertions for monic quadratic polynomials in $\mathbb{Z}[X]$ with \mathbb{Z} -equivalence

Gauss (1801): more precise result

Hermite (1851): There are only finitely many $GL_2(\mathbb{Z})$ -equivalence classes of **cubic** polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant

<u>Delone</u> (1930), <u>Nagell</u> (1930), independently: Up to \mathbb{Z} -equivalence, there are only finitely many irreducible **cubic** monic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant + **ineffective**

Problem: extend these results to the case of degree ≥ 3 resp. ≥ 4 .

II. Hermite's attempt (1857) for extending the previous reduction results to the general case

<u>Hermite</u> attempted to extend his theorem (1851) on cubic polynomials to the case of arbitrary degree $n \ge 4$, but *without success*. Instead, he proved a theorem with a *weaker equivalence*, see **Theorem A** below.

Hermite equivalence of polynomials and Hermite's finiteness theorem

Let
$$f(X) = c(X - \alpha_1) \cdots (X - \alpha_n) \in \mathbb{Z}[X]$$
 with $c \in \mathbb{Z} \setminus \{0\}$, $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$. Then the discriminant of $f : D(f) = c^{2n-2} \prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j)^2 \in \mathbb{Z}$.

To f we associate the decomposable form

$$[f](\underline{X}) := c^{n-1} \prod_{i=1}^{n} (X_1 + \alpha_i X_2 + \dots + \alpha_i^{n-1} X_n) \in \mathbb{Z}[X_1, \dots, X_n].$$

We have D(f) = D([f]) (Vandermonde).

Hermite (1857): Two polynomials $f, f^* \in \mathbb{Z}[X]$ of degree n are called by us Hermite equivalent if the associated decomposable forms [f] and $[f^*]$ are $GL_n(\mathbb{Z})$ -equivalent, i.e.,

$$[f^*](\underline{X}) = \pm [f](U\underline{X})$$
 for some $U \in GL_n(\mathbb{Z})$.

 \implies Hermite equivalent polynomials in $\mathbb{Z}[X]$ have the same discriminant.

<u>Hermite</u> proved the following *finiteness theorem on polynomials:*

Theorem A (Hermite, 1857)

Let $n \geq 2, D \neq 0$. Then the polynomials $f \in \mathbb{Z}[X]$ of degree n and of discriminant D lie in finitely many Hermite equivalence classes.

+ ineffective

Comparison of Hermite equivalence with $\mathit{GL}_2(\mathbb{Z})$ -equivalence and \mathbb{Z} -equivalence

In <u>Bhargava</u>, <u>Evertse</u>, <u>Győry</u>, <u>Remete</u>, <u>Swaminathan</u> (<u>BEGyRS</u>, 2023), we have *integrated* Hermite's long-forgotten notion of equivalence and his **Theorem A**, corrected a faulty reference to Hermite's result in <u>Narkiewicz</u> excellent book "The story of algebraic numbers in the first half of the 20th century", Springer, 2018, and compared *Hermite equivalence* with $GL_2(\mathbb{Z})$ -equivalence resp. \mathbb{Z} -equivalence of integral polynomials.

For integral polynomials of degree n=2 and 3, Hermite equivalence and $GL_2(\mathbb{Z})$ -equivalence, resp. \mathbb{Z} -equivalence **coincide**.

We proved in (BEGyRS, 2023) that if $f, f^* \in \mathbb{Z}[X]$ are $GL_2(\mathbb{Z})$ -equivalent, resp. \mathbb{Z} -equivalent, then they are Hermite equivalent.

Further, for every $n \geq 4$, there are infinitely many pairs (f, f^*) of irreducible primitive polynomials in $\mathbb{Z}[X]$ with degree n such that f, f^* are Hermite equivalent but $GL_2(\mathbb{Z})$ -inequivalent, resp. \mathbb{Z} -inequivalent in the monic case.

 \implies $GL_2(\mathbb{Z})$ -equivalence, resp. \mathbb{Z} -equivalence are **stronger** than *Hermite* equivalence \implies Hermite's **Theorem A** is **weaker** than **Theorems** of $\underline{Gy\"{o}ry}$ (1973) and $\underline{Evertse}$ and $\underline{Gy\"{o}ry}$ (1991) below.

For convenience of presentation, we formulated in (<u>BEGyRS</u>, 2023) the former and new results **uniformly**, *in terms of integral polynomials*, instead of monic polynomials and binary forms.

These and some new results in the effective reduction theory inspired us with <u>Evertse</u> to write a long joint <u>survey paper</u> and give <u>this talk</u> on the subject, including <u>several older</u> and <u>recent results</u>, <u>applications</u> and generaliztaions.

III. Reduction theory of integral polynomials with given discriminant: the general effective case

Significant breakthroughs in the 1970's and 1990's

Hermite's original objective – proving that there are only finitely many $GL_2(\mathbb{Z})$ -equivalence, resp. \mathbb{Z} -equivalence classes of integral polynomials of given degree and given non-zero discriminant – was finally achieved more than a century later by Birch and Merriman (1972) and independently, for monic polynomials, in a more precise and effective form by \underline{Gy} (1973). The result of \underline{Birch} and $\underline{Merriman}$ was subsequently made effective by $\underline{Evertse}$ and \underline{Gy} (1991).

In other words, <u>Gy</u> (1973) and <u>Evertse</u> and <u>Gy</u> (1991) together solved the main problem of the effective reduction theory in **full generality** and in an **effective** way, which resulted in many **significant consequences** and **applications**.

Birch and Merriman proved the following.

Theorem B (Birch and Merriman, 1972)

Let $n \geq 2$, $D \neq 0$. There are only finitely many $GL_2(\mathbb{Z})$ -equivalence classes of polynomials in $\mathbb{Z}[X]$ with degree n and discriminant D.

<u>Proof</u>, partly based on the finiteness of the number of solutions of <u>unit equations</u> + some *ineffective* arguments \Longrightarrow **ineffective**

For <u>monic</u> polynomials, the corresponding result with \mathbb{Z} -<u>equivalence</u> was proved *independently* by <u>Győry</u> (1973) in an **effective** form.

Theorem C (Győry, 1973)

Let $f \in \mathbb{Z}[X]$ be a monic polynomial of degree $n \geq 3$ with discriminant $D \neq 0$. There is an $f^* \in \mathbb{Z}[X]$, \mathbb{Z} -equivalent to f, such that $H(f^*) \leq c_1(n,D)$ and $n \leq c_2(D)$, where c_1, c_2 are **effectively** computable positive numbers depending only on n, D, resp. on D.

Apart from the **ineffectivity** of Theorem B, Theorems B and C are **generalizations** for $n \ge 3$ of the theorems of Lagrange (1773), case $\underline{n=2}$, and Hermite (1851), case $\underline{n=3}$.

The **proof** is based on a combination of an effective result of <u>Győry</u> (1973), proved by Baker's method, on unit equations and a so-called graph method of Győry.

Corollary (Gy, 1973)

Let $D \neq 0$. There are only finitely many \mathbb{Z} -equivalence classes of monic polynomials in $\mathbb{Z}[X]$ with discriminant D, and a full set of representatives of these classes can be **effectively** determined.

Note that here the <u>degree</u> of the monic polynomials under consideration is <u>not fixed</u>.

Theorem C confirmed a <u>conjecture</u> of <u>Nagell</u> (1967,68) in an <u>effective</u> form. Further, it made <u>effective</u> and significantly *generalized* the theorems of <u>Delone</u> (1930) and <u>Nagell</u> (1930) obtained in the <u>cubic</u> case.

Effective/explicit version of Theorem B and explicit version of Theorem C

<u>First</u> **effective** version of <u>Theorem B</u> (<u>Birch</u> and <u>Merriman</u>): <u>Evertse</u> and <u>Gy</u> (1991) in a <u>quantitative</u> form. In 2017, <u>improved</u> and completely **explicit** version:

Theorem D (Evertse and Gy (2017))

Let $f \in \mathbb{Z}[X]$ be a polynomial of degree $n \geq 2$ and discriminant $D \neq 0$. Then f is $GL_2(\mathbb{Z})$ -equivalent to a polynomial $f^* \in \mathbb{Z}[X]$ for which

$$H(f^*) \le \exp\{(4^2n^3)^{25n^2} \cdot |D|^{5n-3}\}.$$
 (3.1)

Further (Gy, 1974):

$$n \le 3 + 2\log|D|/\log 3.$$

<u>First explicit</u> version of <u>Theorem C</u>: <u>Gy</u> (1974). In the **proof**, this was the <u>first</u> explicit application of Baker's method to unit equations. Improved version:

Theorem E (Evertse and Gy, 2017)

Let $f \in \mathbb{Z}[X]$ be a monic polynomial of degree $n \geq 2$ and discriminant $D \neq 0$. Then f is \mathbb{Z} -equivalent to a polynomial $f^* \in \mathbb{Z}[X]$ for which

$$H(f^*) \le \exp\{n^{20}8^{n^2+19}(|D|(\log|D|)^n)^{n-1}\}.$$
 (3.2)

Further (\underline{Gy} , 1974): $n \le 2 + 2 \log |D| / \log 3$.

Clearly, <u>Theorems B</u>, <u>D</u>, and in the <u>monic</u> case <u>Theorems C</u>, <u>E</u> are *much* more precise and deeper than <u>Theorem A</u> of <u>Hermite</u>.

The exponential feature of the bounds in (3.1) and (3.2) is a consequence of the use of Baker's method. It is likely that the bounds in (3.1) and (3.2) can be replaced by some polynomial expressions in terms of |D|; cf. Conjecture 15.1 and Theorem 15.1.1 in Evertse and Győry (2017).

IV. Consequences of Theorem C of Győry (1973) in algebraic number theory, and in particular for monogenic number fields and monogenic orders

Important breakthrough; general effective finiteness theorems for monogenity and power integral bases of number fields.

K number field, $n = [K : \mathbb{Q}]$, discriminant D_K , ring of integers \mathcal{O}_K ; for $\alpha \in \mathcal{O}_K$, $f_{\alpha}(X) \in \mathbb{Z}[X]$ minimal (monic) polynomial of $\alpha \Longrightarrow$

$$\begin{cases} D_{K/\mathbb{Q}}(\alpha) &:= D(f_{\alpha}) \text{ discriminant of } \alpha, \\ I(\alpha) &:= [\mathcal{O}_{K} : \mathbb{Z}[\alpha]] \text{ index of } \alpha; \text{ we have} \end{cases}$$

$$D_{K/\mathbb{Q}}(\alpha) = I^{2}(\alpha) \cdot D_{K}$$

$$(4.1)$$

Definition

- $\alpha, \alpha^* \in \mathcal{O}_K$ equivalent if $\alpha^* = \pm \alpha + a$, $a \in \mathbb{Z} \Rightarrow D_{K/\mathbb{Q}}(\alpha) = D_{K/\mathbb{Q}}(\alpha^*)$, $I(\alpha) = I(\alpha^*)$
- K monogenic if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K \Leftrightarrow \{1, \alpha, \dots, \alpha^{n-1}\}$ power integral basis in K, and $k \geq 1$ times monogenic if $\mathcal{O}_K = \mathbb{Z}[\alpha_1] = \cdots = 1$ $\mathbb{Z}[\alpha_k]$ for some pairwise inequivalent $\alpha_1,\ldots,\alpha_k\in\mathcal{O}_K$; k multiplicity of monogenity

(4.2)

Most important consequences of Theorem C (Gy, 1973): effective finiteness theorems in Gy (1973, 74, 76, 78a, 78b), i.e. in Part I-V of Gy (1973)

for algebraic integer α , $D(\alpha) := D_{K/\mathbb{Q}}(\alpha)$, where $K = \mathbb{Q}(\alpha)$

Corollary 1 of Theorem C

Up to equivalence, there are only finitely many algebraic integers with given non-zero discriminant + effective. (This is Corollary 3 in <u>Győry</u> (1973); for the finiteness part see also the **ineffective** Corollary of Theorem 2 in <u>Birch</u> and <u>Merriman</u> (1972).)

In given number field K:

Corollary 2 of Theorem C

Up to equivalence, there are only finitely many $\alpha \in \mathcal{O}_K$ with given index I + effective and quantitative

The most significant consequence of Theorem C

Corollary 3 of Theorem C (Gy, 1973)

Up to equivalence, there only finitely many $\alpha \in \mathcal{O}_K$ with $\mathcal{O}_K = \mathbb{Z}[\alpha] \Leftrightarrow \{1, \alpha, \dots, \alpha^{n-1}\}$ power integral basis + effective and quantitative (apply Corollary 2 with I = 1.)

breakthrough \Longrightarrow the first general effective algorithm for deciding the monogenity resp. multiplicity of monogenity of a number field and, up to equivalence, determining all power integral bases in K + generalizations for orders (Part III) and for the relative case (Part IV)

An important reformulation of Corollaries 2 and 3 of Theorem C in terms of index form equations

<u>Hensel</u> (1894): To every integral basis $\{1, \omega_2, \ldots, \omega_n\}$ of K there corresponds a form $I(X_2, \ldots, X_n)$ of degree n(n-1)/2 in n-1 variables with coefficients in $\mathbb Z$ such that for $\alpha \in \mathcal O_K$,

$$I(\alpha) = |I(x_2, \dots, x_n)| \text{ if } \alpha = x_1 + x_2\omega_2 + \dots + x_n\omega_n \text{ with } x_1, \dots, x_n \in \mathbb{Z}$$
 (4.3)

 $I(X_2,\ldots,X_n)$ is called an **index form**, and for given non-zero $I\in\mathbb{Z}$

$$I(x_2,\ldots,x_n)=\pm I \text{ in } x_2,\ldots,x_n\in\mathbb{Z}$$
 (4.4)

an index form equation.

In view of (4.3), Corollary 2 is equivalent to

Corollary 4 of Theorem C

For given $I \in \mathbb{Z} \setminus \{0\}$ the index form equation (4.4) has only finitely many solutions, and they can be, at least in principle, effectively determined (Part III of \underline{Gy} ; 1973).

In particular, for $\mathit{I}=1$ we get the following equivalent reformulation of Corollary $\mathit{3}$

Corollary 5 of Theorem C

The index form equation

$$I(x_2,\ldots,x_n)=\pm 1 \text{ in } x_2,\ldots,x_n\in\mathbb{Z}$$
 (4.5)

has only finitely many solutions + effective and quantitative (Part III).

The <u>best known bound</u> for the solutions of (4.5):

$$\max_{2 \le i \le n} |x_i| < \exp\{10^{n^2} (|D_K| (\log |D_K|)^n)^{n-1}\}, \tag{4.6}$$

see Evertse and Gy (2017).

V. Algorithmic resolution of index form equations, application to (multiply) monogenic number fields

K number field of degree $n \geq 3$, \mathcal{O}_K ring of integers, $I(X_2, \ldots, X_n)$ an index form over K

$$I(x_2,\ldots,x_n)=\pm 1 \text{ in } x_2,\ldots,x_n\in\mathbb{Z}$$

$$\tag{4.5}$$

(4.6) **exponential** bound for $\max_i |x_i|$ too large for practical use If $|D_K|$ is not too large, there are methods for solving (4.5) in concrete cases \Leftrightarrow for computing all generators of power integral bases in K, up to degree $\mathbf{n} \leq \mathbf{6}$ in general, and for many special higher degree fields up to about degree $15 \Rightarrow$ for deciding how many times K is monogenic. Breakthrough in the 1990's, practical algorithms, computational results and tables.

For n = 3, 4, (4.5) \Longrightarrow Thue equations of degree \le 4, efficient algorithm; n = 3, (4.5) \Longrightarrow cubic Thue quation (Gaál, Schulte 1989);

 $\mathbf{n}=\mathbf{4}$, (4.5) \Longrightarrow one cubic and some quartic Thue equations (Gaál,

Pethő, Pohst, 1991-96), many very interesting results

Refined version of the general approach combined with reduction and enumeration algorithms

In general, for $n \ge 5$, a refined version of the general approach involving unit equations is needed. Since

$$(4.5) \Longleftrightarrow D_{K/\mathbb{Q}}(\alpha) = D_K \Longleftrightarrow D(f_\alpha) = D_K \text{ in } \alpha \in \mathcal{O}_K$$

with minimal polynomial $f_{\alpha} \in \mathbb{Z}[X]$, in case of *concrete equations* (4.5), the **basic idea** of the **proof** of **Theorem C** must be *combined* with some reduction and enumeration algorithms.

Refined version of the general method: reduction to unit equations but in considerably <u>smaller subfields</u> in the normal closure L of K, and use of Baker's method; cf. Gy (1998, 2000), see also <u>Evertse</u> and Gy (2017).

The bounds in concrete cases are still too large. Hence **reduction algorithm** is needed, reducing the Baker's bound in several steps if necessary by refined versions of the L^3 -algorithm; cf. de Weger; Wildanger.

The *last step* is to apply **enumeration algorithm**, determining the **small** solutions *under the reduced bound*; cf. <u>Wildanger</u>; <u>Gaál</u> and <u>Pohst</u>; <u>Bilu</u>, <u>Gaál</u> and <u>Gy</u>.

Combining the refined version with reduction and enumeration algorithms, for $\mathbf{n}=\mathbf{5},\mathbf{6}$ Gaál and Győry (1999), resp. Bilu, Gaál and Győry (2004) \Longrightarrow algorithms for determining all power integral bases \Longrightarrow checking the monogenity and the multiplicity of the monogenity of K.

Examples: Resolution of *index form equations* (4.5), in the <u>most difficult</u> cases when $K = \mathbb{Q}(\alpha)$, degree n, totally real, with Galois group S_n , $f_\alpha \in \mathbb{Z}[X]$ primitive minimal polynomial of $\alpha \Longrightarrow$ all power integral bases \Longrightarrow multiplicity of the monogenity of K:

- ${f n}={f 3}, \ f_{\alpha}(X)=X^3-X^2-2X+1, \ K\ 9 \ times$ monogenic (Gaál, Schulte, 1989);
- **n** = **4**, $f_{\alpha}(X) = X^4 4X^2 X + 1$, K 17 *times* monogenic (Gaál, Pethő, Pohst, 1990's);
- ${f n}={f 5}, \ f_{\alpha}(X)=X^5-5X^3+X^2+3X-1, \ K \ 39 \ times \ {f monogenic} \ ({f Ga\'al}, {f Gy}, \ 1999); \approx 8{f h}$
- $\mathbf{n} = \mathbf{6}$, $f_{\alpha}(X) = X^6 5X^5 + 2X^4 + 18X^3 11X^2 19X + 1$, K, 45 times monogenic (Bilu, Gaál, Gy, 2004); hard computation

For $n \ge 7$, the above algorithms **do not work** in general. Hence, for $n \ge 7$, further improvements would be needed.

VI. Further consequences of Theorem D of (<u>Evertse</u> and <u>Gy</u>, 1991, 2017) in algebraic number theory, and in particular for rationally monogenic orders

Theorem D can be applied to algebraic numbers that are not necessarily algebraic integers. Given an algebraic number α , we denote by f_{α} its primitive minimal polynomial, i.e.,

$$f_{\alpha}=a_0X^n+a_1X^{n-1}+\cdots+a_n=a_0(X-\alpha^{(1)})\cdots(X-\alpha^{(n)})\in\mathbb{Z}[X],$$
 (6.1) where $a_0>0$, $\gcd(a_0,\ldots,a_n)=1$ and $\alpha^{(1)}=\alpha,\ldots,\alpha^{(n)}$ are the conjugates of α . We recall that the *height* and *discriminant* of α are defined by those of f_{α} , i.e.,

$$H(\alpha) := H(f_{\alpha}), \ D(\alpha) := D(f_{\alpha}).$$

Two algebraic numbers α, β are called $GL_2(\mathbb{Z})$ -equivalent if

$$\beta = rac{alpha + b}{clpha + d} ext{ with } egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathit{GL}_2(\mathbb{Z}).$$

If α, β are $GL_2(\mathbb{Z})$ -equivalent then so are f_{α}, f_{β} while conversely, if f_{α}, f_{β} are $GL_2(\mathbb{Z})$ -equivalent then α is $GL_2(\mathbb{Z})$ -equivalent to a conjugate of β .

Now Theorem D implies at once

Theorem 6.1 (Evertse and Gy, 1991)

Every algebraic number α of degree $n \geq 2$ and discriminant $D \neq 0$ is $GL_2(\mathbb{Z})$ -equivalent to an algebraic number β with

$$H(\beta) \leq c(n, |D|),$$

where c is an effectively computable positive number.

Further, by Theorem 1 of \underline{Gy} (1974), we have

$$n \le 2\log|D|/\log 3$$

Rationally monogenic orders

Monogenic orders $\mathbb{Z}[\alpha]$, where α is an algebraic integer, can be generalized to so-called rationally monogenic orders \mathbb{Z}_{α} , where α is not necessarily integral.

Let α be a non-zero, not necessarily integral algebraic number of degree $n \geq 3$, and f_{α} its primitive minimal polynomial given by (6.1).

Define \mathbb{Z}_{α} to be the \mathbb{Z} -module with basis

$$1, \omega_2 := a_0 \alpha, \omega_3 := a_0 \alpha^2 + a_1 \alpha, \dots, \omega_n := a_0 \alpha^{n-1} + a_1 \alpha^{n-2} + \dots + a_{n-2} \alpha.$$

This \mathbb{Z} -module was introduced by <u>Birch</u> and <u>Merriman</u> (1972), $\mathbb{Z}_{\alpha} \subset \text{ring}$ of integers of $\mathbb{Q}(\alpha)$, and

$$D(\mathbb{Z}_{\alpha}) = D(f_{\alpha}) = D(\alpha). \tag{6.2}$$

Nakagawa (1989): \mathbb{Z}_{α} order in $\mathbb{Q}(\alpha)$.

<u>Del Corso</u>, <u>Dvornicich</u>, <u>Simon</u> (2005): $\mathbb{Z}_{\alpha} = \mathbb{Z}[\alpha] \cap \mathbb{Z}[\alpha^{-1}]$

If α algebraic integer $\Longrightarrow \mathbb{Z}_{\alpha} = \mathbb{Z}[\alpha]$

If α, β algebraic and $GL_2(\mathbb{Z})$ -equivalent $\Longrightarrow \mathbb{Z}_{\alpha} = \mathbb{Z}_{\beta}$

Definition

An order \mathcal{O} in a number field K rationally monogenic if there is α s.t. $\mathcal{O} = \mathbb{Z}_{\alpha} \Longrightarrow$ monogenic orders are rationally monogenic

Evertse (2023): Every number field K of degree ≥ 3 has infinitely many orders that are rationally monogenic but not monogenic.

The following theorem follows directly from **Theorem 6.1** (Evertse and \underline{Gy} , 1991) and (6.2).

Theorem 6.2 (Evertse and Gy, 202?)

Let \mathcal{O} be an order in a number field K, and denote by $D(\mathcal{O})$ its discriminant. Then every α such that $\mathbb{Z}_{\alpha} = \mathcal{O}$ is $GL_2(\mathbb{Z})$ -equivalent to some $\beta \in K$ of height $H(\beta) \leq c(n, |D(\mathcal{O}|)$, where c denotes the same effectively computable positive number as in Theorem 6.1.

This is an analogue of **Corollary 3** of **Theorem C** (\underline{Gy} , 1973) and its generalization for orders, see also Remark 2 in Section 4.

Theorem 6.2 implies that for given order \mathcal{O} in K, it can be effectively decided whether there is α such that $\mathcal{O}=\mathbb{Z}_{\alpha}$. Moreover, there are only finitely many $GL_2(\mathbb{Z})$ -equivalence classes of $\alpha\in K$ such that $\mathbb{Z}_{\alpha}=\mathcal{O}$, and a full system of representatives of those can be effectively determined.

VII. Further generalizations, consequences and applications of the effective reduction theory

Generalizations for

- algebraic number field case, p-adic case, finite étale algebras, finitely generated case
- analogous results over function fields

Consequences, applications to

- classical Diophantine equations (Thue equations, Thue–Mahler equations, Mordell equation, elliptic equations, superelliptic equations,
- discriminant form equations, more general decomposable form equations)
- arithmetic properties of discriminants and indices of algebraic integers,
- effective version of Shafarevich' conjecture/Faltings' theorem for hyperelliptic curves,
- root separation of integral polynomials
- effective version of Hermite's Theorem A
- canonical number systems in number fields and orders
- irreducible polynomials
- and many others

Related topics, not *strictly belonging* to the effective reduction theory

- multiply monogenic and rationally monogenic orders; uniform upper bounds for the multiplicity of (rational) monogenicity of orders
- distribution of monogenic and non-monogenic number fields;
- arithmetic characterization of monogenic and multiply monogenic number fileds. **Hasse problem**, great number of interesting special results, the problem has not yet been solved in full generality

Thank you for your attention!

Dear Jan-Hendrik,

Many thanks for our long and very fruitful collaboration which resulted in 35 joint papers and the books

- <u>J.-H. Evertse</u> and <u>K. Győry</u>, *Unit Equations in Diophantine Number Theory*, Cambridge, 2015
- <u>J.-H. Evertse</u> and <u>K. Győry</u>, *Discriminant Equations in Diophantine Number Theory*, Cambridge, 2017
- <u>J.-H. Evertse</u> and <u>K. Győry</u>, *Effective Results and Methods for Diophantine Equations over Finitely Generated Domains*, Cambridge, 2022

Best wishes,

Kálmán