# GEODESIC VECTORS AND FLAT TOTALLY GEODESIC SUBALGEBRAS OF SIX-DIMENSIONAL FILIFORM METRIC LIE ALGEBRAS 

SAMEER ANNON ABBAS AND ÁGOTA FIGULA


#### Abstract

A nilpotent Lie algebra $\mathfrak{n}$ equipped with an Euclidean inner product is called nilpotent metric Lie algebra. In this paper we describe the sets of the geodesic vectors and the flat totally geodesic subalgebras of the six-dimensional filiform metric Lie algebras. In this class with the exception of the metric Lie algebras corresponding to the standard filiform Lie algebra the flat totally geodesic subalgebras of every metric Lie algebra has dimension at most two.


## 1. Introduction

Let $\mathfrak{n}$ be a real nilpotent Lie algebra and $N$ be the connected and simply connected Lie group having Lie algebra $\mathfrak{n}$. We call $(\mathfrak{n},\langle.,\rangle$.$) a metric nilpotent Lie algebra if it is given an Euclidean$ inner product $\langle.,$.$\rangle on \mathfrak{n}$. An inner product $\langle.,$.$\rangle on \mathfrak{n}$ determines a left-invariant metric $\langle., .\rangle_{N}$ on $N$ and conversely. The corresponding nilpotent Lie group $N$ endowed with the left-invariant metric $\langle., .\rangle_{N}$ arising from $\langle.,$.$\rangle is a Riemannian nilmanifold.$

Riemannian nilmanifolds have been studied extensively in the last decades. The first general studies for 2-step nilmanifolds were done by P. Eberlein (see [4], [5]).

We call a subalgebra $\mathfrak{h}$ of a metric Lie algebra $(\mathfrak{n},\langle.,\rangle$.$) flat, respectively totally geodesic if its$ exponential image $H$ in the Lie group $N$ with the left invariant Riemann metric $\langle., .\rangle_{N}$ is flat, respectively totally geodesic submanifold. A subalgebra $\mathfrak{h}$ of a metric Lie algebra ( $\mathfrak{n},\langle.,$.$\rangle ) is$ totally geodesic if and only if it satisfies

$$
\begin{equation*}
\langle[X, Y], Z\rangle+\langle[X, Z], Y\rangle=0 \tag{1.1}
\end{equation*}
$$

for all $Y, Z \in \mathfrak{h}$ and $X$ in the orthogonal complement $\mathfrak{h}^{\perp}$ of $\mathfrak{h}$ (cf. Lemma 1.2 in ([1])). Moreover, a non-zero vector $Y \in(\mathfrak{n},\langle.,\rangle$.$) is geodesic precisely if for all X \in(\mathfrak{n},\langle.,\rangle$.$) one has$

$$
\begin{equation*}
\langle[X, Y], Y\rangle=0 \tag{1.2}
\end{equation*}
$$

Cairns, Hinić Galić and Nikolayevsky presented a comprehensive study of totally geodesic subgroups of Riemannian nilmanifolds and the corresponding subalgebras of nilpotent metric Lie algebras. In particular the authors gave several results on the possible dimensions of totally geodesic subalgebras. They also found examples, where the obtained bounds on the dimensions of totally geodesic subalgebras are attained. Furthermore they gave an example of a 6-dimensional filiform nilpotent Lie algebra that has no totally geodesic subalgebra of dimension $>2$, for any choice of inner product (see [1], [2]).

Nagy and Homolya in [8] studied geodesic vectors and flat totally geodesic subalgebras in 2-step nilpotent metric Lie algebras and proved that for isomorphic Lie algebras $\mathfrak{n}$ and $\mathfrak{n}^{*}$ there

2000 Mathematics Subject Classification. 17B30, 22E25, 57M60, 53C30.
Key words and phrases. Filiform metric Lie algebras, Geodesic vectors, Totally geodesic subalgebras, Nilmanifolds.
The paper is supported by the National Research, Development and Innovation Office (NKFIH) Grant No. K132951.
exists a bijective linear map $\mathfrak{n} \rightarrow \mathfrak{n}^{*}$ preserving the geodesic, respectively flat totally geodesic property of vectors, respectively subalgebras. Moreover they determined the sets of the geodesic vectors and the flat totally geodesic subalgebras in the 2 -step nilpotent metric Lie algebras of dimension $\leq 6$.

In [6] Figula and Nagy classified the isometry equivalence classes and determined the isometry groups of connected and simply connected Riemannian nilmanifolds on filiform Lie groups of arbitrary dimension and on five dimensional nilpotent Lie groups of nilpotency class $>2$. Applying their approach Abbas and Figula proved that up to isometric isomorphism any six-dimensional filiform metric Lie algebra is of the form $\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right), \mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right), \mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right), \mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right)$ and $\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right)$. These metric Lie algebras are defined by the following non-vanishing commutators (see [7]):
(1) $\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right)$

$$
\begin{array}{ll}
{\left[E_{1}, E_{2}\right]=\alpha_{1} E_{3}+\beta_{1} E_{4}+\beta_{2} E_{5}+\beta_{3} E_{6},} & {\left[E_{1}, E_{3}\right]=\alpha_{2} E_{4}-\frac{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}{\alpha_{4}} E_{5}+\beta_{4} E_{6},} \\
{\left[E_{1}, E_{4}\right]=\frac{\alpha_{1} \alpha_{5}}{\alpha_{4}} E_{5}+\beta_{5} E_{6},} & {\left[E_{2}, E_{3}\right]=\alpha_{3} E_{5}+\beta_{6} E_{6},}  \tag{1.3}\\
{\left[E_{2}, E_{4}\right]=\beta_{7} E_{6},} & {\left[E_{2}, E_{5}\right]=\alpha_{4} E_{6},} \\
{\left[E_{4}, E_{3}\right]=\alpha_{5} E_{6},} &
\end{array}
$$

such that $\alpha_{i}>0, i=1, \ldots, 5, \beta_{j} \in \mathbb{R}, j=1, \ldots, 7$, and if the set $J=\{j \in\{1,4,7\}$ : $\left.\beta_{j} \neq 0\right\} \neq \emptyset$, then $\beta_{j_{\circ}}>0$ for the minimal element $j_{\circ} \in J$,
(2) $\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right)$

$$
\begin{array}{ll}
{\left[E_{1}, E_{2}\right]=\alpha_{1} E_{3}+\beta_{1} E_{4}+\beta_{2} E_{5}+\beta_{3} E_{6},} & {\left[E_{1}, E_{3}\right]=\alpha_{2} E_{4}+\beta_{4} E_{5}+\beta_{5} E_{6}} \\
{\left[E_{1}, E_{4}\right]=\alpha_{3} E_{5}+\beta_{6} E_{6},} & {\left[E_{2}, E_{3}\right]=\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} E_{5}+\beta_{7} E_{6}}  \tag{1.4}\\
{\left[E_{1}, E_{5}\right]=\alpha_{4} E_{6},} & {\left[E_{2}, E_{4}\right]=\alpha_{5} E_{6}}
\end{array}
$$

such that $\alpha_{i}>0, i=1, \ldots, 5, \beta_{j} \in \mathbb{R}, j=1, \ldots, 7$, and if the set $J=\{j \in\{1,3,4,6,7\}$ : $\left.\beta_{j} \neq 0\right\} \neq \emptyset$, then $\beta_{j_{\circ}}>0$ for the minimal element $j_{\circ} \in J$,
(3) $\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right)$
$\left[E_{1}, E_{2}\right]=\alpha_{1} E_{3}+\beta_{1} E_{4}+\beta_{2} E_{5}+\beta_{3} E_{6}, \quad\left[E_{1}, E_{3}\right]=\alpha_{2} E_{4}-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) E_{5}+\beta_{4} E_{6}$,
$\left[E_{1}, E_{4}\right]=\alpha_{3} E_{5}+\beta_{5} E_{6}, \quad\left[E_{1}, E_{5}\right]=\beta_{6} E_{6}$,
$\left[E_{2}, E_{3}\right]=\beta_{7} E_{6}, \quad\left[E_{2}, E_{4}\right]=\beta_{8} E_{6}$,
$\left[E_{2}, E_{5}\right]=\alpha_{4} E_{6}, \quad\left[E_{4}, E_{3}\right]=\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}} E_{6}$,
such that $\alpha_{i}>0, i=1, \ldots, 4, \beta_{j} \in \mathbb{R}, j=1, \ldots, 8$, and one of the following cases is satisfied:
(a) $\beta_{1}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{8}=0$,
(b) $\beta_{3}>0$ or $\beta_{5}>0, \beta_{1}=\beta_{4}=\beta_{6}=\beta_{8}=0$,
(c) $\beta_{6}>0$ or $\beta_{4}>0, \beta_{1}=\beta_{3}=\beta_{5}=\beta_{8}=0$,
(d) $\beta_{1}>0$ or $\beta_{8}>0, \beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=0$,
(e) at least two elements of the set $\left\{\beta_{1}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{8}\right\}$ are positive with the exceptions $\left(\beta_{1}>0, \beta_{8}>0\right),\left(\beta_{3}>0, \beta_{5}>0\right),\left(\beta_{4}>0, \beta_{6}>0\right)$,

$$
\begin{array}{rlrl}
\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right) & & \\
{\left[E_{1}, E_{2}\right]} & =\alpha_{1} E_{3}+\beta_{1} E_{4}+\beta_{2} E_{5}+\beta_{3} E_{6}, & {\left[E_{1}, E_{3}\right]=\alpha_{2} E_{4}+\beta_{4} E_{5}+\beta_{5} E_{6},} \\
{\left[E_{1}, E_{4}\right]} & =\alpha_{3} E_{5}+\beta_{6} E_{6}, & & {\left[E_{1}, E_{5}\right]=\alpha_{4} E_{6},}  \tag{1.6}\\
{\left[E_{2}, E_{3}\right]} & =\alpha_{5} E_{6}, &
\end{array}
$$

such that $\alpha_{i}>0, i=1, \ldots, 5, \beta_{j} \in \mathbb{R}, j=1, \ldots, 6$ and if the set $J=\{j \in\{1,3,4,6\}$ : $\left.\beta_{j} \neq 0\right\} \neq \emptyset$, then $\beta_{j_{\circ}}>0$ for the minimal element $j_{\circ} \in J$. Moreover, the Lie algebra $\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right)$ is defined by the same commutators with $\alpha_{5}=0$.
Our aim in this work is to determine the sets of the geodesic vectors and the flat totally geodesic subalgebras in the class $\mathcal{C}$ of the six-dimensional filiform metric Lie algebras. Our investigation shows that in $\mathcal{C}$ only metric Lie algebras corresponding to the standard filiform Lie algebra allow a flat totally geodesic subalgebra of dimension $>2$ (cf. Theorems 3.2, 3.4, 3.8, 4.2, 4.3).

## 2. Preliminaries

For any Lie algebra $\mathfrak{n}$, the lower central series of $\mathfrak{n}$ is defined by $\mathfrak{n}^{(0)}:=\mathfrak{n}, \mathfrak{n}^{(1)}=[\mathfrak{n}, \mathfrak{n}]$ and $\mathfrak{n}^{(i+1)}=\left[\mathfrak{n}, \mathfrak{n}^{(i)}\right], i \geq 1$. If $\mathfrak{n}^{(k)}$ is trivial for some integer $k$, then the Lie algebra $\mathfrak{n}$ is called nilpotent. Let $k$ be the smallest integer so that $\mathfrak{n}^{(k)}$ is trivial, then $\mathfrak{n}$ is said to be $k$-step nilpotent. An $n$-dimensional nilpotent Lie algebra is called filiform if it is $n-1$-step nilpotent. We say an $n$-dimensional nilpotent Lie algebra $\mathfrak{n}$ is $\mathbb{N}$-graded filiform, if it can be decomposed in a direct sum of one-dimensional subspaces $\mathfrak{n}=\oplus_{i=1}^{n} V_{i}$ with $\left[V_{1}, V_{i}\right]=V_{i+1}$ for all $i>1$ and $\left[V_{i}, V_{j}\right] \subset V_{i+j}$ for all $i, j \in \mathbb{N}$, where for convenience we set $V_{i}=0$ for $i>n$.

Let $\mathbb{E}_{6}$ be a 6-dimensional Euclidean vector space with a distinguished orthonormal basis $\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}$. Let $(\mathfrak{n},\langle.,\rangle$.$) be a filiform metric Lie algebra of dimension 6$ defined on $\mathbb{E}_{6}$ by the commutators and relations described in cases (1.3), (1.4), (1.5), (1.6). The lower central series of the 6-dimensional filiform Lie algebra $\mathfrak{n}$ is given by $\mathfrak{n}^{(1)}=\operatorname{span}\left(E_{3}, E_{4}, E_{5}, E_{6}\right)$, $\mathfrak{n}^{(2)}=\operatorname{span}\left(E_{4}, E_{5}, E_{6}\right), \mathfrak{n}^{(3)}=\operatorname{span}\left(E_{5}, E_{6}\right), \mathfrak{n}^{(4)}=\operatorname{span}\left(E_{6}\right)$ which is the center $\zeta$ of $\mathfrak{n}$, and $\mathfrak{n}^{(5)}=\{0\}$. Denote by $\mathfrak{a}_{i}$ the orthogonal complement of $\mathfrak{n}^{(i)}$ in $\mathfrak{n}^{(i-1)}, i=1,2,3,4$. Hence we have $\mathfrak{a}_{1}=\operatorname{span}\left(E_{1}, E_{2}\right), \mathfrak{a}_{2}=\operatorname{span}\left(E_{3}\right), \mathfrak{a}_{3}=\operatorname{span}\left(E_{4}\right), \mathfrak{a}_{4}=\operatorname{span}\left(E_{5}\right)$, and $\mathfrak{n}=\oplus_{i=1}^{4} \mathfrak{a}_{i} \oplus \zeta$.

According to [8, Lemma 1, 2], we have the following:
Lemma 2.1. A subalgebra $\mathfrak{h}$ in a nilpotent metric Lie algebra $(\mathfrak{n},\langle.,\rangle$.$) is flat if and only if it is$ abelian. A subalgebra $\mathfrak{h}$ in $(\mathfrak{n},\langle.,\rangle$.$) is flat totally geodesic precisely if each non-zero element of$ $\mathfrak{h}$ is geodesic.

Lemma 2.2. Let $(\mathfrak{n},\langle.,\rangle$.$) be a 6-dimensional filiform metric Lie algebra. Each non-zero vector$ in $\cup_{i=1}^{4} \mathfrak{a}_{i} \cup \zeta$ is geodesic. Any subalgebra contained in $\cup_{i=1}^{4} \mathfrak{a}_{i} \cup \zeta$ is flat totally geodesic.

Proof. If $Y \in \zeta$, then for every $X \in \mathfrak{n}$ we have $[X, Y]=0$ and hence $\langle[X, Y], Y\rangle=0$. Let $Y \in \mathfrak{a}_{i}$, $i=1,2,3,4$. Since $[X, Y]$ lies in $\mathfrak{n}^{(i)}$ for any $X \in \mathfrak{n}$ we obtain $\langle[X, Y], Y\rangle=0$ which proves the first assertion. According to Lemma 2.1 the second claim follows from the first assertion.

We often use the following Proposition (see [1, Proposition 1.13, Theorems 1.17, 1.18 ]):
Proposition 2.3. a) Filiform nilpotent metric Lie algebras do not possess any totally geodesic subalgebra of codimension one.
b) A filiform nilpotent metric Lie algebra ( $\mathfrak{n},\langle.,\rangle$.$) possesses a totally geodesic subalgebra of$ codimension two if and only if $\mathfrak{n}$ is isomorphic to the standard filiform Lie algebra of dimension $n \geq 3$.

## 3. GEODESIC VECTORS AND FLat Totally geodesic subalgebras of metric Lie

 ALGEBRAS $\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right), \mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right)$ AND $\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right)$In this section we consider the metric Lie algebras $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$, $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$, and $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$. Our goal is to describe the sets of geodesic vectors and to compute the flat totally geodesic subalgebras.

Let us start with the metric Lie algebra $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$.
Theorem 3.1. Let $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ be the metric Lie algebra defined on $\mathbb{E}^{6}$ by non-vanishing commutators given by (1.3). The geodesic vectors of $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ not belonging to $\mathfrak{a}_{1} \cup \mathfrak{a}_{2} \cup$ $\mathfrak{a}_{3} \cup \mathfrak{a}_{4} \cup \zeta$ are the non-zero elements of the set $C_{1} \cup C_{2} \cup C_{4}$ in the case $\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}=0=\beta_{4}$, for $\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7} \neq 0$ these are the non-zero elements of the set $C_{1} \cup C_{3} \cup C_{4}$, where
$C_{1}:=\left\{b E_{2}+c E_{3}+d E_{4}: b\left(\alpha_{1} c+\beta_{1} d\right)+c \alpha_{2} d=0\right\}$, at least two of the numbers $b, c, d$ are non-zero with exception of the cases:

$$
\text { 1. } b=0, \quad \text { 2. } d=0, \quad \text { 3. } c=0 \text { with } \beta_{1} \neq 0
$$

$$
C_{2}:=\left\{a\left(E_{1}-\frac{\alpha_{2}}{\alpha_{5}} E_{6}\right)+c E_{3}+d E_{4}+e E_{5}: a \neq 0, \alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}=0=\beta_{4},\right.
$$

$$
\left.e=\left(\beta_{5} a-\alpha_{5} c\right) \frac{\alpha_{2} \alpha_{4}}{\alpha_{1} \alpha_{5}^{2}}, a\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)-c\left(\alpha_{3} e+\beta_{6} f\right)-f\left(\beta_{7} d+\alpha_{4} e\right)=0\right\}
$$

$$
C_{3}:=\left\{a\left(E_{1}-\frac{\alpha_{2}}{\alpha_{5}} E_{6}+\left(\frac{\beta_{5}}{\alpha_{5}}+\frac{\alpha_{1} \beta_{4}}{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}\right) E_{3}-\frac{\alpha_{2} \alpha_{4} \beta_{4}}{\alpha_{5}\left(\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}\right)} E_{5}\right)+d E_{4}: a \neq 0\right.
$$

$$
\left.a\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)-c\left(\alpha_{3} e+\beta_{6} f\right)-f\left(\beta_{7} d+\alpha_{4} e\right)=0\right\}
$$

$$
C_{4}:=\left\{a E_{1}+c E_{3}+d E_{4}+e E_{5}+f E_{6}: a \neq 0, f \neq-a \frac{\alpha_{2}}{\alpha_{5}}, f \neq 0, e=\left(c \alpha_{5}-a \beta_{5}\right) \frac{f \alpha_{4}}{a \alpha_{1} \alpha_{5}}\right.
$$

$$
d=\frac{a}{\alpha_{5} f+\alpha_{2} a}\left(\frac{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}{\alpha_{4}} e-\beta_{4} f\right), a\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)-c\left(\alpha_{3} e+\beta_{6} f\right)-
$$

$$
\left.f\left(\beta_{7} d+\alpha_{4} e\right)=0\right\}
$$

Proof. According to (1.2) a non-zero vector $Y=a E_{1}+b E_{2}+c E_{3}+d E_{4}+e E_{5}+f E_{6} \in \mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right)$ is geodesic if and only if one has $\langle[X, Y], Y\rangle=0$ for all $X=\sum_{i=1}^{5} x_{i} E_{i} \in \mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right)$ or equivalently if and only if the system of equations

$$
\left\{\begin{array}{l}
b \alpha_{4} f=0,  \tag{3.1}\\
a\left(\frac{\alpha_{1} \alpha_{5}}{\alpha_{4}} e+\beta_{5} f\right)-c \alpha_{5} f=0, \\
a\left(\alpha_{2} d-\frac{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}{\alpha_{2}} e+\beta_{4} f\right)+b \alpha_{3} e+d \alpha_{5} f=0 \\
a\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)-c\left(\alpha_{3} e+\beta_{6} f\right)-f\left(\beta_{7} d+\alpha_{4} e\right)=0 \\
b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e\right)+c\left(\alpha_{2} d-\frac{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}{\alpha_{4}} e+\beta_{4} f\right)+d\left(\frac{\alpha_{1} \alpha_{5}}{\alpha_{4}} e+\beta_{5} f\right)=0
\end{array}\right.
$$

is satisfied. Taking into account that $\alpha_{i} \neq 0, i=\{1, \ldots, 5\}$ and assume that $f=0$ the system of equations (3.1) reduces to

$$
\left\{\begin{array}{l}
a e=0  \tag{3.2}\\
a \alpha_{2} d+b \alpha_{3} e=0 \\
a\left(\alpha_{1} c+\beta_{1} d\right)-c \alpha_{3} e=0 \\
b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e\right)+c\left(\alpha_{2} d-\frac{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}{\alpha_{4}} e\right)+d \frac{\alpha_{1} \alpha_{5}}{\alpha_{4}} e=0
\end{array}\right.
$$

If $a=0$, then from (3.2) we obtain

$$
\left\{\begin{array}{l}
b e=0=c e \\
b\left(\alpha_{1} c+\beta_{1} d\right)+c \alpha_{2} d+d \frac{\alpha_{1} \alpha_{5}}{\alpha_{4}} e=0 .
\end{array}\right.
$$

In the case $e=0=a=f$ the geodesic vectors of $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ are the non-zero elements of the set $\overline{C_{1}}:=\left\{b E_{2}+c E_{3}+d E_{4}: b\left(\alpha_{1} c+\beta_{1} d\right)+c \alpha_{2} d=0\right\}$. For $b=0$ the element $Y=$ $c E_{3}+d E_{4} \in \overline{C_{1}}, c, d \in \mathbb{R}$, satisfies the condition $\alpha_{2} c d=0$. Since $\alpha_{2} \neq 0$ we obtain that either $c=0$ and the element $Y=d E_{4}$ is in $\mathfrak{a}_{3}$, or $d=0$ and the element $Y=c E_{3}$ is in $\mathfrak{a}_{2}$. If $d=0$, then for the element $Y=b E_{2}+c E_{3} \in \overline{C_{1}}, b, c \in \mathbb{R}$, the condition $\alpha_{1} b c=0$ holds. Since $\alpha_{1} \neq 0$ we receive that either $c=0$ and the element $Y=b E_{2}$ is in $\mathfrak{a}_{1}$, or $b=0$ and the element $Y=c E_{3}$ is in $\mathfrak{a}_{2}$. If $c=0$ and $\beta_{1} \neq 0$, then for the element $Y=b E_{2}+d E_{4} \in \overline{C_{1}}, b, d \in \mathbb{R}$ the condition $b d=0$ is satisfied. Hence we get either $b=0$ and the element $Y=d E_{4}$ is in $\mathfrak{a}_{3}$, or $d=0$ and the element $Y=b E_{2}$ is in $\mathfrak{a}_{1}$. Therefore the conditions for the set $C_{1}$ are proved.

In the case $b=c=0=a=f$ the vector $Y=d E_{4}+e E_{5}$ is geodesic if and only if either $d=0$ or $e=0$, and hence it lies either in $\mathfrak{a}_{4}$ or $\mathfrak{a}_{3}$.

If $e=0$, then from (3.2) we get

$$
\left\{\begin{array}{l}
a d=0=a c \\
b\left(\alpha_{1} c+\beta_{1} d\right)+c \alpha_{2} d=0
\end{array}\right.
$$

The case $a=0=e=f$ is discussed above. In the case $d=c=0=e=f$ we receive that any non-zero vector $Y=a E_{1}+b E_{2}$ is geodesic since it lies in the set $\mathfrak{a}_{1}$.

Now, we suppose that $b=0$. In this case the system of equations (3.1) reduces to the following

$$
\left\{\begin{array}{l}
a \frac{\alpha_{1} \alpha_{5}}{\alpha_{4}} e=f\left(c \alpha_{5}-a \beta_{5}\right),  \tag{3.3}\\
d \alpha_{5} f=-a\left(\alpha_{2} d-\frac{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}{\alpha_{4}} e+\beta_{4} f\right) \\
a\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)-c\left(\alpha_{3} e+\beta_{6} f\right)-f\left(\beta_{7} d+e \alpha_{4}\right)=0 \\
c\left(\alpha_{2} d-\frac{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}{\alpha_{4}} e+\beta_{4} f\right)+d\left(\frac{\alpha_{1} \alpha_{5}}{\alpha_{4}} e+\beta_{5} f\right)=0
\end{array}\right.
$$

Assume that $a=0$. The first and second equations of (3.3) give $c f=0=d f$. In the case $f=0=a$ we obtain from the third equation of (3.3) that $c e=0$. For $c=0=f=a=b$ the vector $Y=d E_{4}+e E_{5}$ is geodesic if and only if it lies in $\mathfrak{a}_{4}$ or in $\mathfrak{a}_{3}$. For $e=0=f=a$ the vector $Y=c E_{3}+d E_{4}$ is geodesic if and only if it is either in $\mathfrak{a}_{3}$ or in $\mathfrak{a}_{2}$.

In the case $c=d=0=a$ the third equation of (3.3) gives $f e=0$. In this case the geodesic vector $Y$ has either the form $e E_{5} \in \mathfrak{a}_{4}$ or the form $f E_{6} \in \zeta$.

If $a \neq 0$, then the system of equations (3.3) is equivalent to the following system:

$$
\left\{\begin{array}{l}
\frac{\alpha_{1} \alpha_{5}}{\alpha_{4}} e=\frac{f}{a}\left(c \alpha_{5}-a \beta_{5}\right)  \tag{3.4}\\
d\left(\alpha_{5} f+\alpha_{2} a\right)=a\left(\frac{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}{\alpha_{4}} e-\beta_{4} f\right) \\
a\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)-c\left(\alpha_{3} e+\beta_{6} f\right)-f\left(\beta_{7} d+e \alpha_{4}\right)=0
\end{array}\right.
$$

Let $f=-a \frac{\alpha_{2}}{\alpha_{5}}$. Putting this expression into the first and second equations of (3.4) we receive

$$
\begin{gather*}
e=\left(a \beta_{5}-c \alpha_{5}\right) \frac{\alpha_{2} \alpha_{4}}{\alpha_{1} \alpha_{5}^{2}},  \tag{3.5}\\
\frac{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}{\alpha_{4}} e+\frac{\alpha_{2}}{\alpha_{5}} a \beta_{4}=0 . \tag{3.6}
\end{gather*}
$$

The substitution of (3.5) into (3.6) yields that

$$
\begin{equation*}
c\left(\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}\right)=\frac{a}{\alpha_{5}}\left(\left(\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}\right) \beta_{5}+\alpha_{1} \alpha_{5} \beta_{4}\right) . \tag{3.7}
\end{equation*}
$$

If $\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}=0$, then the equation (3.7) gives $\beta_{4}=0$. In this case the geodesic vectors are the non-zero elements of the set $C_{2}$.

If $\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7} \neq 0$, then from equation (3.7) we obtain:

$$
\begin{equation*}
c=a\left(\frac{\beta_{5}}{\alpha_{5}}+\frac{\alpha_{1} \beta_{4}}{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}\right) . \tag{3.8}
\end{equation*}
$$

Putting (3.8) into (3.5) we receive

$$
e=-\frac{\alpha_{2} \alpha_{4} \beta_{4}}{\alpha_{5}\left(\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}\right)} a .
$$

Hence the vector $Y=a E_{1}+c E_{3}+d E_{4}+e E_{5}+f E_{6}$ is a geodesic vector if and only if it lies in the set $C_{3}$.

If $f \neq-a \frac{\alpha_{2}}{\alpha_{5}}$, then from the first and second equations of (3.4) we have

$$
e=\left(c \alpha_{5}-a \beta_{5}\right) \frac{f \alpha_{4}}{a \alpha_{1} \alpha_{5}}, \quad d=\frac{a}{\alpha_{5} f+\alpha_{2} a}\left(\frac{\alpha_{5} \beta_{1}+\alpha_{2} \beta_{7}}{\alpha_{4}} e-\beta_{4} f\right) .
$$

In this case the geodesic vectors of $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ are the non-zero vectors of the set $C_{4}$. For $f=0$ the elements in $C_{4}$ has the shape $Y=a E_{1}+c E_{3}, a \neq 0$, and they satisfy the condition $\alpha_{1} a c=0$. Therefore we have $c=0$ and hence the element $Y=a E_{1}$ lies in $\mathfrak{a}_{1}$. The intersection $C_{1} \cap C_{2} \cap C_{4}$ is empty because for the elements of $C_{1}$ one has $a=0$ but for the elements in $C_{2} \cup C_{4}$ we have $a \neq 0$. Moreover, for the elements in $C_{2}$ one gets $f=-a \frac{\alpha_{2}}{\alpha_{5}}$, in contrast to this for the elements in $C_{4}$ we have $f \neq-a \frac{\alpha_{2}}{\alpha}$. Hence the sets $C_{2}$ and $C_{4}$ are disjoint. Similarly we can see that the sets $C_{1}, C_{3}$ and $C_{4}$ are disjoint. This completes the proof.

Now we determine the flat totally geodesic subalgebras of dimension $>1$ in the metric Lie algebra $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$.

Theorem 3.2. Let $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ be the metric Lie algebra defined on $\mathbb{E}^{6}$ by non-vanishing commutators given by (1.3). The flat totally geodesic subalgebras of dimension $>1$ in the metric Lie algebra $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ are the 2 -dimensional subalgebras:
(1) $\mathfrak{h}_{2}=\operatorname{span}\left(E_{1}, E_{6}\right)$ in the case $\beta_{3}=\beta_{4}=\beta_{5}=0$,
(2) $\mathfrak{h}_{3}=\operatorname{span}\left(E_{2}, E_{4}\right)$ in the case $\beta_{1}=\beta_{7}=0$.

Proof. In view of Proposition 2.3 any flat totally geodesic subalgebra of $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ has dimension at most 3. Hence firstly we compute the 2- and 3-dimensional abelian subalgebras in the Lie algebra $\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right)$.

The 2- and 3-dimensional abelian subalgebras of the Lie algebra $\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right)$ are:

$$
\begin{aligned}
& \mathfrak{h}_{1}=\operatorname{span}\left(E_{1}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{6}, \quad E_{5}+l_{1} E_{6}\right), \\
& \mathfrak{h}_{2}=\operatorname{span}\left(E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{3}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{5}+k_{3} E_{6}, \quad E_{4}+l_{1} E_{5}+l_{2} E_{6}\right) \text { with } \beta_{7}+l_{1} \alpha_{4}-k_{1} \alpha_{5}=0, \\
& \mathfrak{h}_{4}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{5}=\operatorname{span}\left(E_{3}+k_{1} E_{4}+k_{2} E_{6}, \quad E_{5}+l_{1} E_{6}\right), \\
& \mathfrak{h}_{6}=\operatorname{span}\left(E_{3}+k_{1} E_{4}+k_{2} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{7}=\operatorname{span}\left(E_{4}+k_{1} E_{6}, \quad E_{5}+l_{1} E_{6}\right), \\
& \mathfrak{h}_{8}=\operatorname{span}\left(E_{4}+l_{1} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{9}=\operatorname{span}\left(E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{10}=\operatorname{span}\left(E_{1}+k_{2} E_{3}+k_{3} E_{4}, \quad E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{11}=\operatorname{span}\left(E_{3}+k_{1} E_{4}, \quad E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{12}=\operatorname{span}\left(E_{4}, \quad E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{13}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{5}, \quad E_{4}+l_{1} E_{5}, \quad E_{6}\right) \text { with } \beta_{7}+l_{1} \alpha_{4}-k_{1} \alpha_{5}=0,
\end{aligned}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}, l_{1}, l_{2} \in \mathbb{R}$.
The subalgebras $\mathfrak{h}_{9}, \mathfrak{h}_{10}, \mathfrak{h}_{11}$, and $\mathfrak{h}_{12}$ are not flat totally geodesic because for the vector $E_{5}+E_{6}$ the fourth equation of (3.1) gives the contradiction $\alpha_{4}=0$. Hence is the vector $E_{5}+E_{6} \in \mathfrak{h}_{9} \cap \mathfrak{h}_{10} \cap \mathfrak{h}_{11} \cap \mathfrak{h}_{12}$ is not geodesic. Therefore the subalgebras $\mathfrak{h}_{9}, \mathfrak{h}_{10}, \mathfrak{h}_{11}, \mathfrak{h}_{12}$ are excluded. The subalgebras $\mathfrak{h}_{8}$ and $\mathfrak{h}_{13}$ are not flat totally geodesic since for the vector $E_{4}+l_{1} E_{5}+E_{6} \in \mathfrak{h}_{8} \cap \mathfrak{h}_{13}$ the third equation of the system (3.1) yields $\alpha_{5}=0$ which is a contradiction. Therefore the vector $E_{4}+l_{1} E_{5}+E_{6}$ is not geodesic and hence by Lemma 2.1 the subalgebras $\mathfrak{h}_{8}, \mathfrak{h}_{13}$ are excluded, too The non-zer vector $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}+E_{6} \in \mathfrak{h}_{4}$ is geodesic if and only if for $a=0, b=f=1, c=k_{1}, d=k_{2}, e=k_{3}$ the system (3.1) of equations holds. From the first equation of (3.1) we get the contradiction $\alpha_{4}=0$. Hence the vector $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}+E_{6} \in \mathfrak{h}_{4}$ is not geodesic. Thus the subalgebra $\mathfrak{h}_{4}$ is not flat totally geodesic. Therefore the case $\mathfrak{h}_{4}$ is excluded. The element $E_{3}+k_{1} E_{4}+k_{2} E_{5}+E_{6} \in \mathfrak{h}_{6}$ is geodesic if and only if for $a=b=0, c=f=1, d=k_{1}, e=k_{2}$, the system (3.1) of equations is satisfied. From the second equation of (3.1) yields the contradiction $\alpha_{5}=0$. Therefore the subalgebras $\mathfrak{h}_{6}$ is not flat totally geodesic and hence it is excluded.

The non-zer vector $E_{5}+l_{1} E_{6} \in \mathfrak{h}_{1} \cap \mathfrak{h}_{5} \cap \mathfrak{h}_{7}$ is geodesic if and only if for $a=b=c=d=$ $0, e=1, f=l_{1}$, the system (3.1) of equations holds. The fourth equation of (3.1) gives $\alpha_{4} l_{1}=0$. As $\alpha_{4} \neq 0$ we receive that $l_{1}=0$.

We treat the subalgebra $\mathfrak{h}_{1}$. The non-zero vector $E_{1}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{6} \in \mathfrak{h}_{1}$ is geodesic if and only if for $b=e=0, a=1, c=k_{2}, d=k_{3}, f=k_{4}$ the system (3.1) of equations holds. From the second equation of (3.1) we receive

$$
\begin{equation*}
k_{4}\left(\beta_{5}-\alpha_{5} k_{2}\right)=0 \tag{3.9}
\end{equation*}
$$

Furthermore, The element $E_{1}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{6}+E_{5} \in \mathfrak{h}_{1}$ is geodesic if and only if for $b=0, a=e=1, c=k_{2}, d=k_{3}, f=k_{4}$ the system (3.1) of equations is satisfied. The second equation of (3.1) gives

$$
\begin{equation*}
\frac{\alpha_{1} \alpha_{5}}{\alpha_{4}}+k_{4}\left(\beta_{5}-\alpha_{5} k_{2}\right)=0 \tag{3.10}
\end{equation*}
$$

Taking into account (3.9), equation (3.10) yields the contradiction $\frac{\alpha_{1} \alpha_{5}}{\alpha_{4}}=0$. Hence the subalgebra $\mathfrak{h}_{1}$ is not flat totally geodesic and therefore it is excluded.

Next we consider the subalgebra $\mathfrak{h}_{5}$. According to the system (3.1) of equations the non-zero vector $E_{3}+k_{1} E_{4}+k_{2} E_{6} \in \mathfrak{h}_{5}$ is geodesic if and only if for $a=b=e=0, c=1, d=k_{1}, f=k_{2}$, the system (3.1) of equations holds. From the second equation of (3.1) one obtains $\alpha_{5} k_{2}=0$. As $\alpha_{5} \neq 0$ we have $k_{2}=f=0$. Using this the fifth equation of gives $\alpha_{2} k_{1}$. Since $\alpha_{2} \neq 0$ we receive $k_{1}=0$. But the element vector $E_{3}+E_{5} \in \mathfrak{h}_{5}$ is not geodesic because the fourth equation of the system (3.1) gives the contradiction $\alpha_{3}=0$. Therefore the subalgebra $\mathfrak{h}_{5}$ is excluded, too.

Here we deal with subalgebra $\mathfrak{h}_{7}$. The element $E_{4}+k_{1} E_{6} \in \mathfrak{h}_{7}$ is geodesic if and only if for $a=b=c=e=0, d=1, f=k_{1}$, the system (3.1) of equations is satisfied. From the third equation of (3.1) on obtains $\alpha_{5} k_{1}=0$. Since $\alpha_{5} \neq 0$ we get $k_{1}=0$. But the vector $E_{4}+E_{5} \in \mathfrak{h}_{7}$ is not geodesic because from the fifth equation of the system (3.1) we receive the contradiction $\frac{\alpha_{1} \alpha_{5}}{\alpha_{4}}=0$. Hence the subalgebra $\mathfrak{h}_{7}$ is excluded.
Now we treat the subalgebra $\mathfrak{h}_{2}$. The non-zero vector $E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{5} \in \mathfrak{h}_{2}$ is geodesic if and only if for $f=0, a=1, b=k_{1}, c=k_{2}, d=k_{3}, e=k_{4}$ the system (3.1) of equations is satisfied. The second equation of (3.1) gives $\alpha_{1} \alpha_{5} k_{4}=0$. As $\alpha_{1} \alpha_{5} \neq 0$ we get $k_{4}=e=0$. Using this from the third equation of (3.1) we receive $\alpha_{2} k_{3}=0$. Since $\alpha_{2} \neq 0$ we have $k_{3}=d=0$. Applying this the fourth equation of (3.1) yields $\alpha_{1} k_{2}=0$. As $\alpha_{1} \neq 0$ we receive $k_{2}=c=0$. The element $E_{1}+k_{1} E_{2}+E_{6} \in \mathfrak{h}_{2}$ is geodesic if and only if for $e=c=d=0, a=f=1, b=k_{1}$ the system (3.1) of equations holds. From the first equation of (3.1) one has $\alpha_{4} k_{1}=0$. Since $\alpha_{4} \neq 0$ implies that $k_{1}=0$. Additionally, The non-zero vector $E_{1}+E_{6} \in \mathfrak{h}_{2}$ is geodesic if and only if for $b=c=d=e=0, a=f=1$ the system (3.1) of equations is satisfied. From the second, third, and fourth equation we get $\beta_{5}=0, \beta_{4}=0$, and $\beta_{3}=0$. Hence the assertion (1) follows.

Finally we consider the subalgebra $\mathfrak{h}_{3}$. The non-zero vector $E_{2}+k_{1} E_{3}+k_{2} E_{5}+k_{3} E_{6} \in \mathfrak{h}_{3}$ is geodesic if and only if for $a=d=0, b=1, c=k_{1}, e=k_{2}, f=k_{3}$ the system (3.1) of equations holds. The first equation of (3.1) gives $\alpha_{4} k_{3}=0$. As $\alpha_{4} \neq 0$ one has $k_{3}=f=0$. Using this from the third equation of (3.1) we obtain $\alpha_{3} k_{2}=0$. Since $\alpha_{3} \neq 0$ we receive $k_{2}=e=0$. Applying this the fifth equation of (3.1) one gets $\alpha_{1} k_{1}=0$. Since $\alpha_{1} \neq 0$ yields that $k_{1}=c=0$. The element $E_{4}+l_{1} E_{5}+l_{2} E_{6} \in \mathfrak{h}_{3}$ is geodesic if and only if for $a=b=c=0, d=1, e=l_{1}, l=l_{2}$ the system (3.1) of equations is satisfied. From the third equation of (3.1) we obtain $\alpha_{5} l_{2}=0$ which implies that $l_{2}=f=0$. Using this the fifth equation of (3.1) gives $\alpha_{1} \alpha_{5} l_{1}=0$. This yields $l_{1}=0$. In addition the non-zero vector $E_{2}+E_{4} \in \mathfrak{h}_{3}$ is geodesic if and only if for $a=b=c=f=0, b=d=1$ the system (3.1) of equations holds. The fifth equation of (3.1) gives $\beta_{1}=0$. Taking into account the abelian condition when $l_{1}=k_{1}=0$ we receive that $\beta_{7}=0$. Therefore the case (2) is proved. This proves Theorem 3.2.

Next we deal with the $\mathbb{N}$-graded filiform metric Lie algebra $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ defined by non-vanishing commutators given by (1.4). Firstly we give the set of its geodesic vectors.

Theorem 3.3. Let $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ be the metric Lie algebra defined on $\mathbb{E}^{6}$ by non-vanishing commutators given by (1.4). The geodesic vectors of $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ not belonging to $\mathfrak{a}_{1} \cup \mathfrak{a}_{2} \cup$
$\mathfrak{a}_{3} \cup \mathfrak{a}_{4} \cup \zeta$ are the non-zero elements of the set $C_{1} \cup C_{2}$, where

$$
\begin{aligned}
C_{1}:= & \left\{c E_{3}+d E_{4}+e E_{5}+f E_{6}: f \neq 0, c \neq 0, d=\frac{-c}{\alpha_{5} f}\left(\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} e+\beta_{7} f\right),\right. \\
& \left.\frac{-c}{\alpha_{5} f}\left(\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} e+\beta_{7} f\right)\left(\alpha_{3} e+\beta_{6} f+c \alpha_{2}\right)+c\left(\beta_{4} e+\beta_{5} f\right)+e \alpha_{4} f=0\right\},
\end{aligned}
$$

$C_{2}:=\left\{b E_{2}+c E_{3}+d E_{4}: b\left(\alpha_{1} c+\beta_{1} d\right)+c \alpha_{2} d=0\right\}$ at least two of the numbers $b, c, d$ are non-zero with exception of the cases:

1. $b=0$,
2. $d=0$,
3. for $\beta_{1} \neq 0, c=0$.

Proof. Applying the commutators (1.4) and (1.2) we obtain that the non-zero element $Y=$ $a E_{1}+b E_{2}+c E_{3}+d E_{4}+e E_{5}+f E_{6} \in \mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right)$ is geodesic if and only if for the real numbers $a, b, c, d, e, f$ with respect to a basis $\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}$ the system of equations

$$
\left\{\begin{array}{l}
a f=0,  \tag{3.11}\\
a \alpha_{3} e+b \alpha_{5} f=0, \\
a\left(\alpha_{2} d+\beta_{4} e\right)+b\left(\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} e+\beta_{7} f\right)=0, \\
a\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e\right)-c\left(\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} e+\beta_{7} f\right)-d \alpha_{5} f=0 \\
b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)+c\left(\alpha_{2} d+\beta_{4} e+\beta_{5} f\right)+d\left(\alpha_{3} e+\beta_{6} f\right)+e \alpha_{4} f=0
\end{array}\right.
$$

is satisfied. If $a=0$, then the second and the third equations of (3.11) gives $b f=0=b e$. In the case $b=0=a$ the system (3.11) reduces to:

$$
\left\{\begin{array}{l}
c\left(\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} e+\beta_{7} f\right)+d \alpha_{5} f=0,  \tag{3.12}\\
c\left(\alpha_{2} d+\beta_{4} e+\beta_{5} f\right)+d\left(\alpha_{3} e+\beta_{6} f\right)+e \alpha_{4} f=0 .
\end{array}\right.
$$

Suppose that $f=0$. From the first equation of (3.12) we receive either $c=0$ or $e=0$. In the case $c=0$ the vector $Y=d E_{4}+e E_{5}$ is geodesic of $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ if and only if it lies either in $\mathfrak{a}_{4}$ or in $\mathfrak{a}_{3}$, whereas if $e=0$ the vector $Y=c E_{3}+d E_{4}$ is geodesic of $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ precisely if it lies either in $\mathfrak{a}_{2}$ or in $\mathfrak{a}_{3}$.

Assume that $f \neq 0$. From the first equation of (3.12) we obtain

$$
\begin{equation*}
d=\frac{-c}{\alpha_{5} f}\left(\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} e+\beta_{7} f\right) \tag{3.13}
\end{equation*}
$$

Substituting (3.13) into the second equation of (3.12) we recieve that

$$
\frac{-c}{\alpha_{5} f}\left(\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} e+\beta_{7} f\right)\left(c \alpha_{2}+\alpha_{3} e+\beta_{6} f\right)+c\left(\beta_{4} e+\beta_{5} f\right)+e \alpha_{4} f=0 .
$$

In this case the vector $Y=c E_{3}+d E_{4}+e E_{5}+f E_{6}, f \neq 0$ is geodesic of $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ if and only if it lies in the set

$$
\begin{aligned}
\overline{C_{1}}:= & \left\{c E_{3}+d E_{4}+e E_{5}+f E_{6}: f \neq 0, d=\frac{-c}{\alpha_{5} f}\left(\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} e+\beta_{7} f\right),\right. \\
& \left.\frac{-c}{\alpha_{5} f}\left(\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} e+\beta_{7} f\right)\left(\alpha_{3} e+\beta_{6} f+c \alpha_{2}\right)+c\left(\beta_{4} e+\beta_{5} f\right)+e \alpha_{4} f=0\right\} .
\end{aligned}
$$

If $c=0$, then any vector $Y=e E_{5}+f E_{6} \in \overline{C_{1}}$ lies either in $\mathbf{a}_{4}$ or in $\zeta$. Hence we get the set $C_{1}$ in the assertion.

In the case $f=e=0=a$, the vector $Y=b E_{2}+c E_{3}+d E_{4}$ is geodesic of $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ if and only if it lies in the set $C_{2}$. The set $C_{2}$ coincides with the set $C_{1}$ in the filiform metric Lie algebra $\left(\mathfrak{n}_{6,14}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$. Therefore the validity of the condition for the numbers $b, c, d$ in the
case of the set $C_{2}$ in the assertion can be proved in the same manner as in the proof of Theorem 3.1 in the case $C_{1}$.

Now, if $f=0$, the system (3.11) of equations reduces to

$$
\left\{\begin{array}{l}
a e=0  \tag{3.14}\\
a d+\frac{\alpha_{5}}{\alpha_{4}} b e=0, \\
a\left(\alpha_{1} c+\beta_{1} d\right)-\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} c e=0 \\
b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e\right)+c\left(\alpha_{2} d+\beta_{4} e\right)+d \alpha_{3} e=0
\end{array}\right.
$$

We discussed the case $a=0$ above. In the case $e=0$, from the second and the third equation of (3.14) one has $a d=0=a c$. The case $f=e=a=0$ is discussed above. In the case $d=c=0=e$ any vector $Y=a E_{1}+b E_{2}$ is geodesic because it lies in $\mathfrak{a}_{1}$. The intersection $C_{1} \cap C_{2}$ is empty since for the elements of $C_{2}$ one has $f=0$ but for the elements in $C_{1}$ we have $f \neq 0$. This proves Theorem 3.3.

According to [2, Theorem 5.17], the metric Lie algebra $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ is isomorphic to the $\mathbb{N}$-graded filiform Lie algebra $\left(\boldsymbol{m}_{2}(6),\langle.,\rangle.\right)$.

Theorem 3.4. Let $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ be the metric Lie algebra defined on $\mathbb{E}^{6}$ by non-vanishing commutators given by (1.4). Then the unique flat totally geodesic subalgebra of dimension $>1$ in $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ is $\mathfrak{h}_{6}=\operatorname{span}\left(E_{3}, E_{6}\right)$ in the case $\beta_{5}=\beta_{7}=0$.

Proof. In view of Proposition 2.3 and [2, Theorem 4.2], the dimension of flat totally geodesic subalgebras of $\left(\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ is at most 3 . Hence firstly we determine the 2 - and 3 -dimensional abelian subalgebras in the Lie algebra $\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right)$.

The 3- and 2-dimensional abelian subalgebras of $\mathfrak{n}_{6,15}\left(\alpha_{i}, \beta_{j}\right)$ are:

$$
\begin{aligned}
& \mathfrak{h}_{1}=\operatorname{span}\left(\begin{array}{lll}
E_{2}+k_{1} E_{3}+k_{2} E_{4}, & E_{5}, & E_{6}
\end{array}\right), \\
& \mathfrak{h}_{2}=\operatorname{span}\left(E_{3}+k_{1} E_{4}, \quad E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{3}=\operatorname{span}\left(E_{4}, \quad E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{4}=\operatorname{span}\left(E_{3}+k_{1} E_{6}, \quad E_{4}+l_{2} E_{6}, \quad E_{5}+s_{1} E_{6}\right), \\
& \mathfrak{h}_{5}=\operatorname{span}\left(E_{3}+k_{1} E_{5}, \quad E_{4}+l_{1} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{6}=\operatorname{span}\left(E_{3}+k_{1} E_{4}+k_{2} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{7}=\operatorname{span}\left(E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{8}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{6}, \quad E_{5}+s_{1} E_{6}\right), \\
& \mathfrak{h}_{9}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{10}=\operatorname{span}\left(E_{3}+k_{1} E_{5}+k_{2} E_{6}, \quad E_{4}+l_{1} E_{5}+l_{2} E_{6}\right), \\
& \mathfrak{h}_{11}=\operatorname{span}\left(E_{3}+k_{1} E_{4}+k_{2} E_{6}, \quad E_{5}+s_{1} E_{6}\right), \\
& \mathfrak{h}_{12}=\operatorname{span}\left(E_{4}+l_{2} E_{6}, \quad E_{5}+s_{1} E_{6}\right), \\
& \mathfrak{h}_{13}=\operatorname{span}\left(E_{4}+l_{1} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{14}=\operatorname{span}\left(E_{5}, E_{6}\right),
\end{aligned}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}, l_{1}, l_{2}, s_{1} \in \mathbb{R}$.
The subalgebras $\mathfrak{h}_{1}, \mathfrak{h}_{2}, \mathfrak{h}_{3}$, and $\mathfrak{h}_{14}$ are not flat totally geodesic because for the vector $E_{5}+E_{6}$ the fifth equation of (3.11) gives the contradiction $\alpha_{4}=0$. Hence is the vector $E_{5}+E_{6} \in$ $\mathfrak{h}_{1} \cap \mathfrak{h}_{2} \cap \mathfrak{h}_{3} \cap \mathfrak{h}_{14}$ is not geodesic. Therefore the subalgebras $\mathfrak{h}_{1}, \mathfrak{h}_{2}, \mathfrak{h}_{3}, \mathfrak{h}_{14}$ are excluded. By the
system (3.11) of equations the vector $E_{4}+l_{2} E_{6} \in \mathfrak{h}_{4} \cap \mathfrak{h}_{12}$, respectively $E_{5}+s_{1} E_{6} \in \mathfrak{h}_{4} \cap \mathfrak{h}_{8} \cap \mathfrak{h}_{11} \cap \mathfrak{h}_{12}$, respectively $E_{4}+l_{1} E_{5} \in \mathfrak{h}_{5} \cap \mathfrak{h}_{13}$ is totally geodesic precisely if and only if one has $\alpha_{5} l_{2}=0=\beta_{6} l_{2}$, respectively $\alpha_{4} s_{1}=0$, respectively $\alpha_{3} l_{1}=0$. Since $\alpha_{5} \alpha_{4} \alpha_{3} \neq 0$ we receive that $l_{2}=l_{1}=s_{1}=0$. Using this for the vector $E_{4}+E_{5} \in \mathfrak{h}_{4} \cap \mathfrak{h}_{12}$ the fifty equation of (3.11) leads to the contradiction $\alpha_{3}=0$, whereas for the vector $E_{4}+E_{6} \in \mathfrak{h}_{5} \cap \mathfrak{h}_{13}$ the fourth equation (3.11) gives the contradiction $\alpha_{5}=0$. Therefore the vectors $E_{4}+E_{5} \in \mathfrak{h}_{4} \cap \mathfrak{h}_{12}, E_{4}+E_{6} \in \mathfrak{h}_{5} \cap \mathfrak{h}_{13}$ are not geodesic. Hence the subalgebras $\mathfrak{h}_{4}, \mathfrak{h}_{5}, \mathfrak{h}_{12}, \mathfrak{h}_{13}$ are excluded, too.

The non-zero vector $E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{5}+E_{6} \in \mathfrak{h}_{7}$ is not geodesic bacause the first equation of (3.11) leads to the contradiction $1=0$. Therefore the subalgebra $\mathfrak{h}_{7}$ is not flat totally geodesic and hence it is excluded.

The element $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{6}+E_{5} \in \mathfrak{h}_{8}$ is geodesic if and only if for $b=e=1, c=k_{1}$, $d=k_{2}, f=k_{3}$ the system (3.11) of equations is satisfied. From the second equation of (3.11) we get $\alpha_{5} k_{3}=0$. As $\alpha_{5} \neq 0$ we have $k_{3}=0$. Using this the third equation of (3.11) gives the contradiction $\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}}=0$. Hence the vector $E_{1}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{6}+E_{5} \in \mathfrak{h}_{8}$ is not geodesic. Therefore the subalgebra $\mathfrak{h}_{8}$ is excluded.

The non-zero vector $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}+E_{6} \in \mathfrak{h}_{9}$ is geodesic if and only if for $b=f=1$, $c=k_{1}, d=k_{2}, e=k_{3}$ the system (3.11) of equations holds. From the second equation of (3.11) we get the contradiction $\alpha_{5}=0$. Hence the vector $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}+E_{6} \in \mathfrak{h}_{8}$ is not geodesic. So the subalgebra $\mathfrak{h}_{9}$ is excluded.

The element $E_{3}+k_{1} E_{4}+k_{2} E_{6} \in \mathfrak{h}_{11}$ is geodesic if and only if for $a=b=e=0, c=1, d=k_{1}$, $f=k_{2}$ the system (3.11) of equations is satisfied. The fourth equation gives

$$
\begin{equation*}
\beta_{7} k_{2}+\alpha_{5} k_{1} k_{2}=0 \tag{3.15}
\end{equation*}
$$

In addition, The non-zero vector $E_{3}+k_{1} E_{4}+k_{2} E_{6}+E_{5} \in \mathfrak{h}_{11}$ is geodesic if and only if for $c=e=1, d=k_{1}, f=k_{2}$ the system (3.11) of equations holds. The fourth equation of (3.11) yields

$$
\begin{equation*}
\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}}+\beta_{7} k_{2}+\alpha_{5} k_{1} k_{2}=0 \tag{3.16}
\end{equation*}
$$

Comparing (3.15) with (3.16) we obtain the contradiction $\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}}=0$. Hence the vector $E_{3}+$ $k_{1} E_{4}+k_{2} E_{6}+E_{5} \in \mathfrak{h}_{11}$ is not geodesic and the subalgebra $\mathfrak{h}_{11}$ is excluded.

The vector $E_{4}+l_{1} E_{5}+l_{2} E_{6} \in \mathfrak{h}_{10}$ is geodesic if for $a=b=c=0, d=1, e=l_{1}, f=l_{2}$ the system (3.11) of equations holds. The fourth and the fifth equations of (3.11) yield $\alpha_{5} l_{2}=0$, $\alpha_{3} l_{1}+\beta_{6} l_{2}+\alpha_{4} l_{1} l_{2}=0$. As $\alpha_{5} \alpha_{3} \neq 0$ we obtain that $l_{1}=l_{2}=0$. The element $E_{3}+k_{1} E_{5}+k_{2} E_{6} \in$ $\mathfrak{h}_{10}$ is geodesic if for $a=b=d=0, c=1, e=l_{1}, f=l_{2}$ the system (3.11) of equations is satisfied. From the fourth and fifth equations of (3.11) we get

$$
\begin{equation*}
\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} k_{1}+\beta_{7} k_{2}=0, \beta_{4} k_{1}+\beta_{5} k_{2}+\alpha_{4} k_{1} k_{2}=0 \tag{3.17}
\end{equation*}
$$

The element $E_{3}+E_{4}+k_{1} E_{5}+k_{2} E_{6} \in \mathfrak{h}_{10}$ is geodesic if for $a=b=0, c=d=1, e=l_{1}, f=l_{2}$ the system (3.11) of equations is valid. From the fourth of (3.11) one has

$$
\begin{equation*}
\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} k_{1}+\beta_{7} k_{2}+\alpha_{5} k_{2}=0 \tag{3.18}
\end{equation*}
$$

Comparing it with the first equation of (3.17) we obtain $\alpha_{5} k_{2}=0$. Since $\alpha_{5} \neq 0$ one gets $k_{2}=0$. Using this from (3.18) we receive that also $k_{2}=0$. But the vector $E_{3}+E_{4} \in \mathfrak{h}_{10}$ is not geodesic since for $a=b=e=f=0, c=d=1$ the fifth equation of (3.11) gives the contradiction $\alpha_{2}=0$. Therefore the subalgebra $\mathfrak{h}_{10}$ is excluded.

Finally we treat th subalgebra $\mathfrak{h}_{6}$. The element $E_{3}+k_{1} E_{4}+k_{2} E_{5} \in \mathfrak{h}_{6}$ is geodesic if and only if the system (3.11) of equations are satisfied for $a=b=f=0, c=1, d=k_{1}, e=k_{2}$. From the fourth and fifth equations of (3.11) we obtain $\frac{\alpha_{2} \alpha_{5}}{\alpha_{4}} k_{2}=0 \alpha_{2} k_{1}+\beta_{4} k_{2}+k_{1} \alpha_{3} k_{2}=0$. As $\alpha_{2} \alpha_{5} \neq 0$ we get $k_{2}=k_{1}=0$. Using this the vector $E_{3}+E_{6}$ lies in $\in \mathfrak{h}_{6}$, which is geodesic if for $a=b=d=e=0, c=f=1$ the system (3.11) is valid. From the fourth and fifth equations of (3.11) we receive $\beta_{7}=\beta_{5}=0$. Therefore the subalgebra $\mathfrak{h}_{6}=\operatorname{span}\left(E_{3}, E_{6}\right)$ is flat totally geodesic in the case $\beta_{5}=\beta_{7}=0$. Hence Theorem 3.4 is proved.

Now we treat the filiform Lie algebra $\ell_{6,16}$ defined by the non-vanishing Lie brackets

$$
\left[G_{1}, G_{2}\right]=G_{3},\left[G_{1}, G_{3}\right]=G_{4},\left[G_{1}, G_{4}\right]=G_{5},\left[G_{2}, G_{5}\right]=G_{6},\left[G_{4}, G_{3}\right]=G_{6}
$$

The following theorem describes the isometric isomorphism classes of the metric Lie algebras $\left(\ell_{6,16},\langle.,\rangle.\right)$ and the group of orthogonal automorphisms of $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$.

Theorem 3.5. Let $\langle.,$.$\rangle be an inner product on the 6$-dimensional filiform Lie algebra $\ell_{6,16}$.
(1) There is a unique metric Lie algebra $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ which is isometrically isomorphic to the metric Lie algebra $\left(\ell_{6,16},\langle.,\rangle.\right)$ with $\alpha_{i}>0, i=1, \ldots, 4$ and one of the following cases is satisfied:
(i) $\beta_{1}=\beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=\beta_{8}$,
(ii) $\beta_{3}>0$ or $\beta_{5}>0, \beta_{1}=\beta_{4}=\beta_{6}=\beta_{8}=0$,
(iii) $\beta_{6}>0$ or $\beta_{4}>0, \beta_{1}=\beta_{3}=\beta_{5}=\beta_{8}=0$,
(iv) $\beta_{1}>0$ or $\beta_{8}>0, \beta_{3}=\beta_{4}=\beta_{5}=\beta_{6}=0$,
(v) at least two of the elements of the set $\left\{\beta_{1}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{8}\right\}$ are positive with the exception of the cases $\left(\beta_{1}>0, \beta_{8}>0\right),\left(\beta_{3}>0, \beta_{5}>0\right),\left(\beta_{4}>0, \beta_{6}>0\right)$.
(2) The group $\mathcal{O} \mathcal{A}\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right)\right)$ of orthogonal automorphisms of the metric Lie algebra $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ is the following group:
(a) in case (1i) one has $\mathcal{O A}\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right)\right)=\left\{T E_{i}=\varepsilon_{1} E_{i}, i=1,6, T E_{i}=\varepsilon_{2} E_{i}, i=\right.$ $\left.2,4, T E_{i}=\varepsilon_{1} \varepsilon_{2} E_{i}, i=3,5, \varepsilon_{1}, \varepsilon_{2}= \pm 1\right\} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$,
(b) in case (1ii) one has $\mathcal{O} \mathcal{A}\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right)\right)=\left\{T E_{2}=E_{2}, T E_{4}=E_{4}, T E_{i}=\varepsilon E_{i}\right.$, $i=$ $1,3,5,6, \varepsilon= \pm 1\} \simeq \mathbb{Z}_{2}$,
(c) in case (1iii) one has $\mathcal{O} \mathcal{A}\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right)\right)=\left\{T E_{3}=E_{3}, T E_{5}=E_{5}, T E_{i}=\varepsilon E_{i}, i=\right.$ $1,2,4,6, \varepsilon= \pm 1\} \simeq \mathbb{Z}_{2}$,
(d) in case (1iv) one has $\mathcal{O} \mathcal{A}\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right)\right)=\left\{T E_{1}=E_{1}, T E_{6}=E_{6}, T E_{i}=\varepsilon E_{i}, i=\right.$ $2,3,4,5, \varepsilon= \pm 1\} \simeq \mathbb{Z}_{2}$,
(e) in case (1v) the group $\mathcal{O} \mathcal{A}\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right)\right)$ is trivial.

Remark 3.6. The proof of Theorem 3.5 can be found in [7, Theorem 3.8, p. 8.] with the exception of the case (1ii) and its group of orthogonal automorphism given by (2b) which are missing from there.

Firstly we determine the geodesic vectors of the filiform metric Lie algebra $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$.
Theorem 3.7. Let $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ be the metric Lie algebra defined on $\mathbb{E}^{6}$ by non-vanishing commutators given by (1.5). The geodesic vectors of $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ not belonging to $\mathfrak{a}_{1} \cup \mathfrak{a}_{2} \cup$
$\mathfrak{a}_{3} \cup \mathfrak{a}_{4} \cup \zeta$ are the non-zero elements of the set $C_{1} \cup C_{2}$, where

$$
C_{1}:=\left\{b E_{2}+c E_{3}+d E_{4}+e E_{5}: b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e\right)+c\left(\alpha_{2} d-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) e\right)+d \alpha_{3} e=0\right\}
$$

at least two of the numbers $b, c, d$, e are non-zero with exception of the cases:

1. $b=c=0$,
2. $b=e=0$,
3. $d=e=0$,
4. $b=d=0$ with $\alpha_{3} \alpha_{4} \beta_{1}+\alpha_{1} \alpha_{2} \beta_{8} \neq 0$,
5. $c=d=0$ with $\beta_{2} \neq 0$,
6. $c=e=0$ with $\beta_{1} \neq 0$,
$C_{2}:=\left\{a\left(E_{1}-\frac{\beta_{6}}{\alpha_{4}} E_{2}\right)+c E_{3}+d E_{4}+e E_{5}+f E_{6}: a f \neq 0, a e=\frac{f}{\alpha_{3}}\left(\frac{a \beta_{6} \beta_{8}}{\alpha_{4}}+c \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}-a \beta_{5}\right)\right.$,
$a c=\frac{f}{\alpha_{1}}\left(c \beta_{7}+d \beta_{8}+e \alpha_{4}\right)-\frac{a}{\alpha_{1}}\left(\beta_{1} d+\beta_{2} e+\beta_{3} f\right)$,
$a d=\frac{a}{\alpha_{2}}\left(\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) e-\beta_{4} f\right)+\frac{f}{\alpha_{2}}\left(\frac{a \beta_{6} \beta_{7}}{\alpha_{4}}-d \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}\right)$,
$\left.d\left(\alpha_{2} c+\alpha_{3} e\right)=a \frac{\beta_{6}}{\alpha_{4}}\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)+c e\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right)-f\left(c \beta_{4}+d \beta_{5}+e \beta_{6}\right)\right\}$.
Proof. According to (1.2) the vector $Y=a E_{1}+b E_{2}+c E_{3}+d E_{4}+e E_{5}+f E_{6}$ is geodesic of $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ if and only if the following system of equations

$$
\left\{\begin{array}{l}
f\left(a \beta_{6}+b \alpha_{4}\right)=0  \tag{3.19}\\
a\left(\alpha_{3} e+\beta_{5} f\right)+f\left(b \beta_{8}-c \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}\right)=0 \\
a\left(\alpha_{2} d-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) e+\beta_{4} f\right)+f\left(b \beta_{7}+d \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}\right)=0 \\
a\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)-f\left(c \beta_{7}+d \beta_{8}+e \alpha_{4}\right)=0 \\
b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)+c\left(\alpha_{2} d-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) e+\beta_{4} f\right)+d\left(\alpha_{3} e+\beta_{5} f\right)+e \beta_{6} f=0
\end{array}\right.
$$

is satisfied for $a, b, c, d, e, f \in \mathbb{R}$.
Firstly, we suppose that $f=0$. Take into account that $\alpha_{i}>0, i=1, \ldots, 4$, the system (3.19) of equations gives $a e=0=a d=a c$.

For $a=0=f$ the vector $Y=b E_{2}+c E_{3}+d E_{4}+e E_{5}$ is geodesic of $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right), .\langle.,\rangle.\right)$ if and only if it lies in set $\overline{C_{1}}=\left\{b E_{2}+c E_{3}+d E_{4}+e E_{5}: b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e\right)+c\left(\alpha_{2} d-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) e\right)+d \alpha_{3} e=0\right\}$. If $b=c=0$, then for the element $Y=d E_{4}+e E_{5} \in \overline{C_{1}}, d, e \in \mathbb{R}$ one has $d \alpha_{3} e=0$. As $\alpha_{3} \neq 0$ we obtain that $Y$ lies either in $\mathfrak{a}_{4}$ or in $\mathfrak{a}_{3}$. If $b=e=0$, then for the element $Y=c E_{3}+d E_{4} \in \overline{C_{1}}$, $c, d \in \mathbb{R}$ we have $c \alpha_{2} d=0$. As $\alpha_{2} \neq 0$ we obtain that $Y$ lies either in $\mathfrak{a}_{3}$ or in $\mathfrak{a}_{2}$. In the case $d=e=0$ for the element $Y=b E_{2}+c E_{3} \in \overline{C_{1}}, b, c \in \mathbb{R}$ one gets $b \alpha_{1} c=0$. Since $\alpha_{1} \neq 0$ we receive that $Y$ lies either in $\mathfrak{a}_{3}$ or in $\mathfrak{a}_{2}$. In the case $b=c=0$ for the element $Y=c E_{3}+e E_{5} \in \overline{C_{1}}, c, e \in \mathbb{R}$ one obtains ce( $\left.\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right)=0$. If $\alpha_{3} \alpha_{4} \beta_{1}+\alpha_{1} \alpha_{2} \beta_{8} \neq 0$, then we have $c e=0$, or equivalently the element $Y$ is either in $\mathfrak{a}_{3}$ or in $\mathfrak{a}_{2}$. In the case $c=d=0$ for the element $Y=b E_{2}+e E_{5} \in \overline{C_{1}}, b, e \in \mathbb{R}$ we receive $b \beta_{2} e=0$. If $\beta_{2} \neq 0$, then the element $Y$ lies either in $\mathfrak{a}_{4}$ or in $\mathfrak{a}_{1}$. In the case $c=e=0$ for the element $Y=b E_{2}+d E_{4} \in \overline{C_{1}}, b, d \in \mathbb{R}$ we receive $b \beta_{1} d=0$. If $\beta_{1} \neq 0$, then the element $Y$ lies either in $\mathfrak{a}_{3}$ or in $\mathfrak{a}_{1}$. This proves the conditions for the set $C_{1}$ in the theorem. I

For $e=d=c=0=f$ any vector $Y=a E_{1}+b E_{2}$ is geodesic of $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right), .\langle.,\rangle.\right)$ because it lies in $\mathfrak{a}_{1}$.

Secondly, assume that $a \beta_{6}+b \alpha_{4}=0$. Hence we receive $b=-\frac{a \beta_{6}}{\alpha_{4}}$. Putting this expression into (3.19) one obtains that

$$
\left\{\begin{array}{l}
a e=\frac{f}{\alpha_{3}}\left(\frac{a \beta_{6} \beta_{8}}{\alpha_{4}}+c \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}-a \beta_{5}\right),  \tag{3.20}\\
a d=\frac{a}{\alpha_{2}}\left(\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) e-\beta_{4} f\right)+\frac{f}{\alpha_{2}}\left(\frac{a \beta_{6} \beta_{7}}{\alpha_{4}}-d \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}\right), \\
a c=\frac{f}{\alpha_{1}}\left(c \beta_{7}+d \beta_{8}+e \alpha_{4}\right)-\frac{a}{\alpha_{1}}\left(\beta_{1} d+\beta_{2} e+\beta_{3} f\right) \\
a \frac{\beta_{6}}{\alpha_{4}}\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)+c e\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right)-f\left(c \beta_{4}+d \beta_{5}+e \beta_{6}\right)=d\left(\alpha_{2} c+\alpha_{3} e\right) .
\end{array}\right.
$$

Suppose that $a=0$. Hence one has $b=0$. From system (3.20) of equations we receive $f c=0=$ $f d=f e$. The case $f=0=a=b$ is discussed above. If $c=d=e=0=a=b$, then any vector $Y=f E_{6}, f \in \mathbb{R}$ is geodesic since it lies in $\zeta$.

In the case $a \neq 0$ the geodesic vectors of $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ are in the set

$$
\begin{align*}
\overline{C_{2}}= & \left\{a\left(E_{1}-\frac{\beta_{6}}{\alpha_{4}} E_{2}\right)+c E_{3}+d E_{4}+e E_{5}+f E_{6}: a \neq 0, a e=\frac{f}{\alpha_{3}}\left(\frac{a \beta_{6} \beta_{8}}{\alpha_{4}}+c \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}-a \beta_{5}\right),\right.  \tag{3.21}\\
& a c=\frac{f}{\alpha_{1}}\left(c \beta_{7}+d \beta_{8}+e \alpha_{4}\right)-\frac{a}{\alpha_{1}}\left(\beta_{1} d+\beta_{2} e+\beta_{3} f\right), \\
& a d=\frac{a}{\alpha_{2}}\left(\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) e-\beta_{4} f\right)+\frac{f}{\alpha_{2}}\left(\frac{a \beta_{6} \beta_{7}}{\alpha_{4}}-d \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}\right), \\
& \left.d\left(\alpha_{2} c+\alpha_{3} e\right)=a \frac{\beta_{6}}{\alpha_{4}}\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)+c e\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right)-f\left(c \beta_{4}+d \beta_{5}+e \beta_{6}\right)\right\} .
\end{align*}
$$

If $f=0$, then from (3.21) it follows that $e=d=c=0$. Hence any element $Y=a\left(E_{1}-\frac{\beta_{6}}{\alpha_{4}} E_{2}\right)$ lies in $\mathfrak{a}_{1}$. Therefore we may assume that $f \neq 0$. The intersection $C_{1} \cap C_{2}$ is empty since for the elements of $C_{1}$ one has $a=0$ and $f=0$ but for the elements in $C_{2}$ we have $a f \neq 0$. This completes the proof.

Theorem 3.8. Let $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ be a metric Lie algebra defined on $\mathbb{E}^{6}$ by non-vanishing commutators given by (1.5). The flat totally geodesic subalgebras of dimension $>1$ in $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ are the 2 -dimensional subalgebras:
(1) $\mathfrak{h}_{10}=\operatorname{span}\left(E_{3}, E_{5}\right)$ in the case $\alpha_{3} \alpha_{4} \beta_{1}+\alpha_{2} \alpha_{1} \beta_{8}=0$,
(2) $\mathfrak{h}_{7}=\operatorname{span}\left(E_{1}-\frac{\beta_{6}}{\alpha_{4}} E_{2}, \quad E_{6}\right)$ in the case $\beta_{3}=0, \quad \beta_{4}=\frac{\beta_{6} \beta_{7}}{\alpha_{4}}, \quad \beta_{5}=\frac{\beta_{6} \beta_{8}}{\alpha_{4}}$,
(3) $\mathfrak{h}_{8}=\operatorname{span}\left(E_{2}+k_{1} E_{4}+k_{2} E_{5}, \quad E_{3}+l_{1} E_{4}+l_{2} E_{5}\right)$ if and only if the equations

$$
\begin{gather*}
\beta_{7}+l_{1} \beta_{8}+l_{2} \alpha_{4}+k_{1} \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}=0, \quad \beta_{1} k_{1}+\beta_{2} k_{2}+k_{1} \alpha_{3} k_{2}=0, \\
\alpha_{2} l_{1}-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) l_{2}+l_{1} \alpha_{3} l_{2}=0,  \tag{3.22}\\
\alpha_{1}+\beta_{1} l_{1}+\beta_{2} l_{2}+\alpha_{2} k_{1}-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) k_{2}+\alpha_{3}\left(k_{1} l_{2}+l_{1} k_{2}\right)=0
\end{gather*}
$$

are satisfied,
(4) $\mathfrak{h}_{9}=\operatorname{span}\left(E_{2}+\frac{\beta_{8} \alpha_{1}}{\alpha_{3} \alpha_{4}} E_{3}-\frac{1}{\alpha_{3}}\left(\beta_{1}+\frac{\beta_{8} \alpha_{1}}{\alpha_{3} \alpha_{4}}\right) E_{5}, \quad E_{4}\right)$ if and only if for $\alpha_{i}, \beta_{j}, i=1,3,4$, $j=1,9$ the equation

$$
\frac{\left(\alpha_{1}\right)^{2} \beta_{8}}{\alpha_{3} \alpha_{4}}+\left(\beta_{1}+\frac{\beta_{8} \alpha_{1}}{\alpha_{3} \alpha_{4}}\right)\left(-\frac{\beta_{2}}{\alpha_{3}}+\frac{\beta_{8} \alpha_{1}}{\left(\alpha_{3}\right)^{2} \alpha_{4}}\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right)\right)=0
$$

## holds.

Proof. According to Proposition 2.3 any totally geodesic subalgebra $\mathfrak{h}$ of $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ has dimension less or equal to 3 . Firstly we determine the 2 - and the 3 -dimensional abelian subalgebras of the Lie algebra $\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right)$.

The 3- and the 2-dimensional abelian subalgebras of $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ are:

$$
\begin{aligned}
& \mathfrak{h}_{1}=\operatorname{span}\left(E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}, \quad E_{5}, \quad E_{6}\right) \text { with } \beta_{6}+k_{1} \alpha_{4}=0, \\
& \mathfrak{h}_{2}=\operatorname{span}\left(E_{3}+k_{1} E_{4}, \quad E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{3}=\operatorname{span}\left(E_{4}, \quad E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{4}=\operatorname{span}\left(E_{2}+k_{1} E_{4}+k_{2} E_{5}, \quad E_{3}+l_{1} E_{4}+l_{2} E_{5}, \quad E_{6}\right) \text { with } \beta_{7}+l_{1} \beta_{8}+l_{2} \alpha_{4}+k_{1} \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}=0, \\
& \mathfrak{h}_{5}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{5}, \quad E_{4}+l_{1} E_{5}, \quad E_{6}\right) \text { with } \beta_{8}+l_{1} \alpha_{4}-k_{1} \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}=0, \\
& \mathfrak{h}_{6}=\operatorname{span}\left(E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{6}, \quad E_{5}+s_{1} E_{6}\right) \text { with } k_{1}=-\frac{\beta_{6}}{\alpha_{4}}, \\
& \mathfrak{h}_{7}=\operatorname{span}\left(E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{8}=\operatorname{span}\left(E_{2}+k_{1} E_{4}+k_{2} E_{5}+k_{3} E_{6}, \quad E_{3}+l_{1} E_{4}+l_{2} E_{5}+l_{3} E_{6}\right) \\
& \operatorname{with} \beta_{7}+l_{1} \beta_{8}+l_{2} \alpha_{4}+k_{1} \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}=0, \\
& \mathfrak{h}_{9}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{5}+k_{3} E_{6}, \quad E_{4}+l_{1} E_{5}+l_{2} E_{6}\right) \text { with } \beta_{8}+l_{1} \alpha_{4}-k_{1} \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}=0, \\
& \mathfrak{h}_{10}=\operatorname{span}\left(E_{3}+k_{1} E_{4}+k_{2} E_{6}, \quad E_{5}+s_{1} E_{6}\right), \\
& \mathfrak{h}_{11}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{12}=\operatorname{span}\left(E_{3}+l_{1} E_{4}+l_{2} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{13}=\operatorname{span}\left(E_{4}+l_{2} E_{6}, \quad E_{5}+s_{1} E_{6}\right), \\
& \mathfrak{h}_{14}=\operatorname{span}\left(E_{4}+l_{1} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{15}=\operatorname{span}\left(E_{5}, \quad E_{6}\right),
\end{aligned}
$$

where $k_{1}, k_{2}, k_{3}, l_{1}, l_{2}, l_{3}, s_{1} \in \mathbb{R}$.
The vector $E_{5}+E_{6} \in \mathfrak{h}_{1} \cap \mathfrak{h}_{2} \cap \mathfrak{h}_{3} \cap \mathfrak{h}_{15}$ is not geodesic, because putting $a=b=c=d=0$, $e=f=1$ into the fourth equation of the system (3.19) we obtain the contradiction $\alpha_{4}=0$. Therefore the subalgebras $\mathfrak{h}_{1}, \mathfrak{h}_{2}, \mathfrak{h}_{3}$ and $\mathfrak{h}_{15}$ are not flat totally geodesic. Hence they are excluded. The vector $E_{3}+l_{1} E_{4}+l_{2} E_{5}+E_{6} \in \mathfrak{h}_{4} \cap \mathfrak{h}_{12}$ is not geodesic, since putting $a=b=0, c=f=1$, $d=l_{1}, e=l_{2}$ into the second equation of the system (3.19) we get the contradiction $\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}=0$. Hence the subalgebras $\mathfrak{h}_{4}$ and $\mathfrak{h}_{12}$ are not flat totally geodesic. The vector $E_{4}+l_{1} E_{5}+E_{6} \in \mathfrak{h}_{5} \cap \mathfrak{h}_{14}$ is not geodesic, because substituting $a=b=c=0, d=1=f, e=l_{1}$ into the third equation of the system (3.19) we receive the contradiction $\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}=0$. Hence the subalgebras $\mathfrak{h}_{5}$ and $\mathfrak{h}_{14}$ are not flat totally geodesic. The vector $E_{5}+s_{1} E_{6} \in \mathfrak{h}_{6} \cap \mathfrak{h}_{10} \cap \mathfrak{h}_{13}$ is geodesic if for $a=b=c=d=0$, $e=1, f=s_{1}$ the system (3.19) of equations holds. From the fourth and fifth equations of (3.19) we have $\alpha_{4} s_{1}=0, \beta_{6} s_{1}=0$. Since $\alpha_{4} \neq 0$ we get $s_{1}=0$. The vector $E_{4}+l_{2} E_{6} \in \mathfrak{h}_{13}$ is geodesic if for $a=b=c=e=0, d=1, f=l_{2}$ the system (3.19) of equations is satisfied. From the third, fourth and fifth equations of (3.19) we have $\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}} l_{2}=0, \beta_{8} l_{2}=0, \beta_{5} l_{2}=0$. Since $\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}} \neq 0$ one has $l_{2}=0$. But the vector $E_{4}+E_{5} \in \mathfrak{h}_{13}$ is not geodesic because the substitution $a=b=c=f=0, d=e=1$ into the fifth equation of the system (3.19) leads to
the contradiction $\alpha_{3}=0$. Therefore the subalgebra $\mathfrak{h}_{13}$ is not flat totally geodesic. The vector $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}+E_{6} \in \mathfrak{h}_{11}$ is not geodesic, since putting $a=0, b=f=1, c=k_{1}$, $d=k_{2}, e=k_{3}$ into the first equation of the system (3.19) we obtain the contradiction $\alpha_{4}=0$. Hence the subalgebra $\mathfrak{h}_{11}$ is not flat totally geodesic. The vector $E_{3}+k_{1} E_{4}+k_{2} E_{6} \in \mathfrak{h}_{10}$ is geodesic if for $a=b=e=0, c=1, d=k_{1}, f=k_{2}$ the system (3.19) of equations holds. The second, fourth and fifth equations yield

$$
\begin{equation*}
k_{2} \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}=0, \quad k_{2}\left(\beta_{7}+k_{1} \beta_{8}\right)=0, \quad \alpha_{2} k_{1}+\beta_{4} k_{2}+k_{1} \beta_{5} k_{2}=0 \tag{3.23}
\end{equation*}
$$

As $\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}} \neq 0, \alpha_{2} \neq 0$ we receive that $k_{2}=k_{1}=0$. The vector $E_{3}+E_{5} \in \mathfrak{h}_{10}$ is geodesic if for $a=b=d=f=0, c=e=1$, the system (3.19) of equations is satisfied. The fifth equation gives $\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}=0$. Hence the subalgebra $\mathfrak{h}_{10}=\operatorname{span}\left(E_{3}, E_{5}\right)$ is flat totally geodesic if and only if $\alpha_{3} \alpha_{4} \beta_{1}+\alpha_{2} \alpha_{1} \beta_{8}=0$. This proves the case (1).

The non-zero vector $E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{6} \in \mathfrak{h}_{6}$ is geodesic if and only if for $a=1, e=0, b=k_{1}=-\frac{\beta_{6}}{\alpha_{4}}, c=k_{2}, d=k_{3}, f=k_{4}$ the equations (3.19) holds. The second equation of (3.19) gives

$$
\begin{equation*}
k_{4}\left(\beta_{5}+\beta_{8} k_{1}-\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}} k_{2}\right)=0 \tag{3.24}
\end{equation*}
$$

Furthermore, the element $E_{1}+E_{5}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{6} \in \mathfrak{h}_{6}$ is geodesic if and only if for $a=1, e=1, b=k_{1}=-\frac{\beta_{6}}{\alpha_{4}}, c=k_{2}, d=k_{3}, f=k_{4}$ the system (3.19) of equations is valid. From the second equation of (3.19) one has

$$
\begin{equation*}
\alpha_{3}+k_{4}\left(\beta_{5}+\beta_{8} k_{1}-\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}} k_{2}\right)=0 \tag{3.25}
\end{equation*}
$$

Comparing (3.25) with (3.24) we obtain the contradiction $\alpha_{3}=0$, which excludes the subalgebra $\mathfrak{h}_{6}$.

The non-zero vector $E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{5} \in \mathfrak{h}_{7}$ is geodesic if for $a=1, f=0$, $b=k_{1}, c=k_{2}, d=k_{3}, e=k_{4}$ the system (3.19) of equations holds. From the second equation of (3.19) we get $\alpha_{3} k_{4}=0$. As $\alpha_{3} \neq 0$ we have $e=k_{4}=0$. Using this from the third equation of (3.19) we obtain $\alpha_{2} k_{3}=0$. Since $\alpha_{2} \neq 0$ we receive that $d=k_{3}=0$. Taking into account that $e=d=0$ from the fourth equations of (3.19) we have $\alpha_{1} k_{2}=0$. As $\alpha_{1} \neq 0$ we obtain $k_{2}=0$. Using this the vector $E_{1}+k_{1} E_{2}+E_{6} \in \mathfrak{h}_{7}$ is geodesic if for $a=1, b=k_{1}, c=d=e=0, f=1$ the system (3.19) is valid. From the first equation of (3.19) we receive that $k_{1}=-\frac{\beta_{6}}{\alpha_{4}}$. Using this it follows from the second equation of (3.19) that $\beta_{5}=\frac{\beta_{6} \beta_{8}}{\alpha_{4}}$, whereas from the third equation of (3.19) that $\beta_{4}=\frac{\beta_{6} \beta_{7}}{\alpha_{4}}$. From the fourth equation of (3.19) we obtain that $\beta_{3}=0$. This proves case (2) of the Theorem.

Now, we consider the subalgebra $\mathfrak{h}_{8}$. The element $E_{2}+k_{1} E_{4}+k_{2} E_{5}+k_{3} E_{6} \in \mathfrak{h}_{8}$ is geodesic if and only if for $a=c=0, b=1, d=k_{1}, e=k_{2}, f=k_{3}$ the system (3.19) of equations holds. The first equation of (3.19) yields $\alpha_{4} k_{3}=0$. As $\alpha_{4} \neq 0$ one gets $f=k_{3}=0$. Applying this the fifth equation of (3.19) gives

$$
\begin{equation*}
\beta_{1} k_{1}+\beta_{2} k_{2}+k_{1} \alpha_{3} k_{2}=0 \tag{3.26}
\end{equation*}
$$

The non-zero vector $E_{3}+l_{1} E_{4}+l_{2} E_{5}+l_{3} E_{6} \in \mathfrak{h}_{8}$ is geodesic if for $a=b=0, c=1, d=l_{1}, e=$ $l_{2}, f=l_{3}$ the system (3.19) of equations is satisfied. It follows from the second equation of (3.19) that $\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}} l_{3}=0$. Since $\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}} \neq 0$ we receive $f=l_{3}=0$. Using this the fifth equation of (3.19)
gives

$$
\begin{equation*}
\alpha_{2} l_{1}-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) l_{2}+l_{1} \alpha_{3} l_{2}=0 \tag{3.27}
\end{equation*}
$$

Let us consider the non-zero vector $E_{2}+E_{3}+\left(k_{1}+l_{1}\right) E_{4}+\left(k_{2}+l_{2}\right) E_{5} \in \mathfrak{h}_{8}$. It is geodesic if and only if and only if for $a=f=0, b=c=1, d=k_{1}+l_{1}, e=k_{2}+l_{2}$ the system (3.19) of equations is valid. From the fifth equation of (3.19) one has

$$
\begin{equation*}
\alpha_{1}+\beta_{1}\left(k_{1}+l_{1}\right)+\beta_{2}\left(k_{2}+l_{2}\right)+\alpha_{2}\left(k_{1}+l_{1}\right)-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right)\left(k_{2}+l_{2}\right)+\left(k_{1}+l_{1}\right) \alpha_{3}\left(k_{2}+l_{2}\right)=0 \tag{3.28}
\end{equation*}
$$

Taking into account (3.26) and (3.27) equation (3.28) reduces to

$$
\begin{equation*}
\alpha_{1}+\beta_{1} l_{1}+\beta_{2} l_{2}+\alpha_{2} k_{1}-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) k_{2}+\alpha_{3}\left(k_{1} l_{2}+l_{1} k_{2}\right)=0 \tag{3.29}
\end{equation*}
$$

Therefore the subalgebra $\mathfrak{h}_{8}$ is flat totally geodesic if and only if it satisfies the conditions of the case (3.22) in the Theorem.

Finally we treat the subalgebra $\mathfrak{h}_{9}$. The non-zero vector $E_{4}+l_{1} E_{5}+l_{2} E_{6} \in \mathfrak{h}_{9}$ is geodesic precisely if for $a=b=c=0, d=1, e=l_{1}, f=l_{2}$ the system (3.19) of equations is satisfied. From the third equation we obtain $\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}} l_{2}=0$. As $\frac{\alpha_{3} \alpha_{4}}{\alpha_{1}} \neq 0$ we have $f=l_{2}=0$. Using this the fifth equation of (3.19) gives $\alpha_{3} l_{1}=0$. Since $\alpha_{3} \neq 0$ one gets $l_{1}=0$. Using this from the condition $\beta_{8}+l_{1} \alpha_{4}-k_{1} \frac{\alpha_{3} \alpha_{4}}{\alpha_{1}}=0$ to be abelian the subalgebra $\mathfrak{h}_{9}$ we receive that $k_{1}=\frac{\beta_{8} \alpha_{1}}{\alpha_{3} \alpha_{4}}$. The element $E_{2}+k_{1} E_{3}+k_{2} E_{5}+k_{3} E_{6} \in \mathfrak{h}_{9}$ is geodesic if and only if for $a=d=0, b=1, c=k_{1}$, $e=k_{2}, f=k_{3}$ the system (3.19) of equations holds. From the first equation of (3.19) we have $k_{3} \alpha_{4}=0$. As $\alpha_{4} \neq 0$ it follows that $f=k_{3}=0$. Using this the fifth equation of (3.19) yields

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{2} k_{2}-k_{1} k_{2}\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right)=0 . \tag{3.30}
\end{equation*}
$$

The element $E_{2}+k_{1} E_{3}+k_{2} E_{5}+E_{4} \in \mathfrak{h}_{9}$ is geodesic precisely if for $a=f=0, b=d=1, c=k_{1}$, $e=k_{2}$ the system (3.19) of equations is valid. From the fifth equation of (3.19) we obtain

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{1}+\beta_{2} k_{2}+k_{1}\left(\alpha_{2}-\left(\frac{\alpha_{3} \beta_{1}}{\alpha_{1}}+\frac{\alpha_{2} \beta_{8}}{\alpha_{4}}\right) k_{2}\right)+\alpha_{3} k_{2}=0 . \tag{3.31}
\end{equation*}
$$

Taking into account equation (3.30) equation (3.31) reduces to

$$
\begin{equation*}
\beta_{1}+k_{1} \alpha_{2}+\alpha_{3} k_{2}=0 \tag{3.32}
\end{equation*}
$$

Putting the expression for $k_{1}$ into (3.32) we obtain that $k_{2}=-\frac{1}{\alpha_{3}}\left(\beta_{1}+\frac{\beta_{8} \alpha_{1}}{\alpha_{3} \alpha_{4}}\right)$. Substituting the expressions of $k_{1}$ and $k_{2}$ into (3.30) for the parameters $\alpha_{i}, \beta_{j}, i=1,3,4, j=1,8$ of the filiform metric Lie algebra $\left(\mathfrak{n}_{6,16}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ we obtain equation (3.31). This proves case (4) of the Theorem. Thus Theorem 3.8 is shown.

## 4. Geodesic vectors and flat totally geodesic subalgebras of Lie algebras $\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right)$ AND $\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right)$

In this section we deal with the metric Lie algebras $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ and $\left(\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$. The next result describes the sets of geodesic vectors of the metric Lie algebras $\left(\mathfrak{n}_{6, j}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right), j \in\{17,18\}$.

Theorem 4.1. Let $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ be the metric Lie algebra defined on $\mathbb{E}^{6}$ by non-vanishing commutators given by (1.6). The geodesic vectors of $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ not belonging to $\mathfrak{a}_{1} \cup \mathfrak{a}_{2} \cup$ $\mathfrak{a}_{3} \cup \mathfrak{a}_{4} \cup \zeta$ are the non-zero elements of the set $C_{1} \cup C_{2}$, where
$C_{1}:=\left\{d E_{4}+e E_{5}+f E_{6}: d\left(\alpha_{3} e+\beta_{6} f\right)+e \alpha_{4} f=0, d, e, f \in \mathbb{R}\right\}$, such that at least two of the numbers $d, e, f$ are non-zero with exception of the cases:

$$
\begin{aligned}
& \text { 1. } f=0, \quad \text { 2. } d=0, \quad \text { 3. } e=0 \text { with } \beta_{6} \neq 0, \\
& C_{2}:=\left\{b E_{2}+c E_{3}+d E_{4}+e E_{5}: b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e\right)+c\left(\alpha_{2} d+\beta_{4} e\right)+d \alpha_{3} e=0, b, c, d, e \in \mathbb{R}\right\},
\end{aligned}
$$ such that at least two of the numbers $b, c, d, e$ are non-zero with exception of the cases:

1. $b=c=0$, 2. $b=e=0$,
2. $d=e=0$,
3. $b=d=0$ with $\beta_{4} \neq 0$,
4. $c=d=0$ with $\beta_{2} \neq 0$,
5. $c=e=0$, with $\beta_{1} \neq 0$.

Let $\left(\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ be the metric Lie algebra defined on $\mathbb{E}^{6}$ by the non-vanishing commutators given by (1.6) with $\alpha_{5}=0$. The geodesic vectors of $\left(\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ not belonging to $\mathfrak{a}_{1} \cup \mathfrak{a}_{2} \cup$ $\mathfrak{a}_{3} \cup \mathfrak{a}_{4} \cup \zeta$ are the non-zero elements of the set
$C_{3}:=\left\{b E_{2}+c E_{3}+d E_{4}+e E_{5}+f E_{6}: b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)+c\left(\alpha_{2} d+\beta_{4} e+\beta_{5} f\right)+\right.$ $\left.d\left(\alpha_{3} e+\beta_{6} f\right)+e \alpha_{4} f=0, b, c, d, e, f \in \mathbb{R}\right\}$, such that at least two of the numbers $b, c, d, e, f$ are non-zero with exception of the cases:

1. $b=c=d=0$,
2. $b=c=f=0$,
3. $d=e=f=0$,
4. $b=c=e=0$ with $\beta_{6} \neq 0$,
5. $c=d=f=0$ with $\beta_{2} \neq 0$,
6. $c=d=e=0$, with $\beta_{3} \neq 0$.

Proof. Using the commutators (1.6) and the claim (1.2) we obtain that the non-zero element $Y=a E_{1}+b E_{2}+c E_{3}+d E_{4}+e E_{5}+f E_{6} \in \mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right)$ is geodesic if and only if for the real numbers $a, b, c, d, e, f$ with respect to a basis $\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}$ the system of equations

$$
\left\{\begin{array}{l}
a f=0, a e=0  \tag{4.1}\\
a \alpha_{2} d+b \alpha_{5} f=0 \\
a\left(\alpha_{1} c+\beta_{1} d\right)-c \alpha_{5} f=0 \\
b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)+c\left(\alpha_{2} d+\beta_{4} e+\beta_{5} f\right)+d\left(\alpha_{3} e+\beta_{6} f\right)+e \alpha_{4} f=0
\end{array}\right.
$$

is satisfied. If $a=0$, then the third and the fourth equations of (4.1) give $b f=0=c f$. In the case $b=c=0=a$, the vector $Y=d E_{4}+e E_{5}+f E_{6}$ is geodesic of $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ if and only if it lies in the set $\overline{C_{1}}:=\left\{d E_{4}+e E_{5}+f E_{6}: d\left(\alpha_{3} e+\beta_{6} f\right)+e \alpha_{4} f=0\right\}, d, e, f \in \mathbb{R}$. For $f=0$ the element $Y=d E_{4}+e E_{5} \in \overline{C_{1}}, d, e \in \mathbb{R}$, satisfies the condition $\alpha_{3} d e=0$. Since $\alpha_{3} \neq 0$ we obtain that either $d=0$ and the element $Y=e E_{5}$ is in $a_{4}$, or $e=0$ and the element $Y=d E_{4}$ is in $\mathfrak{a}_{3}$. If $d=0$, then for the element $Y=e E_{5}+f E_{6} \in \overline{C_{1}}, e, f \in \mathbb{R}$, the condition $\alpha_{4} e f=0$ holds. Since $\alpha_{4} \neq 0$ we receive that either $e=0$ and the element $Y=f E_{6}$ is in $\zeta$, or $f=0$ and the element $Y=e E_{5}$ is in $\mathfrak{a}_{4}$. If $e=0$ and $\beta_{6} \neq 0$, then for the element $Y=d E_{4}+f E_{6} \in \overline{C_{1}}$, $d, f \in \mathbb{R}$, the condition $d f=0$ is satisfied. Hence we get either $d=0$ and the element $Y=f E_{6}$ is in $\zeta$, or $f=0$ and the element $Y=d E_{4}$ is in $\mathfrak{a}_{3}$. Therefore the conditions for the set $C_{1}$ in the theorem are proved.

In the case $f=0=a$ the non-zero vector $Y=b E_{2}+c E_{3}+d E_{4}+e E_{5}$ is geodesic of $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ if and only if it lies in the set $\overline{C_{2}}:=\left\{b E_{2}+c E_{3}+d E_{4}+e E_{5}: b\left(\alpha_{1} c+\beta_{1} d+\right.\right.$ $\left.\left.\beta_{2} e\right)+c\left(\alpha_{2} d+\beta_{4} e\right)+d \alpha_{3} e=0\right\}, b, c, d, e \in \mathbb{R}$. If $b=c=0$, then the element $Y=d E_{4}+e E_{5} \in \overline{C_{2}}$, $d, e \in \mathbb{R}$, satisfies the condition $\alpha_{3} d e=0$. Since $\alpha_{3} \neq 0$ we obtain that either $d=0$ and the
element $Y=e E_{5}$ is in $\mathfrak{a}_{4}$, or $e=0$ and the element $Y=d E_{4}$ is in $\mathfrak{a}_{3}$. If $b=e=0$, then for the element $Y=c E_{3}+d E_{4} \in \overline{C_{2}}, c, d \in \mathbb{R}$, the condition $\alpha_{2} c d=0$ holds. Since $\alpha_{2} \neq 0$ we receive that either $c=0$ and the element $Y=d E_{4}$ is in $\mathfrak{a}_{3}$, or $d=0$ and the element $Y=c E_{3}$ is in $\mathfrak{a}_{2}$. If $d=e=0$, then for the element $Y=b E_{2}+c E_{3} \in \overline{C_{2}}, b, c \in \mathbb{R}$, the condition $\alpha_{1} b c=0$ is satisfied. As $\alpha_{1} \neq 0$ we get either $b=0$ and the element $Y=c E_{3}$ is in $\mathfrak{a}_{2}$, or $c=0$ and the element $Y=b E_{2}$ is in $\mathfrak{a}_{1}$. If $b=d=0$ and $\beta_{4} \neq 0$, then for the element $Y=c E_{3}+e E_{5} \in \overline{C_{2}}$ the condition $c e=0$ holds. Hence we have either $c=0$ and the element $Y=e E_{5}$ is in $\mathfrak{a}_{4}$, or $e=0$ and the element $Y=c E_{3}$ is in $\mathfrak{a}_{2}$. If $c=d=0$ and $\beta_{2} \neq 0$, then for the element $Y=b E_{2}+e E_{5} \in \overline{C_{2}}, b, e \in \mathbb{R}$ the condition $b e=0$ holds. Therefore we get either $b=0$ and the element $Y=e E_{5}$ is in $\mathfrak{a}_{4}$, or $e=0$ and the element $Y=b E_{2}$ is in $\mathfrak{a}_{1}$. Finally, if $c=e=0$ and $\beta_{1} \neq 0$, then for the element $Y=b E_{2}+d E_{4} \in \overline{C_{2}}, b, d \in \mathbb{R}$ the condition $b d=0$ holds. It follows that either $b=0$ and the element $Y=d E_{4}$ is in $\mathfrak{a}_{3}$, or $d=0$ and the element $Y=b E_{2}$ is in $\mathfrak{a}_{1}$. This proves the conditions for the set $C_{2}$ in the theorem.

If $f=e=0$, then from the third and fourth equations of (4.1) we obtain that $a d=0=a c$. The case $a=0=f=e$ is discussed above. In the case $d=c=0=f=e$ any vector $Y=a E_{1}+b E_{2}, a, b \in \mathbb{R}$ is geodesic because it lies in $\mathfrak{a}_{1}$. The intersection $C_{1} \cap C_{2}$ is empty, because for any element of $C_{1}$ one has $b=c=0$ and any element of $C_{2}$ one gets $f=0$. Hence the claim above the set of the geodesic vectors of $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ is shown.

In the case of the metric Lie algebra $\left(\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ the system (4.1) of equations is satisfied with $\alpha_{5}=0$. Therefore we obtain that $a f=0=a e=a d=a c$. The case $f=e=d=c=0$ is discussed above. In the case $a=0$ the vector $Y=b E_{2}+c E_{3}+d E_{4}+e E_{5}+f E_{6}$ is geodesic of $\left(\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ precisely if it lies in the set $\overline{C_{3}}:=\left\{b E_{2}+c E_{3}+d E_{4}+e E_{5}+f E_{6}\right.$ : $\left.b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)+c\left(\alpha_{2} d+\beta_{4} e+\beta_{5} f\right)+d\left(\alpha_{3} e+\beta_{6} f\right)+e \alpha_{4} f=0, b, c, d, e, f \in \mathbb{R}\right\}$. If $b=c=d=0$, then the element $Y=e E_{5}+f E_{6} \in \overline{C_{3}}, e, f \in \mathbb{R}$, satisfies the condition $\alpha_{4} e f=0$. Since $\alpha_{4} \neq 0$ we obtain that either $e=0$ and the element $Y=f E_{6}$ is in $\zeta$, or $f=0$ and the element $Y=e E_{5}$ is in $\mathfrak{a}_{4}$. If $b=c=f=0$, then for the element $Y=d E_{4}+e E_{5} \in \overline{C_{3}}$, $d, e \in \mathbb{R}$, the condition $\alpha_{3} d e=0$ holds. Since $\alpha_{3} \neq 0$ we receive that either $d=0$ and the element $Y=e E_{5}$ is in $\mathfrak{a}_{4}$, or $e=0$ and the element $Y=d E_{4}$ is in $\mathfrak{a}_{3}$. If $d=e=f=0$, then for the element $Y=b E_{2}+c E_{3} \in \overline{C_{3}}, b, c \in \mathbb{R}$, the condition $\alpha_{1} b c=0$ is satisfied. As $\alpha_{1} \neq 0$ we get either $b=0$ and the element $Y=c E_{3}$ is in $\mathfrak{a}_{2}$, or $c=0$ and the element $Y=b E_{2}$ is in $\mathfrak{a}_{1}$. In the case $b=c=e=0$ and $\beta_{6} \neq 0$, then for the element $Y=d E_{4}+f E_{6} \in \overline{C_{3}}, d, f \in \mathbb{R}$, the condition $d f=0$ holds. Hence we have either $d=0$ and the element $Y=f E_{6}$ is in $\zeta$, or $f=0$ and the element $Y=d E_{4}$ is in $\mathfrak{a}_{3}$. If $c=d=f=0$ and $\beta_{2} \neq 0$, then for the element $Y=b E_{2}+e E_{5} \in \overline{C_{3}}, b, e \in \mathbb{R}$, the condition $b e=0$ holds. Therefore we get either $b=0$ and the element $Y=e E_{5}$ is in $\mathfrak{a}_{4}$, or $e=0$ and the element $Y=b E_{2}$ is in $\mathfrak{a}_{1}$. Finally, if $c=d=e=0$ and $\beta_{3} \neq 0$, then for the element $Y=b E_{2}+f E_{6} \in \overline{C_{3}}, b, f \in \mathbb{R}$ the condition $b f=0$ holds. It follows that either $b=0$ and the element $Y=f E_{6}$ is in $\zeta$, or $f=0$ and the element $Y=b E_{2}$ is in $\mathfrak{a}_{1}$. This shows the conditions for the set $C_{3}$ in the theorem. Hence Theorem 4.1 is proved.

The flat totally geodesic subalgebras of $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ are given in the following theorem.
Theorem 4.2. Let $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ be the metric Lie algebra defined on $\mathbb{E}^{6}$ by non-vanishing commutators given by (1.6). The flat totally geodesic subalgebras of dimension $>1$ in the metric Lie algebra $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ are the 2 -dimensional subalgebras:
(1) $\mathfrak{h}_{9}=\operatorname{span}\left(E_{4}-\frac{\alpha_{3}}{\alpha_{4}} E_{6}, \quad E_{5}\right)$ in the case $\beta_{6}=0$,
(2) $\mathfrak{h}_{2}=\operatorname{span}\left(E_{2}+k_{1} E_{3}-\frac{\beta_{2}+\beta_{4} k_{1}}{\alpha_{3}} E_{4}, \quad E_{5}\right)$, where $k_{1}$ is a solution of the equation

$$
\begin{equation*}
\alpha_{2} \beta_{4} k_{1}^{2}+\left(\beta_{1} \beta_{4}+\alpha_{2} \beta_{2}-\alpha_{1} \alpha_{3}\right) k_{1}+\beta_{1} \beta_{2}=0 \tag{4.2}
\end{equation*}
$$

(3) $\mathfrak{h}_{4}=\operatorname{span}\left(E_{3}, E_{5}\right)$ in the case $\beta_{4}=0$,
(4) $\mathfrak{h}_{1}=\operatorname{span}\left(E_{2}-\frac{\beta_{1}+\alpha_{3} k_{2}}{\alpha_{2}} E_{3}+k_{2} E_{5}, \quad E_{4}\right)$, where $k_{2}$ is a solution of the equation

$$
\begin{equation*}
\alpha_{3} \beta_{4} k_{2}^{2}+\left(\alpha_{1} \alpha_{3}+\beta_{1} \beta_{4}-\alpha_{2} \beta_{2}\right) k_{2}+\alpha_{1} \beta_{1}=0 \tag{4.3}
\end{equation*}
$$

(5) $\mathfrak{h}_{3}=\operatorname{span}\left(E_{3}-\frac{\alpha_{2}}{\alpha_{3}} E_{5}, \quad E_{4}\right)$ in the case $\beta_{4}=0$,
(6) $\mathfrak{h}_{5}=\operatorname{span}\left(E_{4}, E_{6}\right)$ in the case $\beta_{6}=0$.

Proof. As pointed out in [1, Theorem 1.19], the metric Lie algebra $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ does not have a totally geodesic subalgebra greater than 2 . Hence we compute only the 2-dimensional abelian subalgebras in the Lie algebra $\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right)$. These subalgebras are the following:

$$
\begin{aligned}
& \mathfrak{h}_{1}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{5}+k_{3} E_{6}, \quad E_{4}+l_{1} E_{5}+l_{2} E_{6}\right), \\
& \mathfrak{h}_{2}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{6}, \quad E_{5}+l_{1} E_{6}\right), \\
& \mathfrak{h}_{3}=\operatorname{span}\left(E_{3}+k_{1} E_{5}+k_{2} E_{6}, \quad E_{4}+l_{1} E_{5}+l_{2} E_{6}\right), \\
& \mathfrak{h}_{4}=\operatorname{span}\left(E_{3}+k_{1} E_{4}+k_{2} E_{6}, \quad E_{5}+l_{1} E_{6}\right), \\
& \mathfrak{h}_{5}=\operatorname{span}\left(E_{4}+k_{1} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{6}=\operatorname{span}\left(E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{7}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{8}=\operatorname{span}\left(E_{3}+k_{1} E_{4}+k_{2} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{9}=\operatorname{span}\left(E_{4}+k_{1} E_{6}, \quad E_{5}+l_{1} E_{6}\right), \\
& \mathfrak{h}_{10}=\operatorname{span}\left(E_{5}, E_{6}\right),
\end{aligned}
$$

where $k_{1}, k_{2}, k_{3}, l_{1}, l_{2} \in \mathbb{R}$.
The subalgebra $\mathfrak{h}_{10}$ is not flat totally geodesic because for the vector $E_{5}+E_{6}$ the fifth equation of (4.1) gives the contradiction $\alpha_{4}=0$. Hence the subalgebra $\mathfrak{h}_{10}$ is excluded. Since for the vector $Y=E_{1}+k_{1} E_{2}+k_{2} E_{3}+k_{3} E_{4}+k_{4} E_{5}+E_{6} \in \mathfrak{h}_{6}$ the first equation of the system (4.1) yields the contradiction $\alpha_{4}=0$ the subalgebra $\mathfrak{h}_{6}$ is not flat totally geodesic (see Lemma 2.1). Therefore the subalgebra $\mathfrak{h}_{6}$ is excluded. the vector $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}+E_{6} \in \mathfrak{h}_{7}$ is not geodesic since the third equation of (4.1) gives the contradiction $\alpha_{5}=0$. Therefore the subalgebra $\mathfrak{h}_{7}$ is not flat totally geodesic. The non-zero vector $Y=E_{3}+k_{1} E_{4}+k_{2} E_{5}+E_{6} \in \mathfrak{h}_{8}$ is not geodesic because the fourth equation of (4.1) leads to the contradiction $\alpha_{5}=0$. Hence the subalgebra $\mathfrak{h}_{8}$ is not flat totally geodesic.

The non-zero vector $E_{5}+l_{1} E_{6} \in \mathfrak{h}_{2} \cap \mathfrak{h}_{4} \cap \mathfrak{h}_{9}$ is geodesic if for $a=b=c=d=0, e=1, f=l_{1}$ the system (4.1) of equations is satisfied. From the fifth equation of (4.1) one has $\alpha_{4} l_{1}=0$. As $\alpha_{4} \neq 0$ we get $l_{1}=0$.

Now, we consider the subalgebra $\mathfrak{h}_{9}$. The non-zero vector $E_{4}+k_{1} E_{6} \in \mathfrak{h}_{9}$ is geodesic precisely if for $a=b=c=e=0, d=1, f=k_{1}$ the system (4.1) of equations holds. From the fifth equation we obtain

$$
\begin{equation*}
\beta_{6} k_{1}=0 \tag{4.4}
\end{equation*}
$$

Furthermore, the element $E_{4}+k_{1} E_{6}+E_{5} \in \mathfrak{h}_{9}$ is geodesic if for $a=b=c=0, d=e=1, f=k_{1}$ the system (4.1) of equations is valid. It follows from the fifth equation of (4.1) that

$$
\begin{equation*}
\alpha_{3}+\beta_{6} k_{1}+\alpha_{4} k_{1}=0 \tag{4.5}
\end{equation*}
$$

Taking into account (4.4) equation (4.5) reduces to

$$
\begin{equation*}
\alpha_{3}+\alpha_{4} k_{1}=0 \tag{4.6}
\end{equation*}
$$

The equation (4.6) gives $k_{1}=-\frac{\alpha_{3}}{\alpha_{4}}$. Putting this expression into (4.4) on has $\beta_{6}=0$. Therefore the case (1) is proved.

Next we deal with the subalgebra $\mathfrak{h}_{2}$. The element $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{6} \in \mathfrak{h}_{2}$ is geodesic precisely if for $a=e=0, b=1, c=k_{1}, d=k_{2}, f=k_{3}$ the system (4.1) of equations holds. From the third equation of (4.1) we obtain $\alpha_{5} k_{3}=0$. Since $\alpha_{5} \neq 0$ we receive $k_{3}=0=f$. Using this the fifth equation of (4.1) gives

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{1} k_{2}+k_{1} \alpha_{2} k_{2}=0 \tag{4.7}
\end{equation*}
$$

Moreover, the element $E_{2}+k_{1} E_{3}+k_{2} E_{4}+E_{5} \in \mathfrak{h}_{2}$ is geodesic if and only if for $a=f=0, b=$ $e=1, c=k_{1}, d=k_{2}$ the system (4.1) of equations is valid. From the fifth equation of (4.1) we receive

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{1} k_{2}+\beta_{2}+k_{1} \alpha_{2} k_{2}+k_{1} \beta_{4}+k_{2} \alpha_{3}=0 \tag{4.8}
\end{equation*}
$$

Taking into account (4.7) equation (4.8) reduces to

$$
\begin{equation*}
\beta_{2}+\beta_{4} k_{1}+\alpha_{3} k_{2}=0 \tag{4.9}
\end{equation*}
$$

From (4.9) one has $k_{2}=-\frac{\beta_{2}+\beta_{4} k_{1}}{\alpha_{3}}$. Putting this expression into (4.7) we receive the second order equation (4.2). Therefore the case (2) is proved.

Now we treat the subalgebra $\mathfrak{h}_{4}$. The element $E_{3}+k_{1} E_{4}+k_{2} E_{6} \in \mathfrak{h}_{4}$ is geodesic if and only if for $a=b=e=0, c=1, d=k_{1}, f=k_{2}$ the system (4.1) of equation is satisfied. From the fourth equation of (4.1) we receive $\alpha_{5} k_{2}=0$. As $\alpha_{5} \neq 0$ we get $k_{2}=f=0$. Using this the fifth equation of (4.1) gives $\alpha_{2} k_{1}=0$. Since $\alpha_{2} \neq 0$ we obtain $k_{1}=0$. The vector $E_{3}+E_{5} \in \mathfrak{h}_{4}$ is geodesic precisely if for $a=b=d=f=0, c=e=1$, the system (4.1) of equation holds. From the fifth equation of (4.1) we get $\beta_{4}=0$. This gives the case (3).

The non-zero vector $E_{4}+l_{1} E_{5}+l_{2} E_{6} \in \mathfrak{h}_{1} \cap \mathfrak{h}_{3}$ is geodesic if for $a=b=c=0, d=1, e=$ $l_{1}, f=l_{2}$ the system (4.1) of equation is satisfied. The fifth equation of (4.1) yields

$$
\begin{equation*}
\alpha_{3} l_{1}+\beta_{6} l_{2}+l_{1} \alpha_{4} l_{2}=0 \tag{4.10}
\end{equation*}
$$

Let us consider the subalgebra $\mathfrak{h}_{1}$. The element $E_{2}+k_{1} E_{3}+k_{2} E_{5}+k_{3} E_{6} \in \mathfrak{h}_{1}$ is geodesic if and only if for $a=d=0, b=1, c=k_{1}, e=k_{2}, f=k_{3}$ the system (4.1) of equation is valid. From the third equation of (4.1) one has $\alpha_{5} k_{3}=0$. As $\alpha_{5} \neq 0$ we receive $k_{3}=f=0$. Using this the fifth equation of (4.1) gives

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{2} k_{2}+k_{1} \beta_{4} k_{2}=0 \tag{4.11}
\end{equation*}
$$

Additionally, the non-zero vector $E_{2}+E_{4}+k_{1} E_{3}+\left(k_{2}+l_{1}\right) E_{5}+l_{2} E_{6} \in \mathfrak{h}_{1}$ is geodesic if for $a=0, b=d=1, c=k_{1}, e=k_{2}+l_{1}, f=l_{2}$ the system (4.1) of equation is valid. The third equation of (4.1) gives $\alpha_{5} l_{2}=0$. Since $\alpha_{5} \neq 0$ we get $l_{2}=f=0$. Using this from the equation (4.10) we get $\alpha_{3} l_{1}=0$. As $\alpha_{3} \neq 0$ we obtain $l_{1}=e=0$, and from the fifth equation of (4.1) we obtain

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{1}+\beta_{2} k_{2}+k_{1} \alpha_{2}+k_{1} \beta_{4} k_{2}+\alpha_{3} k_{2}=0 \tag{4.12}
\end{equation*}
$$

Applying (4.11) equation (4.12) reduces to

$$
\beta_{1}+\alpha_{2} k_{1}+\alpha_{3} k_{2}=0
$$

The above equation gives $k_{1}=-\frac{\beta_{1}+\alpha_{3} k_{2}}{\alpha_{2}}$. Putting this expression into (4.11) we receive the second order equation (4.2). Hence the case (4) is proved.

Next we deal with the subalgebra $\mathfrak{h}_{3}$. The non-zero vector $E_{3}+k_{1} E_{5}+k_{2} E_{6} \in \mathfrak{h}_{3}$ is geodesic if for $a=b=d=0, c=1, e=k_{1}, f=k_{2}$ the system (4.1) of equation is satisfied. From the fourth equation of (4.1) one obtains $\alpha_{5} k_{2}=0$. As $\alpha_{5} \neq 0$ we get $k_{2}=f=0$. Using this the fifth equation of (4.1) gives

$$
\begin{equation*}
\beta_{4} k_{1}=0 . \tag{4.13}
\end{equation*}
$$

In addition, the element $E_{3}+E_{4}+\left(k_{1}+l_{1}\right) E_{5}+l_{2} E_{6} \in \mathfrak{h}_{3}$ is geodesic if for $a=b=0, c=d=$ $1, e=k_{1}+l_{1}, f=l_{2}$ the system (4.1) of equation is valid. The third equation of (4.1) gives $\alpha_{5} l_{2}=0$. Since $\alpha_{5} \neq 0$ one has $l_{2}=f=0$. Using this from the equation (4.10) we get $\alpha_{3} l_{1}=0$. As $\alpha_{3} \neq 0$ we receive $l_{1}=0$, and from the fifth equation of (4.1) we obtain

$$
\begin{equation*}
\alpha_{2}+\beta_{4} k_{1}+\alpha_{3} k_{1}=0 . \tag{4.14}
\end{equation*}
$$

Applying (4.13) equation (4.14) reduces to

$$
\alpha_{2}+\alpha_{3} k_{1}=0 .
$$

From the above equation we obtain $k_{1}=-\frac{\alpha_{2}}{\alpha_{3}}$. Putting this expression into (4.13) we receive $\beta_{4}=0$. This proves the case (5).

Finally we treat the subalgebra $\mathfrak{h}_{5}$. The vector $E_{4}+k_{1} E_{5} \in \mathfrak{h}_{5}$ is geodesic if and only if for $a=b=c=f=0, d=1, e=k_{1}$ the system (4.1) of equations is valid. It follows from the fifth equation of (4.1) that $\alpha_{3} k_{1}=0$. As $\alpha_{3} \neq 0$ we gets $k_{1}=0$. The vector $E_{4}+E_{6} \in \mathfrak{h}_{5}$ is geodesic if and only if for $a=b=c=e=0, d=f=1$ the system (4.1) of equations is valid. The fifth equation gives $\beta_{6}=0$. Therefore the case (6) is proved. This proves Theorem 4.2.

Now we determine the flat totally geodesic subalgebras of dimension $>1$ in the standard filiform metric Lie algebra $\left(\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$.

Theorem 4.3. Let $\left(\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ be the metric Lie algebra defined on $\mathbb{E}^{6}$ by non-vanishing commutators given by (1.6) with $\alpha_{5}=0$. The flat totally geodesic subalgebra of dimension $>1$ in the metric Lie algebra $\left(\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ as follow:
(1) The 4-dimensional subalgebras are the following:
(a) $\mathfrak{h}_{1}=\operatorname{span}\left(E_{2}-\frac{\alpha_{1} \alpha_{3}}{\alpha_{2} \alpha_{4}} E_{6}, \quad E_{3}, \quad E_{4}-\frac{\alpha_{3}}{\alpha_{4}} E_{6}, \quad E_{5}\right)$ in the case $\beta_{1}=\beta_{3}=\beta_{4}=\beta_{6}=0$, $\beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}, \beta_{2}=\frac{\alpha_{1} \alpha_{3}}{\alpha_{2}}$,
(b) $\mathfrak{h}_{2}=\operatorname{span}\left(E_{2}, \quad E_{3}-\frac{\alpha_{2}}{\alpha_{3}} E_{5}, \quad E_{4}, \quad E_{6}\right)$ in the case $\beta_{1}=\beta_{3}=\beta_{4}=\beta_{6}=0$, $\beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}, \beta_{2}=\frac{\alpha_{1} \alpha_{3}}{\alpha_{2}}$,
(2) The 3-dimensional subalgebras are the following:
(a) $\mathfrak{h}_{6}=\operatorname{span}\left(E_{2}+k_{1} E_{5}+k_{2} E_{6}, \quad E_{3}+l_{1} E_{5}+l_{2} E_{6}, \quad E_{4}+s_{1} E_{5}+s_{2} E_{6}\right)$ if and only if the following equations

$$
\begin{gathered}
\beta_{2} k_{1}+\beta_{3} k_{2}+k_{1} \alpha_{4} k_{2}=0, \quad \beta_{4} l_{1}+\beta_{5} l_{2}+l_{1} \alpha_{4} l_{2}=0 \\
\alpha_{3} s_{1}+\beta_{6} s_{2}+s_{1} \alpha_{4} s_{2}=0 \\
\alpha_{1}+\beta_{2} l_{1}+\beta_{3} l_{2}+\beta_{4} k_{1}+\beta_{5} k_{2}+k_{1} l_{2} \alpha_{4}+l_{1} k_{2} \alpha_{4}=0 \\
\beta_{1}+\beta_{2} s_{1}+\beta_{3} s_{2}+\alpha_{3} k_{1}+\beta_{6} k_{2}+k_{1} s_{2} \alpha_{4}+s_{1} k_{2} \alpha_{4}=0 \\
\alpha_{2}+\beta_{4} s_{1}+\beta_{5} s_{2}+\alpha_{3} l_{1}+\beta_{6} l_{2}+l_{1} s_{2} \alpha_{4}+s_{1} l_{2} \alpha_{4}=0 \\
\beta_{2} k_{1}+\beta_{3} k_{2}+\beta_{4} l_{1}+\beta_{5} l_{2}+\alpha_{3} s_{1}+\beta_{6} s_{2}+k_{1} s_{2}+k_{1} k_{2} \alpha_{4}+l_{1} l_{2} \alpha_{4}+s_{1} s_{2} \alpha_{4}=0
\end{gathered}
$$

are satisfied,
(b) $\mathfrak{h}_{7}=\operatorname{span}\left(E_{2}+k_{1} E_{4}+k_{2} E_{6}, \quad E_{3}+l_{1} E_{4}+l_{2} E_{6}, \quad E_{5}\right)$ if and only if $\beta_{2}=0$ and the following equations

$$
\begin{gathered}
\beta_{1} k_{1}+\beta_{2} k_{2}+k_{1} \beta_{6} k_{2}=0, \quad \alpha_{2} l_{1}+\beta_{5} l_{2}+l_{1} \beta_{6} l_{2}=0 \\
\alpha_{1}+\beta_{2} l_{1}+\beta_{3} l_{2}+\alpha_{2} k_{1}+\beta_{5} k_{2}+k_{1} l_{2} \beta_{6}+l_{1} k_{2} \beta_{6}=0, \\
\beta_{2}+\alpha_{3} k_{1}+\alpha_{4} k_{2}=0, \quad \beta_{4}+\alpha_{3} l_{1}+\alpha_{4} l_{2}=0
\end{gathered}
$$

are satisfied
(c) $\mathfrak{h}_{8}=\operatorname{span}\left(E_{2}+k_{1} E_{4}+k_{2} E_{5}, \quad E_{3}+l_{1} E_{4}+l_{2} E_{5}, \quad E_{6}\right)$ if and only if the following equations

$$
\begin{gathered}
\beta_{1} k_{1}+\beta_{2} k_{2}+k_{1} \alpha_{3} k_{2}=0, \quad \alpha_{2} l_{1}+\beta_{4} l_{2}+l_{1} l_{2} \alpha_{3}=0 \\
\alpha_{1}+\beta_{1} l_{1}+\beta_{2} l_{2}+\alpha_{2} k_{1}+\beta_{4} k_{2}+k_{1} l_{2} \alpha_{3}+l_{1} k_{2} \alpha_{3}=0 \\
\beta_{3}+\beta_{6} k_{1}+\alpha_{4} k_{2}=0, \quad \beta_{5}+l_{1} \beta_{6}+l_{2} \alpha_{4}=0
\end{gathered}
$$

hold,
(d) $\mathfrak{h}_{9}=\operatorname{span}\left(E_{2}+k_{1} E_{3}-\frac{\beta_{2}+k_{1} \beta_{4}}{\alpha_{4}} E_{6}, \quad E_{4}-\frac{\alpha_{3}}{\alpha_{4}} E_{6}, \quad E_{5}\right)$ such that $k_{1}$ is a solution of the equation

$$
\beta_{4} \beta_{5} k_{1}^{2}+k_{1}\left(\beta_{2} \beta_{5}+\beta_{3} \beta_{4}-\alpha_{1} \alpha_{4}\right)+\beta_{2} \beta_{3}=0
$$

and $\beta_{1}=\frac{\alpha_{3}}{\alpha_{4}} \beta_{3}, \beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$,
(e) $\mathfrak{h}_{9}=\operatorname{span}\left(E_{2}+\frac{\alpha_{3} \beta_{3}-\alpha_{4} \beta_{1}}{\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}} E_{3}-\frac{\beta_{2}\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)+\beta_{4}\left(\beta_{3} \alpha_{3}-\beta_{1} \alpha_{4}\right)}{\alpha_{4}\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)} E_{6}, \quad E_{4}-\frac{\alpha_{3}}{\alpha_{4}} E_{6}, \quad E_{5}\right)$ such that $\beta_{5} \neq \frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$ and the equation

$$
\begin{gather*}
\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)\left[\left(\alpha_{1} \alpha_{4}-\beta_{3} \beta_{4}-\beta_{2} \beta_{5}\right)\left(\beta_{3} \alpha_{3}-\beta_{1} \alpha_{4}\right)-\beta_{2} \beta_{3}\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)\right.  \tag{4.16}\\
-\beta_{4} \beta_{5}\left(\beta_{3} \alpha_{3}-\beta_{1} \alpha_{4}\right)^{2}=0
\end{gather*}
$$

holds,
(f) $\mathfrak{h}_{10}=\operatorname{span}\left(E_{2}+k_{1} E_{3}-\frac{\beta_{3}+k_{1} \beta_{5}}{\alpha_{4}} E_{5}, \quad E_{4}, \quad E_{6}\right)$ such that $k_{1}$ is a solution of the equation (4.15) and $\beta_{1}=\frac{\alpha_{3}}{\alpha_{4}} \beta_{3}, \beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$,
(g) $\mathfrak{h}_{10}=\operatorname{span}\left(E_{2}+\frac{\alpha_{3} \beta_{3}-\alpha_{4} \beta_{1}}{\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}} E_{3}-\frac{\beta_{3}\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)+\beta_{5}\left(\beta_{3} \alpha_{3}-\beta_{1} \alpha_{4}\right)}{\alpha_{4}\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)} E_{6}, \quad E_{4}, \quad E_{5}\right)$ such that $\beta_{5} \neq \frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$ and the equation (4.16) holds.
(h) $\mathfrak{h}_{12}=\operatorname{span}\left(E_{3}, \quad E_{4}-\frac{\alpha_{3}}{\alpha_{4}} E_{6}, \quad E_{5}\right)$ in the case $\beta_{4}=\beta_{6}=0, \beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$,
(i) $\mathfrak{h}_{13}=\operatorname{span}\left(E_{3}-\frac{\alpha_{2}}{\alpha_{3}} E_{5}, \quad E_{4}, \quad E_{6}\right)$ in the case $\beta_{4}=\beta_{6}=0, \beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$,
(3) The 2-dimensional subalgebras are the following:
(a) $\mathfrak{h}_{24}=\operatorname{span}\left(E_{4}-\frac{\alpha_{3}}{\alpha_{4}} E_{6}, \quad E_{5}\right)$ in the case $\beta_{6}=0$,
(b) $\mathfrak{h}_{25}=\operatorname{span}\left(E_{4}, E_{6}\right)$ in the case $\beta_{6}=0$,
(c) $\mathfrak{h}_{18}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{5}+k_{3} E_{6}, \quad E_{4}+l_{1} E_{5}+l_{2} E_{6}\right)$ if and only if the following equations

$$
\begin{gathered}
\alpha_{3} l_{1}+\beta_{6} l_{2}+l_{1} \alpha_{4} l_{1}=0, \quad \alpha_{1} k_{1}+\beta_{2} k_{2}+\beta_{3} k_{3}+k_{1} \beta_{4} k_{2}+k_{1} \beta_{5} k_{3}+k_{2} \alpha_{4} k_{3}=0 \\
\beta_{1}+\beta_{2} l_{1}+\beta_{3} l_{2}+\alpha_{2} k_{1}+k_{1} \beta_{4} l_{1}+k_{1} \beta_{5} k_{3}+k_{1} \beta_{5} l_{2}+\alpha_{3} k_{2}+ \\
\beta_{6} k_{3}+\alpha_{4} k_{2} l_{2}+\alpha_{4} l_{1} k_{3}=0
\end{gathered}
$$

hold,
(d) $\mathfrak{h}_{21}=\operatorname{span}\left(E_{3}+k_{1} E_{5}+k_{2} E_{6}, \quad E_{4}+l_{1} E_{5}+l_{2} E_{6}\right)$ if and only if the following equations

$$
\begin{aligned}
& \beta_{4} k_{1}+\beta_{5} k_{2}+k_{1} \alpha_{4} k_{2}=0, \quad \alpha_{3} l_{1}+\beta_{6} l_{2}+l_{1} \alpha_{4} l_{2}=0 \\
& \alpha_{2}+\beta_{4} l_{1}+\beta_{5} l_{2}+\alpha_{3} k_{1}+\beta_{6} k_{2}+k_{1} l_{2} \alpha_{4}+l_{1} k_{2} \alpha_{4}=0
\end{aligned}
$$

are satisfied,
(e) $\mathfrak{h}_{19}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}-\frac{\beta_{2}+k_{1} \beta_{4}+k_{2} \alpha_{3}}{\alpha_{4}} E_{6}, \quad E_{5}\right)$ such that the equation

$$
\begin{equation*}
\left(\alpha_{3} k_{2}+\beta_{2}+\beta_{4} k_{1}\right)\left(k_{1} \beta_{5}+k_{2} \beta_{6}+\beta_{3}\right)-\alpha_{2} \alpha_{4} k_{1} k_{2}-\alpha_{1} \alpha_{4} k_{1}-\beta_{1} \alpha_{4} k_{2}=0 \tag{4.17}
\end{equation*}
$$

is satisfied,
(f) $\mathfrak{h}_{22}=\operatorname{span}\left(E_{3}+k_{1} E_{4}-\frac{\beta_{4}+\alpha_{3} k_{1}}{\alpha_{4}} E_{6}, \quad E_{5}\right)$, where $k_{1}$ is a solution of the equation

$$
\begin{equation*}
\alpha_{3} \beta_{6} k_{1}^{2}+k_{1}\left(\alpha_{3} \beta_{5}+\beta_{4} \beta_{6}-\alpha_{2} \alpha_{4}\right)+\beta_{4} \beta_{5}=0 \tag{4.18}
\end{equation*}
$$

$(g) \mathfrak{h}_{23}=\operatorname{span}\left(E_{3}+k_{1} E_{4}-\frac{\beta_{5}+\beta_{6} k_{1}}{\alpha_{4}} E_{5}, \quad E_{6}\right)$, where $k_{1}$ is a solution of the equation (4.18),
(h) $\mathfrak{h}_{20}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}-\frac{\beta_{3}+k_{1} \beta_{5}+k_{2} \beta_{6}}{\alpha_{4}} E_{5}, \quad E_{6}\right)$ such that the equation

$$
\begin{equation*}
\left(\alpha_{3} k_{2}+\beta_{4} k_{1}+\beta_{2}\right)\left(k_{1} \beta_{5}+k_{2} \beta_{6}+\beta_{3}\right)-\alpha_{2} \alpha_{4} k_{1} k_{2}-\alpha_{1} \alpha_{4} k_{1}-\beta_{1} \alpha_{4} k_{2}=0 \tag{4.19}
\end{equation*}
$$

holds,
(i) $\mathfrak{h}_{17}=\operatorname{span}\left(E_{2}+k_{1} E_{4}+k_{2} E_{5}+k_{3} E_{6}, \quad E_{3}+l_{1} E_{4}+l_{2} E_{5}+l_{3} E_{6}\right)$ if and only if the following equations

$$
\begin{gather*}
\beta_{1} k_{1}+\beta_{2} k_{2}+\beta_{3} k_{3}+k_{1} \alpha_{3} k_{2}+k_{1} \beta_{6} k_{3}+k_{2} \alpha_{4} k_{3}=0 \\
\alpha_{2} l_{1}+\beta_{4} l_{2}+\beta_{5} l_{3}+l_{1} \alpha_{3} l_{2}+l_{1} \beta_{6} l_{3}+l_{2} \alpha_{4} l_{3}=0 \\
\alpha_{1}+\beta_{1} l_{1}+\beta_{2} l_{2}+\beta_{3} l_{3}+\alpha_{2} k_{1}+\beta_{4} k_{2}+\beta_{5} k_{3}+k_{1} l_{2} \alpha_{3}+l_{1} k_{2} \alpha_{3}+  \tag{4.20}\\
k_{1} l_{3} \beta_{6}+l_{1} k_{3} \beta_{6}+k_{2} l_{3} \alpha_{4}+l_{2} l_{3} \alpha_{4}=0
\end{gather*}
$$

are satisfied.
Proof. According to Proposition 2.3 b ) the dimension of the flat totally geodesic subalgebras of the metric Lie algebra $\left(\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ is at most 4. Firstly we list the 4 -dimensional, the 3 -dimensional and the 2-dimensional abelian subalgebras of the Lie algebra $\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right)$ defined by the commutators (1.6) such that $\alpha_{5}=0$. The 4 -dimensional subalgebras have one of the
following forms:

$$
\begin{aligned}
& \mathfrak{h}_{1}=\operatorname{span}\left(E_{2}+k_{1} E_{6}, \quad E_{3}+k_{2} E_{6}, \quad E_{4}+k_{3} E_{6}, \quad E_{5}+s_{1} E_{6}\right), \\
& \mathfrak{h}_{2}=\operatorname{span}\left(E_{2}+k_{1} E_{5}, \quad E_{3}+k_{2} E_{5}, \quad E_{4}+k_{3} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{3}=\operatorname{span}\left(E_{2}+k_{1} E_{4}, \quad E_{3}+k_{2} E_{4}, \quad E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{4}=\operatorname{span}\left(E_{2}, E_{4}, E_{5}, E_{6}\right), \\
& \mathfrak{h}_{5}=\operatorname{span}\left(E_{3}, E_{4}, E_{5}, E_{6}\right),
\end{aligned}
$$

where $k_{1}, k_{2}, k_{3}, s_{1} \in \mathbb{R}$.
The 3-dimensional abelian subalgebras of the Lie algebra $\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right)$ are:

$$
\begin{aligned}
& \mathfrak{h}_{6}=\operatorname{span}\left(E_{2}+k_{1} E_{5}+k_{2} E_{6}, \quad E_{3}+l_{1} E_{5}+l_{2} E_{6}, \quad E_{4}+s_{1} E_{5}+s_{2} E_{6}\right), \\
& \mathfrak{h}_{7}=\operatorname{span}\left(E_{2}+k_{1} E_{4}+k_{2} E_{6}, \quad E_{3}+l_{1} E_{4}+l_{2} E_{6}, \quad E_{5}+s_{1} E_{6}\right), \\
& \mathfrak{h}_{8}=\operatorname{span}\left(E_{2}+k_{1} E_{4}+k_{2} E_{5}, \quad E_{3}+l_{1} E_{4}+l_{2} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{9}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{6}, \quad E_{4}+k_{3} E_{6}, \quad E_{5}+s_{1} E_{6}\right), \\
& \mathfrak{h}_{10}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{5}, \quad E_{4}+k_{3} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{11}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}, \quad E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{12}=\operatorname{span}\left(E_{3}+k_{2} E_{6}, \quad E_{4}+k_{3} E_{6}, \quad E_{5}+s_{1} E_{6}\right), \\
& \mathfrak{h}_{13}=\operatorname{span}\left(E_{3}+k_{2} E_{5}, \quad E_{4}+k_{3} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{14}=\operatorname{span}\left(E_{3}+k_{2} E_{4}, \quad E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{15}=\operatorname{span}\left(E_{4}, E_{5}, E_{6}\right),
\end{aligned}
$$

where $k_{1}, k_{2}, k_{3}, l_{1}, l_{2}, s_{1}, s_{2} \in \mathbb{R}$.
The 2-dimensional abelian subalgebras of the Lie algebra $\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right)$ have one of the following forms:

$$
\begin{aligned}
& \mathfrak{h}_{16}=\operatorname{span}\left(E_{1}+k_{2} E_{2}+k_{3} E_{3}+k_{4} E_{4}+k_{5} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{17}=\operatorname{span}\left(E_{2}+k_{1} E_{4}+k_{2} E_{5}+k_{3} E_{6}, \quad E_{3}+l_{1} E_{4}+l_{2} E_{5}+l_{3} E_{6}\right), \\
& \mathfrak{h}_{18}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{5}+k_{3} E_{6}, \quad E_{4}+l_{1} E_{5}+l_{2} E_{6}\right), \\
& \mathfrak{h}_{19}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{6}, \quad E_{5}+l_{1} E_{6}\right), \\
& \mathfrak{h}_{20}=\operatorname{span}\left(E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{21}=\operatorname{span}\left(E_{3}+k_{1} E_{5}+k_{2} E_{6}, \quad E_{4}+l_{1} E_{5}+l_{2} E_{6}\right), \\
& \mathfrak{h}_{22}=\operatorname{span}\left(E_{3}+k_{1} E_{4}+k_{2} E_{6}, \quad E_{5}+l_{1} E_{6}\right), \\
& \mathfrak{h}_{23}=\operatorname{span}\left(E_{3}+k_{1} E_{4}+k_{2} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{24}=\operatorname{span}\left(E_{4}+k_{1} E_{6}, \quad E_{5}+l_{1} E_{6}\right), \\
& \mathfrak{h}_{25}=\operatorname{span}\left(E_{4}+k_{1} E_{5}, \quad E_{6}\right), \\
& \mathfrak{h}_{26}=\operatorname{span}\left(E_{5}, E_{6}\right),
\end{aligned}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}, l_{1}, l_{2}, l_{3} \in \mathbb{R}$.
The vector $E_{1}+k_{2} E_{2}+k_{3} E_{3}+k_{4} E_{4}+k_{5} E_{5}+E_{6} \in \mathfrak{h}_{16}$ is not geodesic since for $a=f=1$, $b=k_{2}, c=k_{3}, d=k_{4}, e=k_{5}$, the first equation of (4.1) gives the contradiction $1=0$. Hence the subalgebra $\mathfrak{h}_{16}$ is not flat totally geodesic.

For all elements of the remaining subalgebras we have $a=0$. Since $\alpha_{5}=0$ for the metric Lie algebra $\left(\mathfrak{n}_{6,18}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$ the system (4.1) of equations reduces to the equation

$$
\begin{equation*}
b\left(\alpha_{1} c+\beta_{1} d+\beta_{2} e+\beta_{3} f\right)+c\left(\alpha_{2} d+\beta_{4} e+\beta_{5} f\right)+d\left(\alpha_{3} e+\beta_{6} f\right)+e \alpha_{4} f=0 \tag{4.21}
\end{equation*}
$$

The vector $E_{5}+E_{6} \in \mathfrak{h}_{3} \cap \mathfrak{h}_{4} \cap \mathfrak{h}_{5} \cap \mathfrak{h}_{11} \cap \mathfrak{h}_{14} \cap \mathfrak{h}_{15} \cap \mathfrak{h}_{26}$ is not geodesic because for $b=c=d=0$, $e=f=1$ the equation of (4.21) gives the contradiction $\alpha_{4}=0$. Hence the subalgebras $\mathfrak{h}_{3}, \mathfrak{h}_{4}$, $\mathfrak{h}_{5}, \mathfrak{h}_{11}, \mathfrak{h}_{14}, \mathfrak{h}_{15}, \mathfrak{h}_{26}$ are not flat totally geodesic.

The subalgebra $\mathfrak{h}_{1}$ is totally geodesic precisely if for all $Y, Z \in \mathfrak{h}_{1}$ and $X \in \mathfrak{h}_{1}^{\perp}=\operatorname{span}\left(E_{1}, E_{6}-\right.$ $\sum_{i=1}^{4} k_{i} E_{i+1}$ ) equation (1.1) is satisfied. The subalgebra $\mathfrak{h}_{2}$ is totally geodesic if and only if for all $Y, Z \in \mathfrak{h}_{2}$ and $X \in \mathfrak{h}_{2}^{\perp}=\operatorname{span}\left(E_{1}, E_{5}-\sum_{i=1}^{3} k_{i} E_{i+1}\right)$ equation (1.1) is satisfied. Since the commutation relations of the elements $\left(E_{6}-\sum_{i=1}^{4} k_{i} E_{i+1}\right)$ and the elements of $\mathfrak{h}_{1}$ as well as of the elements $\left(E_{5}-\sum_{i=1}^{3} k_{i} E_{i+1}\right)$ and the elements of $\mathfrak{h}_{2}$ are zero, we may assume that $X=E_{1}$. The element $X=E_{1}$ lies in the orthogonal complement $\mathfrak{h}_{i}^{\perp}$ for all $i=3, \cdots, 15$, too. Using the equation (1.1) we receive the following:
(1) For $Y=Z=E_{5}+s_{1} E_{6} \in \mathfrak{h}_{1} \cap \mathfrak{h}_{7} \cap \mathfrak{h}_{9} \cap \mathfrak{h}_{12}$ we have $2 \alpha_{4} s_{1}=0$ and hence $s_{1}=0$.
(2) Taking the elements $Y=E_{4}+k_{3} E_{6}, Z=E_{5}$ in $\mathfrak{h}_{1} \cap \mathfrak{h}_{9} \cap \mathfrak{h}_{12}$ we get $\alpha_{3}+\alpha_{4} k_{3}=0$ and hence $k_{3}=-\frac{\alpha_{3}}{\alpha_{4}}<0$.
(3) For $Y=Z=E_{4}+k_{3} E_{6} \in \mathfrak{h}_{1} \cap \mathfrak{h}_{9} \cap \mathfrak{h}_{12}$ one has $2 \beta_{6} k_{3}=0$ and hence $\beta_{6}=0$.
(4) The elements $Y=E_{3}+k_{2} E_{6}, Z=E_{4}+k_{3} E_{6}$ in $\mathfrak{h}_{1} \cap \mathfrak{h}_{12}$ yields that $\alpha_{2}+\beta_{5} k_{3}+\beta_{6} k_{2}=$ $\alpha_{2}-\beta_{5} \frac{\alpha_{3}}{\alpha_{4}}=0$ and hence $\beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}>0$.
(5) For $Y=E_{3}+k_{2} E_{6}, Z=E_{5}$ in $\mathfrak{h}_{1} \cap \mathfrak{h}_{12}$ we obtain $\beta_{4}+\alpha_{4} k_{2}=0$ and hence $k_{2}=-\frac{\beta_{4}}{\alpha_{4}}$.
(6) For $Y=Z=E_{3}+k_{2} E_{6} \in \mathfrak{h}_{1} \cap \mathfrak{h}_{12}$, then one has $2 \beta_{5} k_{2}=0$ and hence $k_{2}=0$ and $\beta_{4}=0$.
(7) For the elements $Y=E_{2}+k_{1} E_{6}, Z=E_{5}$ in $\mathfrak{h}_{1}$ we get $\beta_{2}+\alpha_{4} k_{1}=0$ and therefore $k_{1}=-\frac{\beta_{2}}{\alpha_{4}}$.
(8) For the elements $Y=E_{2}+k_{1} E_{6}, Z=E_{3}$ in $\mathfrak{h}_{1}$ we receive $\alpha_{1}+\beta_{5} k_{1}=\alpha_{1}-\frac{\alpha_{2}}{\alpha_{3}} \beta_{2}=0$ and hence $\beta_{2}=\frac{\alpha_{1} \alpha_{3}}{\alpha_{2}}>0$, moreover $k_{1}=-\frac{\alpha_{1} \alpha_{3}}{\alpha_{4} \alpha_{2}}<0$.
(9) Taking the elements $Y=Z=E_{2}+k_{1} E_{6} \in \mathfrak{h}_{1}$ one has $2 \beta_{3} k_{1}=0$ and hence $\beta_{3}=0$.
(10) For $Y=E_{2}+k_{1} E_{6}, Z=E_{4}+k_{3} E_{6}$ of $\mathfrak{h}_{1}$ we obtain $\beta_{1}+\beta_{3} k_{3}+\beta_{6} k_{1}=\beta_{1}=0$.

Taking into account (1)-(10) the subalgebra $\mathfrak{h}_{1}$ is flat totally geodesic if and only if $\beta_{1}=\beta_{3}=$ $\beta_{4}=\beta_{6}=0, \beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}, \beta_{2}=\frac{\alpha_{1} \alpha_{3}}{\alpha_{2}}$. Hence the case (1a) is proved.
(11) For $Y=Z=E_{4}+k_{3} E_{5} \in \mathfrak{h}_{2} \cap \mathfrak{h}_{10} \cap \mathfrak{h}_{13}$ we obtain $\alpha_{3} k_{3}=0$ and hence $k_{3}=0$.
(12) For the elements $Y=E_{4}, Z=E_{6}$ of $\mathfrak{h}_{2} \cap \mathfrak{h}_{10} \cap \mathfrak{h}_{13}$ we receive $\beta_{6}=0$.
(13) Taking the elements $Y=E_{3}+k_{2} E_{5}, Z=E_{4}$ in $\mathfrak{h}_{2} \cap \mathfrak{h}_{13}$ one gets $\alpha_{2}+\alpha_{3} k_{2}=0$ which implies that $k_{2}=-\frac{\alpha_{2}}{\alpha_{3}}<0$.
(14) For $Y=Z=E_{3}+k_{2} E_{5} \in \mathfrak{h}_{2} \cap \mathfrak{h}_{13}$ we have $\beta_{4} k_{2}=0$ and hence $\beta_{4}=0$.
(15) For the elements $Y=E_{3}+k_{2} E_{5}, Z=E_{6}$ of $\mathfrak{h}_{2} \cap \mathfrak{h}_{13}$ one obtains $\beta_{5}+\alpha_{4} k_{2}=0$ which yields $\beta_{5}=\frac{\alpha_{4} \alpha_{2}}{\alpha_{3}}$.
(16) For $Y=E_{2}+k_{1} E_{5}, Z=E_{3}+k_{2} E_{5}$ in $\mathfrak{h}_{2}$ we receive $\alpha_{1}+\beta_{2} k_{2}+\beta_{4} k_{1}=0$ and hence $\beta_{2}=\frac{\alpha_{1} \alpha_{3}}{\alpha_{2}}>0$.
(17) For $Y=Z=E_{2}+k_{1} E_{5} \in \mathfrak{h}_{2}$ one has $k_{1} \beta_{2}=0$ and hence $k_{1}=0$.
(18) Taking the elements $Y=E_{2}, Z=E_{4}$ of $\mathfrak{h}_{2}$ we get $\beta_{1}=0$.
(19) For the elements $Y=E_{2}, Z=E_{6}$ in $\mathfrak{h}_{2}$ we receive $\beta_{3}=0$. According to (11)-(19) the subalgebra $\mathfrak{h}_{2}$ is flat totally geodesic precisely if $\beta_{1}=\beta_{3}=\beta_{4}=\beta_{6}=0, \beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}, \beta_{2}=\frac{\alpha_{1} \alpha_{3}}{\alpha_{2}}$. Hence the assertion (1b) follows.

Taking into account (1)-(12) it follows from equation (4.21) that the subalgebra $\mathfrak{h}_{12}$ in (2h) as well as the subalgebra $\mathfrak{h}_{13}$ in (2i) with the conditions $\beta_{4}=\beta_{6}=0, \beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$ are flat totally geodesic.

Now we consider the subalgebra $\mathfrak{h}_{9}$. Taking into account (1)-(3) we have $s_{1}=\beta_{6}=0$, $k_{3}=-\frac{\alpha_{3}}{\alpha_{4}}$. The element $E_{2}+k_{1} E_{3}+k_{2} E_{6} \in \mathfrak{h}_{9}$ is geodesic if and only if for $b=1, c=k_{1}, f=k_{2}$, $d=e=0$ the equation (4.21) is satisfied. This gives the equation

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{3} k_{2}+k_{1} \beta_{5} k_{2}=0 . \tag{4.22}
\end{equation*}
$$

The element $E_{2}+k_{1} E_{3}+k_{2} E_{6}+E_{5} \in \mathfrak{h}_{9}$ is geodesic if and only if for $b=e=1, c=k_{1}, f=k_{2}$, $d=0$ the equation (4.21) is valid. Using equation (4.22) we obtain the equation

$$
\begin{equation*}
\beta_{2}+k_{1} \beta_{4}+\alpha_{4} k_{2}=0 \tag{4.23}
\end{equation*}
$$

Since $\alpha_{4} \neq 0$ from equation (4.23) we receive

$$
\begin{equation*}
k_{2}=-\frac{\beta_{2}+k_{1} \beta_{4}}{\alpha_{4}} \tag{4.24}
\end{equation*}
$$

The element $E_{2}+E_{4}+k_{1} E_{3}+\left(k_{2}-\frac{\alpha_{3}}{\alpha_{4}}\right) E_{6} \in \mathfrak{h}_{9}$ is geodesic precisely if for $b=d=1, c=k_{1}$, $f=k_{2}-\frac{\alpha_{3}}{\alpha_{4}}, e=0$ the equation (4.21) holds. Taking into account (4.22) from equation (4.21) we get

$$
\begin{equation*}
\beta_{1}-\frac{\alpha_{3}}{\alpha_{4}} \beta_{3}+k_{1}\left(\alpha_{2}-\beta_{5} \frac{\alpha_{3}}{\alpha_{4}}\right) . \tag{4.25}
\end{equation*}
$$

If $\beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$, then from (4.25) we obtain $\beta_{1}=\frac{\alpha_{3}}{\alpha_{4}} \beta_{3}$ and from (4.22) we get the second order equation (4.15). This proves case (2d).

If $\beta_{5} \neq \frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$, then from (4.25) we have $k_{1}=\frac{\beta_{3} \alpha_{3}-\beta_{1} \alpha_{4}}{\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}}$. Putting this into (4.24) we obtain $k_{2}=-\frac{\beta_{2}\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)+\beta_{4}\left(\beta_{3} \alpha_{3}-\beta_{1} \alpha_{4}\right)}{\alpha_{4}\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)}$. Substituting the expression of $k_{1}$ and $k_{2}$ into (4.22) we receive equation (4.16). Hence case (2e) is shown.

Now we treat the subalgebra $\mathfrak{h}_{10}$. According to (11)-(12) one has $k_{3}=\beta_{6}=0$. The element $E_{2}+k_{1} E_{3}+k_{2} E_{5} \in \mathfrak{h}_{10}$ is geodesic if and only if for $b=1, c=k_{1}, e=k_{2}, d=f=0$ the equation (4.21) is satisfied. This gives the equation

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{3} k_{2}+k_{1} \beta_{4} k_{2}=0 \tag{4.26}
\end{equation*}
$$

The element $E_{2}+k_{1} E_{3}+k_{2} E_{5}+E_{4} \in \mathfrak{h}_{10}$ is geodesic if and only if for $b=d=1, c=k_{1}, e=k_{2}$, $f=0$ the equation (4.21) is valid. Using equation (4.26) we obtain the equation

$$
\begin{equation*}
\beta_{1}+k_{1} \alpha_{2}+\alpha_{3} k_{2}=0 \tag{4.27}
\end{equation*}
$$

The element $E_{2}+k_{1} E_{3}+k_{2} E_{5}+E_{6} \in \mathfrak{h}_{10}$ is geodesic precisely if for $b=f=1, c=k_{1}, e=k_{2}$, $d=0$ the equation (4.21) holds. Taking into account (4.26) from equation (4.21) we get

$$
\begin{equation*}
\beta_{3}+k_{1} \beta_{5}+k_{2} \alpha_{4}=0 \tag{4.28}
\end{equation*}
$$

Hence we obtain $k_{2}=-\frac{\beta_{3}+k_{1} \beta_{5}}{\alpha_{4}}$. Putting this expression of $k_{2}$ into (4.27) we receive

$$
\begin{equation*}
k_{1}\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)=\alpha_{3} \beta_{3}-\alpha_{4} \beta_{1} . \tag{4.29}
\end{equation*}
$$

If $\beta_{5}=\frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$, then from (4.29) we obtain $\beta_{1}=\frac{\alpha_{3}}{\alpha_{4}} \beta_{3}$ and from (4.26) we get the second order equation (4.15). This proves case (2f).

If $\beta_{5} \neq \frac{\alpha_{2} \alpha_{4}}{\alpha_{3}}$, then from (4.29) we have $k_{1}=\frac{\beta_{3} \alpha_{3}-\beta_{1} \alpha_{4}}{\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}}$. Putting this into (4.28) we obtain $k_{2}=-\frac{\beta_{3}\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)+\beta_{5}\left(\beta_{3} \alpha_{3}-\beta_{1} \alpha_{4}\right)}{\alpha_{4}\left(\alpha_{2} \alpha_{4}-\alpha_{3} \beta_{5}\right)}$. Substituting the expression of $k_{1}$ and $k_{2}$ into (4.26) we receive equation (4.16). Hence case (2g) is proved.

Here we deal with subalgebra $\mathfrak{h}_{6}$. The element $E_{2}+k_{1} E_{5}+k_{2} E_{6} \in \mathfrak{h}_{6}$ is geodesic if and only if for $b=1, e=k_{1}, f=k_{2}, c=d=0$ the equation (4.21) holds. From this we obtain

$$
\begin{equation*}
\beta_{2} k_{1}+\beta_{3} k_{2}+k_{1} \alpha_{4} k_{2}=0 \tag{4.30}
\end{equation*}
$$

The non-zero vector $E_{3}+l_{1} E_{5}+l_{2} E_{6} \in \mathfrak{h}_{6}$ is geodesic if and only if for $c=1$, $e=l_{1}, f=l_{2}$, $b=d=0$ the equation (4.21) is satisfied. This gives

$$
\begin{equation*}
\beta_{4} l_{1}+\beta_{5} l_{2}+l_{1} \alpha_{4} l_{2}=0 \tag{4.31}
\end{equation*}
$$

The element $E_{4}+s_{1} E_{5}+s_{2} E_{6} \in \mathfrak{h}_{6}$ is geodesic if and only if for $d=1, e=s_{1}, f=s_{2}, b=c=0$ the equation (4.21) holds. This gives

$$
\begin{equation*}
\alpha_{3} s_{1}+\beta_{6} s_{2}+s_{1} \alpha_{4} s_{2}=0 \tag{4.32}
\end{equation*}
$$

The element $E_{2}+E_{3}+\left(k_{1}+l_{1}\right) E_{5}+\left(k_{2}+l_{2}\right) E_{6} \in \mathfrak{h}_{6}$ is geodesic if and only if for $d=c=1$, $e=k_{1}+l_{1}, f=k_{2}+l_{2}, d=0$ the equation (4.21) is satisfied. Using (4.30), (4.31) we receive

$$
\begin{equation*}
\alpha_{1}+\beta_{2} l_{1}+\beta_{3} l_{2}+\beta_{4} k_{1}+\beta_{5} k_{2}+k_{1} l_{2} \alpha_{4}+l_{1} k_{2} \alpha_{4}=0 \tag{4.33}
\end{equation*}
$$

The element $E_{2}+E_{4}+\left(k_{1}+s_{1}\right) E_{5}+\left(k_{2}+s_{2}\right) E_{6} \in \mathfrak{h}_{6}$ is geodesic if and only if for $d=b=1$, $e=k_{1}+s_{1}, f=k_{2}+s_{2}, c=0$ the equation (4.21) is satisfied. Using (4.30), (4.32) we get

$$
\begin{equation*}
\beta_{1}+\beta_{2} s_{1}+\beta_{3} s_{2}+\alpha_{3} k_{1}+\beta_{6} k_{2}+k_{1} s_{2} \alpha_{4}+s_{1} k_{2} \alpha_{4}=0 \tag{4.34}
\end{equation*}
$$

The element $E_{3}+E_{4}+\left(l_{1}+s_{1}\right) E_{5}+\left(l_{2}+s_{2}\right) E_{6} \in \mathfrak{h}_{6}$ is geodesic if and only if for $d=c=1$, $e=l_{1}+s_{1}, f=l_{2}+s_{2}, b=0$ the equation (4.21) is satisfied. Using (4.31), (4.32) we obtain

$$
\begin{equation*}
\alpha_{2}+\beta_{4} s_{1}+\beta_{5} s_{2}+\alpha_{3} l_{1}+\beta_{6} l_{2}+l_{1} s_{2} \alpha_{4}+s_{1} l_{2} \alpha_{4}=0 \tag{4.35}
\end{equation*}
$$

The element $E_{2}+E_{3}+E_{4}+\left(k_{1}+l_{1}+s_{1}\right) E_{5}+\left(k_{2}+l_{2}+s_{2}\right) E_{6} \in \mathfrak{h}_{6}$ is geodesic if and only if for $b=d=c=1, e=k_{1}+l_{1}+s_{1}, f=k_{2}+l_{2}+s_{2}, b=0$ the equation (4.21) is satisfied. Using (4.33), (4.34), and (4.35) we receive

$$
\begin{equation*}
\beta_{2} k_{1}+\beta_{3} k_{2}+\beta_{4} l_{1}+\beta_{5} l_{2}+\alpha_{3} s_{1}+\beta_{6} s_{2}+k_{1} s_{2}+k_{1} k_{2} \alpha_{4}+l_{1} l_{2} \alpha_{4}+s_{1} s_{2} \alpha_{4}=0 \tag{4.36}
\end{equation*}
$$

This gives the case (2a).
Nw we deal with the subalgebra $\mathfrak{h}_{7}$. Taking into account (1) we get $s_{1}=0$. The element $E_{2}+k_{1} E_{4}+k_{2} E_{6} \in \mathfrak{h}_{7}$ is geodesic if and only if for $b=1, d=k_{1}, f=k_{2}, c=e=0$ the equation (4.21) holds. This gives the equation

$$
\begin{equation*}
\beta_{1} k_{1}+\beta_{2} k_{2}+k_{1} \beta_{6} k_{2}=0 \tag{4.37}
\end{equation*}
$$

The element $E_{3}+l_{1} E_{4}+l_{2} E_{6} \in \mathfrak{h}_{7}$ is geodesic precisely if for $c=1, d=l_{1}, f=l_{2}, b=e=0$ the equation (4.21) holds. Hence we obtain the equation

$$
\begin{equation*}
\alpha_{2} l_{1}+\beta_{5} l_{2}+l_{1} \beta_{6} l_{2}=0 \tag{4.38}
\end{equation*}
$$

The element $E_{2}+E_{3}+\left(k_{1}+l_{1}\right) E_{4}+\left(k_{2}+l_{2}\right) E_{6} \in \mathfrak{h}_{7}$ is geodesic if and only if for $b=c=1$, $d=k_{1}+l_{1}, f=k_{2}+l_{2}, e=0$ the equation (4.21) is valid. Using (4.37) and (4.38) we receive the equation

$$
\begin{equation*}
\alpha_{1}+\beta_{2} l_{1}+\beta_{3} l_{2}+\alpha_{2} k_{1}+\beta_{5} k_{2}+k_{1} l_{2} \beta_{6}+l_{1} k_{2} \beta_{6}=0 \tag{4.39}
\end{equation*}
$$

The element $E_{2}+k_{1} E_{4}+k_{2} E_{6}+E_{5} \in \mathfrak{h}_{7}$ is geodesic precisely if for $b=e=1, d=k_{1}, f=k_{2}$, $c=0$ the equation (4.21) holds. Using (4.37) one gets the equation

$$
\begin{equation*}
\beta_{2}+\alpha_{3} k_{1}+\alpha_{4} k_{2}=0 \tag{4.40}
\end{equation*}
$$

The element $E_{3}+l_{1} E_{4}+l_{2} E_{6}+E_{5} \in \mathfrak{h}_{7}$ is geodesic precisely if for $c=e=1, d=l_{1}, f=l_{2}$, $b=0$ the equation (4.21) is satisfied. Applying (4.38) one obtains the equation

$$
\begin{equation*}
\beta_{4}+\alpha_{3} l_{1}+\alpha_{4} l_{2}=0 \tag{4.41}
\end{equation*}
$$

The element $E_{2}+E_{3}+E_{5}+\left(k_{1}+l_{1}\right) E_{4}+\left(k_{2}+l_{2}\right) E_{6} \in \mathfrak{h}_{7}$ is geodesic if and only if for $b=c=e=1$, $d=k_{1}+l_{1}, f=k_{2}+l_{2}$ the equation (4.21) is valid. Taking into account (4.37), (4.38), (4.39) we receive the equation

$$
\begin{equation*}
\alpha_{3} k_{1}+\alpha_{4} k_{2}=0 \tag{4.42}
\end{equation*}
$$

Comparing the equations (4.40) and (4.42) we get $\beta_{2}=0$ and equations (4.37), (4.38), (4.39), (4.40), (4.41) yield the case (2b).

Now we consider the subalgebra $\mathfrak{h}_{8}$. The non-zer vector $E_{2}+k_{1} E_{4}+k_{2} E_{5} \in \mathfrak{h}_{8}$ is geodesic if and only if for $b=1, d=k_{1}, e=k_{2}, c=f=0$ the equation (4.21) is satisfied. This gives the equation

$$
\begin{equation*}
\beta_{1} k_{1}+\beta_{2} k_{2}+k_{1} \alpha_{3} k_{2}=0 . \tag{4.43}
\end{equation*}
$$

The element $E_{3}+l_{1} E_{4}+l_{2} E_{5} \in \mathfrak{h}_{8}$ is geodesic if and only if for $c=1, d=l_{1}, e=l_{2}, b=f=0$ the equation (4.21) holds. Hence we receive

$$
\begin{equation*}
\alpha_{2} l_{1}+\beta_{4} l_{2}+l_{1} l_{2} \alpha_{3}=0 \tag{4.44}
\end{equation*}
$$

The non-zero vector $E_{2}+E_{3}+\left(k_{1}+l_{1}\right) E_{4}+\left(k_{2}+l_{2}\right) E_{5} \in \mathfrak{h}_{8}$ is geodesic if and only if for $b=c=1$, $d=k_{1}+l_{1}, e=k_{2}+l_{2}, f=0$ the equation (4.21) is satisfied. Using (4.43), (4.44) one has the following equation

$$
\begin{equation*}
\alpha_{1}+\beta_{1} l_{1}+\beta_{2} l_{2}+\alpha_{2} k_{1}+\beta_{4} k_{2}+k_{1} l_{2} \alpha_{3}+l_{1} k_{2} \alpha_{3}=0 \tag{4.45}
\end{equation*}
$$

The element $E_{2}+E_{6}+k_{1} E_{4}+k_{2} E_{5} \in \mathfrak{h}_{8}$ is geodesic if and only if for $b=f=1, d=k_{1}, e=k_{2}$, $c=0$ the equation (4.21) is satisfied. Applying (4.43) one gets

$$
\begin{equation*}
\beta_{3}+\beta_{6} k_{1}+\alpha_{4} k_{2}=0 \tag{4.46}
\end{equation*}
$$

The element $E_{3}+l_{1} E_{4}+l_{2} E_{5}+E_{6} \in \mathfrak{h}_{8}$ is geodesic if and only if for $c=f=1, d=l_{1}, e=l_{2}$, $b=0$ the equation (4.21) holds. Using (4.44) we receive

$$
\begin{equation*}
\beta_{5}+l_{1} \beta_{6}+l_{2} \alpha_{4}=0 \tag{4.47}
\end{equation*}
$$

The non-zero vector $E_{2}+E_{3}+\left(k_{1}+l_{1}\right) E_{4}+\left(k_{2}+l_{2}\right) E_{5}+E_{6} \in \mathfrak{h}_{8}$ is geodesic if and only if for $c=b=f=1, d=k_{1}+l_{1}, e=k_{2}+l_{2}$ the equation (4.21) is satisfied. This gives

$$
\begin{gather*}
\alpha_{1}+\beta_{1} k_{1}+\beta_{1} l_{1}+\beta_{2} k_{2}+\beta_{2} l_{2}+\beta_{3}+\alpha_{2} k_{1}+\alpha_{2} l_{1}+\beta_{4} k_{2}+\beta_{4} l_{2}+\beta_{5}+k_{1} k_{2} \alpha_{3}+ \\
k_{1} l_{2} \alpha_{3}+l_{1} k_{2} \alpha_{3}+l_{1} l_{2} \alpha_{3}+k_{1} \beta_{6}+l_{1} \beta_{6}+k_{2} \alpha_{4}+l_{2} \alpha_{4}=0 . \tag{4.48}
\end{gather*}
$$

Using the equations (4.43), (4.44), (4.45), (4.46), and (4.47), the equation (4.48) holds. Therefore the subalgebra $\mathfrak{h}_{8}$ is proved. This gives the case (2c)

The subalgebra $\mathfrak{h}_{24}$ coincides with the subalgebra $\mathfrak{h}_{9}$ in $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$. Hence the case (3a) is valid. Furthermore, the subalgebra $\mathfrak{h}_{25}$ coincides with the subalgebra $\mathfrak{h}_{5}$ in $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$. Therefore the case (3b) is shown.

The non-zero vector $E_{4}+l_{1} E_{5}+l_{2} E_{6} \in \mathfrak{h}_{18} \cap \mathfrak{h}_{21}$ coincides with the element $E_{4}+l_{1} E_{5}+l_{2} E_{6} \in \mathfrak{h}_{1}$ in the filiform metric Lie algebra $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$. It is geodesic if the equation

$$
\begin{equation*}
\alpha_{3} l_{1}+\beta_{6} l_{2}+l_{1} \alpha_{4} l_{2}=0 \tag{4.49}
\end{equation*}
$$

holds. Now we treat the subalgebra $\mathfrak{h}_{18}$. The element $E_{2}+k_{1} E_{3}+k_{2} E_{5}+k_{3} E_{6} \in \mathfrak{h}_{18}$ is geodesic if for $d=0, b=1, c=k_{1}, e=k_{2}, f=k_{3}$ the equation (4.21) is valid. Hence we get

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{2} k_{2}+\beta_{3} k_{3}+k_{1} \beta_{4} k_{2}+k_{1} \beta_{5} k_{3}+k_{2} \alpha_{4} k_{3}=0 \tag{4.50}
\end{equation*}
$$

In addition, the non-zero vector $E_{2}+E_{4}+k_{1} E_{3}+\left(k_{2}+l_{1}\right) E_{5}+\left(k_{3}+l_{2}\right) E_{6} \in \mathfrak{h}_{18}$ is geodesic if for $b=d=1, c=k_{1}, e=k_{2}+l_{1}, f=k_{3}+l_{2}$ the system (4.21) is satisfied. Therefore we obtain

$$
\begin{gather*}
\alpha_{1} k_{1}+\beta_{1}+\beta_{2} k_{2}+\beta_{2} l_{1}+\beta_{3} k_{3}+\beta_{3} l_{2}+k_{1} \alpha_{2}+k_{1} \beta_{4} k_{2}+k_{1} \beta_{4} l_{1}+k_{1} \beta_{5} k_{3}+k_{1} \beta_{5} l_{2}+ \\
\alpha_{3} k_{2}+\alpha_{3} l_{1}+\beta_{6} k_{3}+\beta_{6} l_{2}+k_{2} k_{3} \alpha_{4}+k_{2} l_{2} \alpha_{4}+l_{1} k_{3} \alpha_{4}+l_{1} l_{2} \alpha_{4}=0 . \tag{4.51}
\end{gather*}
$$

Due to the equations (4.49) and (4.50), equation (4.51) becomes

$$
\beta_{1}+\beta_{2} l_{1}+\beta_{3} l_{2}+\alpha_{2} k_{1}+k_{1} \beta_{4} l_{1}+k_{1} \beta_{5} k_{3}+k_{1} \beta_{5} l_{2}+\alpha_{3} k_{2}+\beta_{6} k_{3}+\alpha_{4} k_{2} l_{2}+\alpha_{4} l_{1} k_{3}=0
$$

This proves case (3c).
Here we consider the case $\mathfrak{h}_{21}$. The element $E_{3}+k_{1} E_{5}+k_{2} E_{6} \in \mathfrak{h}_{21}$ is geodesic if for $b=d=$ $0, c=1, e=k_{1}, f=k_{2}$ the equation (4.21) is satisfied. From this we obtain

$$
\begin{equation*}
\beta_{4} k_{1}+\beta_{5} k_{2}+k_{1} \alpha_{4} k_{2}=0 \tag{4.52}
\end{equation*}
$$

Moreover, the non-zero vector $E_{3}+E_{4}+\left(k_{1}+l_{1}\right) E_{5}+\left(k_{2}+l_{2}\right) E_{6} \in \mathfrak{h}_{21}$ is geodesic if for $b=0, c=1, d=1, e=k_{1}+l_{1}, f=k_{2}+l_{2}$ the equation (4.21) is valid. This gives

$$
\begin{gather*}
\alpha_{2}+\beta_{4} k_{1}+\beta_{4} l_{1}+\beta_{5} k_{2}+\beta_{5} l_{2}+\alpha_{3} k_{1}+\alpha_{3} l_{1}+\beta_{6} k_{2}+\beta_{6} l_{2}+ \\
k_{1} k_{2} \alpha_{4}+k_{1} l_{2} \alpha_{4}+l_{1} k_{2} \alpha_{4}+l_{1} l_{2} \alpha_{4}=0 . \tag{4.53}
\end{gather*}
$$

Exploiting equations (4.49) and (4.52), equation (4.53) reduces to

$$
\alpha_{2}+\beta_{4} l_{1}+\beta_{5} l_{2}+\alpha_{3} k_{1}+\beta_{6} k_{2}+k_{1} l_{2} \alpha_{4}+l_{1} k_{2} \alpha_{4}=0
$$

This proves the case (3d).
The non-zero vector $E_{5}+l_{1} E_{6} \in \mathfrak{h}_{19} \cap \mathfrak{h}_{22}$ coincides with the element $E_{5}+l_{1} E_{6} \in \mathfrak{h}_{2}$ in the filiform metric Lie algebra $\left(\mathfrak{n}_{6,17}\left(\alpha_{i}, \beta_{j}\right),\langle.,\rangle.\right)$. It is geodesic if one has $l_{1}=0$. Now we deal with the subalgebra $\mathfrak{h}_{19}$. The element $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{6} \in \mathfrak{h}_{19}$ is geodesic precisely if for $a=e=0, b=1, c=k_{1}, d=k_{2}, f=k_{3}$ the equation (4.21) is satisfied. This yields

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{1} k_{2}+\beta_{3} k_{3}+k_{1} \alpha_{2} k_{2}+k_{1} \beta_{5} k_{3}+k_{2} \beta_{6} k_{3}=0 \tag{4.54}
\end{equation*}
$$

Furthermore, the non-zero vector $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{6}+E_{5} \in \mathfrak{h}_{19}$ is geodesic if and only if for $b=e=1, c=k_{1}, d=k_{2}, f=k_{3}$ the equation (4.21) holds. It follows from the fifth equation of (4.1) that

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{1} k_{2}+\beta_{2}+\beta_{3} k_{3}+k_{1} \alpha_{2} k_{2}+k_{1} \beta_{4}+k_{1} \beta_{5} k_{3}+k_{2} \alpha_{3}+k_{2} \beta_{6} k_{3}+\alpha_{4} k_{3}=0 \tag{4.55}
\end{equation*}
$$

Taking into account (4.54), equation (4.55) can be written as follows

$$
\begin{equation*}
\beta_{2}+k_{1} \beta_{4}+k_{2} \alpha_{3}+\alpha_{4} k_{3}=0 \tag{4.56}
\end{equation*}
$$

From equation (4.56) we obtain that $k_{3}=-\frac{\beta_{2}+k_{1} \beta_{4}+k_{2} \alpha_{3}}{\alpha_{4}}$. Putting this expression into equation (4.54) we receive equation (4.17). This proves the case (3e).

Next we consider the subalgebra $\mathfrak{h}_{22}$. The non-zero vector $E_{3}+k_{1} E_{4}+k_{2} E_{6} \in \mathfrak{h}_{22}$ is geodesic precisely if for $b=e=0, c=1, d=k_{1}, f=k_{2}$ the equation 4.21 holds. This gives

$$
\begin{equation*}
\alpha_{2} k_{1}+\beta_{5} k_{2}+k_{1} \beta_{6} k_{2}=0 \tag{4.57}
\end{equation*}
$$

Additionally, the element $E_{3}+k_{1} E_{4}+k_{2} E_{6}+E_{5} \in \mathfrak{h}_{22}$ is geodesic if and only if for $b=0$, $c=1, d=k_{1}, f=k_{2}$ the equation 4.21 is satisfied. From this it follows that

$$
\begin{equation*}
\alpha_{2} k_{1}+\beta_{4}+\beta_{5} k_{2}+k_{1} \alpha_{3}+k_{1} \beta_{6} k_{2}+\alpha_{4} k_{2}=0 \tag{4.58}
\end{equation*}
$$

Comparing with equation (4.57), equation (4.58) reduces to

$$
\begin{equation*}
\beta_{4}+\alpha_{3} k_{1}+\alpha_{4} k_{2}=0 \tag{4.59}
\end{equation*}
$$

From (4.59) one has $k_{2}=-\frac{\beta_{4}+\alpha_{3} k_{1}}{\alpha_{4}}$. Substituting this expression into (4.57) we have the second order equation (4.18) for $k_{1}$. This gives the case (3f).

Now we consider the subalgebra $\mathfrak{h}_{23}$. The element $E_{3}+k_{1} E_{4}+k_{2} E_{5} \in \mathfrak{h}_{23}$ is geodesic precisely if for $b=f=0, c=1, d=k_{1}, e=k_{2}$ the system (4.1) of equation is satisfied. Hence we receive

$$
\begin{equation*}
\alpha_{2} k_{1}+\beta_{4} k_{2}+k_{1} \alpha_{3} k_{2}=0 \tag{4.60}
\end{equation*}
$$

Moreover, the non-zero vector $E_{3}+k_{1} E_{4}+k_{2} E_{5}+E_{6} \in \mathfrak{h}_{7}$ is geodesic if and only if for $b=0$, $c=f=1, d=k_{1}, e=k_{2}$ the equation (4.21) holds. This gives

$$
\begin{equation*}
\alpha_{2} k_{1}+\beta_{4} k_{2}+\beta_{5}+k_{1} \alpha_{3} k_{2}+k_{1} \beta_{6}+\alpha_{4} k_{2}=0 \tag{4.61}
\end{equation*}
$$

Using equation (4.60) equation (4.61) reduces to

$$
\begin{equation*}
\beta_{5}+\beta_{6} k_{1}+\alpha_{4} k_{2}=0 \tag{4.62}
\end{equation*}
$$

From (4.62) we obtain $k_{2}=-\frac{\beta_{5}+\beta_{6} k_{1}}{\alpha_{4}}$. Putting this expression into (4.60) we have the second order equation (4.18) for $k_{1}$. Thus, the case ( 3 g ) is proved.

Now we deal with the subalgebra $\mathfrak{h}_{20}$. The element $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5} \in \mathfrak{h}_{20}$ is geodesic precisely if for $f=0, b=1, c=k_{1}, d=k_{2}, e=k_{3}$ the equation (4.21) is satisfied. From this we get

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{1} k_{2}+\beta_{2} k_{3}+k_{1} \alpha_{2} k_{2}+k_{1} \beta_{4} k_{3}+k_{2} \alpha_{3} k_{3}=0 . \tag{4.63}
\end{equation*}
$$

Additionally, the non-zero vector $E_{2}+k_{1} E_{3}+k_{2} E_{4}+k_{3} E_{5}+E_{6} \in \mathfrak{h}_{4}$ is geodesic if and only if for $b=f=1, c=k_{1}, d=k_{2}, e=k_{3}$, the equation (4.21) holds. Hence one obtains

$$
\begin{equation*}
\alpha_{1} k_{1}+\beta_{1} k_{2}+\beta_{2} k_{3}+\beta_{3}+k_{1} \alpha_{2} k_{2}+k_{1} \beta_{4} k_{3}+k_{1} \beta_{5}+k_{2} \alpha_{3} k_{3}+k_{2} \beta_{6}+k_{3} \alpha_{4}=0 . \tag{4.64}
\end{equation*}
$$

Applying (4.63) equation (4.64) reduces to

$$
\begin{equation*}
\beta_{3}+k_{1} \beta_{5}+k_{2} \beta_{6}+\alpha_{4} k_{3}=0 \tag{4.65}
\end{equation*}
$$

From (4.65) we obtain $k_{3}=-\frac{\beta_{3}+k_{1} \beta_{5}+k_{2} \beta_{6}}{\alpha_{4}}$. Putting this expression into (4.63) we obtain equation ((4.19)). Hence the case (3h) is shown.

Finally, we consider the subalgebra $\mathfrak{h}_{17}$. The non-zero vector $E_{2}+k_{1} E_{4}+k_{2} E_{5}+k_{3} E_{6} \in \mathfrak{h}_{17}$ is geodesic precisely if for $c=0, b=1, d=k_{1}, e=k_{2}, f=k_{3}$ the equation (4.21) is valid. Hence we get

$$
\begin{equation*}
\beta_{1} k_{1}+\beta_{2} k_{2}+\beta_{3} k_{3}+k_{1} \alpha_{3} k_{2}+k_{1} \beta_{6} k_{3}+k_{2} \alpha_{4} k_{3}=0 \tag{4.66}
\end{equation*}
$$

The element $E_{3}+l_{1} E_{4}+l_{2} E_{5}+l_{3} E_{6} \in \mathfrak{h}_{17}$ is geodesic if and only if for $b=0, c=1, d=l_{1}, e=$ $l_{2}, f=l_{3}$ the equation (4.21) holds. From this we receive

$$
\begin{equation*}
\alpha_{2} l_{1}+\beta_{4} l_{2}+\beta_{5} l_{3}+l_{1} \alpha_{3} l_{2}+l_{1} \beta_{6} l_{3}+l_{2} \alpha_{4} l_{3}=0 \tag{4.67}
\end{equation*}
$$

Furthermore, the non-zero vector $E_{2}+E_{3}+\left(k_{1}+l_{1}\right) E_{4}+\left(k_{2}+l_{2}\right) E_{5}+\left(k_{3}+l_{3}\right) E_{6} \in \mathfrak{h}_{17}$ is geodesic precisely if for $b=c=1, d=k_{1}+l_{1}, e=k_{2}+l_{2}, f=k_{3}+l_{3}$ the equation (4.21) is satisfied. Therefore one obtains

$$
\begin{gather*}
\alpha_{1}+\beta_{1} k_{1}+\beta_{1} l_{1}+\beta_{2} k_{2}+\beta_{2} l_{2}+\beta_{3} k_{3}+\beta_{3} l_{3}+\alpha_{2} k_{1}+\alpha_{2} l_{1}+\beta_{4} k_{2}+\beta_{4} l_{2}+\beta_{5} k_{3}+ \\
\beta_{5} l_{3}+k_{1} k_{2} \alpha_{3}+k_{1} l_{2} \alpha_{3}+l_{1} k_{2} \alpha_{3}+l_{1} l_{2} \alpha_{3}+k_{1} k_{3} \beta_{6}+k_{1} l_{3} \beta_{6}+l_{1} k_{3} \beta_{6}+l_{1} l_{3} \beta_{6}+  \tag{4.68}\\
k_{2} k_{3} \alpha_{4}+k_{2} l_{3} \alpha_{4}+l_{2} k_{3} \alpha_{4}+l_{2} l_{3} \alpha_{4}=0 .
\end{gather*}
$$

Taking into account (4.66) and (4.67), equation (4.68) reduces to

$$
\begin{gather*}
\alpha_{1}+\beta_{1} l_{1}+\beta_{2} l_{2}+\beta_{3} l_{3}+\alpha_{2} k_{1}+\beta_{4} k_{2}+\beta_{5} k_{3}+k_{1} l_{2} \alpha_{3}+l_{1} k_{2} \alpha_{3}+ \\
k_{1} l_{3} \beta_{6}+l_{1} k_{3} \beta_{6}+k_{2} l_{3} \alpha_{4}+l_{2} l_{3} \alpha_{4}=0 . \tag{4.69}
\end{gather*}
$$

This gives (3i). Hence Theorem 4.3 is proved.
Acknowledgements: The authors are sincerely grateful of the anonymous referee for his/her careful reading, many critical comments and valuable suggestions that contribute significantly to improving the manuscript during the revision.

## Declarations

Ethical Approval. Not applicable.
Competing interests. The authors have no conflicts of interest to declare that are relevant to the content of this article.
Authors' contributions. Sameer Annon Abbas and Ágota Figula wrote the main manuscript text. Both authors reviewed the manuscript.
Funding. Open access funding provided by University of Debrecen. The research of the second author was supported by the National Research, Development and Innovation Office (NKFIH) Grant No. K132951.
Availability of data and materials. Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

## References

[1] G. Cairns, A. H. Galić, and Y. Nikolayevsky, Totally geodesic subalgebras of nilpotent Lie algebras, J. Lie Theory, 23 (2013), no. 4, 1023-1049
[2] G. Cairns, A. H. Galić, and Y. Nikolayevsky, Totally geodesic subalgebras of filiform nilpotent Lie algebras, J. Lie Theory, 23 (2013), no. 4, 1051-1074
[3] D. V. Millionschikov, Graded filiform Lie algebras and symplectic nilmanifolds, in: Geometry, Topology, and Mathematical Physics Amer. Math. Soc. Transl. Ser. 2, 212 (2004)
[4] P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric II, Trans. Amer. Math. Soc. 343 (1994), no. 2, 805-828
[5] P. Eberlein, Left invariant geometry of Lie groups, Cubo, CUBO, A Mathematical Journal, 6 (2004), no. 1, 427-510
[6] Á. Figula and P.T. Nagy, Isometry classes of simply connected nilmanifolds, J. Geom. Phys. 132 (2018), 370-381
[7] Á. Figula and S. A. Abbas, Isometry groups of six-dimensional filiform nilmanifold, Int. J. Group Theory, 12 (2023), no. 2, 67-80
[8] P. T. Nagy and S. Homolya, Geodesic vectors and subalgebras in two-step nilpotent metric Lie algebras, Adv. Geom., 15 (2015), no. 1, 121-126
(S. A. Abbas) Doctoral School of Mathematical and Computational Sciences, University of Debrecen, H-4002 Debrecen, P.O.Box. 400, Hungary

Email address: sameer.annon@science.unideb.hu
(Á. Figula) Institute of Mathematics, University of Debrecen, H-4002 Debrecen, P.O.Box. 400, Hungary

Email address: figula@science.unideb.hu

