GEODESIC VECTORS AND FLAT TOTALLY GEODESIC SUBALGEBRAS
OF SIX-DIMENSIONAL FILIFORM METRIC LIE ALGEBRAS

SAMEER ANNON ABBAS AND AGOTA FIGULA

ABSTRACT. A nilpotent Lie algebra n equipped with an Euclidean inner product is called nilpo-
tent metric Lie algebra. In this paper we describe the sets of the geodesic vectors and the flat
totally geodesic subalgebras of the six-dimensional filiform metric Lie algebras. In this class with
the exception of the metric Lie algebras corresponding to the standard filiform Lie algebra the
flat totally geodesic subalgebras of every metric Lie algebra has dimension at most two.

1. INTRODUCTION

Let n be a real nilpotent Lie algebra and N be the connected and simply connected Lie group
having Lie algebra n. We call (n, (.,.)) a metric nilpotent Lie algebra if it is given an Euclidean
inner product (.,.) on n. An inner product (.,.) on n determines a left-invariant metric (.,.)n
on N and conversely. The corresponding nilpotent Lie group N endowed with the left-invariant
metric (.,.)y arising from (.,.) is a Riemannian nilmanifold.

Riemannian nilmanifolds have been studied extensively in the last decades. The first general
studies for 2-step nilmanifolds were done by P. Eberlein (see [4], [5]).

We call a subalgebra b of a metric Lie algebra (n, (., .)) flat, respectively totally geodesic if its
exponential image H in the Lie group N with the left invariant Riemann metric (.,.)y is flat,
respectively totally geodesic submanifold. A subalgebra b of a metric Lie algebra (n,(.,.)) is
totally geodesic if and only if it satisfies

(1.1) ((X,Y],2)+ (X, Z],Y) =0,

for all Y, Z € b and X in the orthogonal complement h* of h (cf. Lemma 1.2 in ( [1])). Moreover,
a non-zero vector Y € (n, (.,.)) is geodesic precisely if for all X € (n, (.,.)) one has

(1.2) ([X,Y],Y) = 0.

Cairns, Hini¢ Gali¢ and Nikolayevsky presented a comprehensive study of totally geodesic
subgroups of Riemannian nilmanifolds and the corresponding subalgebras of nilpotent metric
Lie algebras. In particular the authors gave several results on the possible dimensions of totally
geodesic subalgebras. They also found examples, where the obtained bounds on the dimensions of
totally geodesic subalgebras are attained. Furthermore they gave an example of a 6-dimensional
filiform nilpotent Lie algebra that has no totally geodesic subalgebra of dimension > 2, for any
choice of inner product (see [1], [2]).

Nagy and Homolya in [8] studied geodesic vectors and flat totally geodesic subalgebras in
2-step nilpotent metric Lie algebras and proved that for isomorphic Lie algebras n and n* there
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exists a bijective linear map n — n* preserving the geodesic, respectively flat totally geodesic
property of vectors, respectively subalgebras. Moreover they determined the sets of the geodesic
vectors and the flat totally geodesic subalgebras in the 2-step nilpotent metric Lie algebras of
dimension < 6.

In [6] Figula and Nagy classified the isometry equivalence classes and determined the isometry
groups of connected and simply connected Riemannian nilmanifolds on filiform Lie groups of ar-
bitrary dimension and on five dimensional nilpotent Lie groups of nilpotency class > 2. Applying
their approach Abbas and Figula proved that up to isometric isomorphism any six-dimensional
filiform metric Lie algebra is of the form n6,14(04i, 5]’)7 ’ﬂ6715(051‘, ﬂj): n6716(04i, 5j>7 ﬂ6717(061', ﬁ]) and
n6.15(;, ;). These metric Lie algebras are defined by the following non-vanishing commutators
(see [7]):

(1) ne,14(ci, 5;)

(1.3)

a5 + a
[Ey, Es) = aq Es + 1 Ey + BoEs + B3Es, [E1, Es] = asEy — MEE, + B4Es,
4

a1

[Eq, Ey] = ; 2 E5 + B5Es, [Es, B3] = asEs + B6Es,
4

(B, By = BrEg, (B, Bs] = ayF,
[E4, Bs] = a5 Eg,

such that o; > 0,4 =1,...,5, 5; € R,j =1,...,7, and if the set J = {j € {1,4,7} :
B; # 0} # 0, then §;, > 0 for the minimal element j, € J,

(2) n615(v, 5;)

(1.4)

[Eq, Es) = aq B + B1Ey + BoEs + B3Es,  [Ev, Es] = asEy + BaEs + (5 Eg,
Qo Cy
|Eq, Ey] = asEs + (6 Es, [Ey, E3) = ; °Es + B7Es,
4
By, Es| = o, (B, Ey] = a5 B,

such that a; > 0,0 =1,...,5, 8; € R,j=1,...,7, and if the set J = {j € {1,3,4,6,7} :
B; # 0} # 0, then 3;, > 0 for the minimal element j, € J,

(3) ne,16(ci, 5;)

(1.5)

o o
[E, By = an Es + B1Ey + BoEs + B3Es, [E1, Es] = asEy — ( ;ﬁl + ;ﬁg) Es + B4 Eg,
1 4

[Ey, Ey] = asEs + (5 Es, (B, Bs| = B6Es,
[Ea, B3] = B7Eg, [, By] = BsEg,

Qa3
[E27E5] = OC4E6, {E47E3] = ; 4E67

1

such that oy > 0,2 = 1,...,4, B8; € R,j = 1,...,8, and one of the following cases is

satisfied:

(a) Br=P3=Ps= 5= s =Ps =0,

(b) B3 >00r 5 >0, 81 =Ps=Ps = fs =0,

(c) Bs>0o0r By >0, 1 =pP5=0;=P0:=0,

(d) Br>00r s >0, 83 =04 =5 = s =0,

(e) at least two elements of the set {51, 83, B4, Bs, B¢, s} are positive with the exceptions
(B1>0,B3>0), (B3 >0,85 >0), (Bs> 0,5 > 0),
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(4) n6,17(05i7 53‘

[Eq, By = onEs + 1By + BoEs + B3Es,  [Er, B3] = asEy + B4E5 + (5 Es,
(1.6) [E1, Ey] = asEs + B Ls, (B, Bs| = oy R,
[Es, Bs] = a5 Eg,

such that a; > 0,i =1,...,5, §; € R,j =1,...,6 and if the set J = {j € {1,3,4,6} :
B; # 0} # 0, then ;. > 0 for the minimal element j, € J. Moreover, the Lie algebra
n6.15(0, B;) is defined by the same commutators with as = 0.

Our aim in this work is to determine the sets of the geodesic vectors and the flat totally geodesic
subalgebras in the class C of the six-dimensional filiform metric Lie algebras. Our investigation
shows that in C only metric Lie algebras corresponding to the standard filiform Lie algebra allow
a flat totally geodesic subalgebra of dimension > 2 (cf. Theorems 3.2, 3.4, 3.8, 4.2, 4.3).

2. PRELIMINARIES

For any Lie algebra n, the lower central series of n is defined by n(® := n, n® = [n,n| and
n+ = [nn®] ¢ > 1. If n® is trivial for some integer k, then the Lie algebra n is called
nilpotent. Let k be the smallest integer so that n(®) is trivial, then n is said to be k-step
nilpotent. An n-dimensional nilpotent Lie algebra is called filiform if it is n — 1-step nilpotent.
We say an n-dimensional nilpotent Lie algebra n is N-graded filiform, if it can be decomposed
in a direct sum of one-dimensional subspaces n = @ | V; with [V}, V;] = V44 for all i > 1 and
Vi, V;] C Viy, for all i, j € N, where for convenience we set V; = 0 for ¢ > n.

Let Eg be a 6-dimensional Euclidean vector space with a distinguished orthonormal basis
{E\, By, E3, Ey, Es, Eg}. Let (n,(.,.)) be a filiform metric Lie algebra of dimension 6 defined
on Eg by the commutators and relations described in cases (1.3), (1.4), (1.5), (1.6). The lower
central series of the 6-dimensional filiform Lie algebra n is given by n") = span(Es, Ey, Es, E),
n® = span(Ey, Es, Eg), n® = span(FEs, Fg), n = span(Fs) which is the center ¢ of n, and
n® = {0}. Denote by a; the orthogonal complement of n® in n(~Y i = 1,2,3,4. Hence we
have a; = span(E), Fy), ay = span(FE3), a3 = span(Ey), a; = span(Es), and n = ¢}_a; D C.

According to |8, Lemma 1, 2|, we have the following:

Lemma 2.1. A subalgebra b in a nilpotent metric Lie algebra (n,(.,.)) is flat if and only if it is
abelian. A subalgebra by in (n,(.,.)) is flat totally geodesic precisely if each non-zero element of
b s geodesic.

Lemma 2.2. Let (n,(.,.)) be a 6-dimensional filiform metric Lie algebra. Fach non-zero vector
in Ul_a; U C is geodesic. Any subalgebra contained in U}_a; U C is flat totally geodesic.

Proof. IfY € (, then for every X € n we have [X,Y] = 0 and hence ([X,Y],Y) =0. Let Y € a;,
i =1,2,3,4. Since [X,Y] lies in n®® for any X € n we obtain ([X,Y],Y) = 0 which proves the
first assertion. According to Lemma 2.1 the second claim follows from the first assertion. O

We often use the following Proposition (see |1, Proposition 1.13, Theorems 1.17, 1.18 |):

Proposition 2.3. a) Filiform nilpotent metric Lie algebras do not possess any totally geodesic
subalgebra of codimension one.

b) A filiform nilpotent metric Lie algebra (n,(.,.)) possesses a totally geodesic subalgebra of
codimension two if and only if n is isomorphic to the standard filiform Lie algebra of dimension
n > 3.
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3. GEODESIC VECTORS AND FLAT TOTALLY GEODESIC SUBALGEBRAS OF METRIC LIE
ALGEBRAS ng14(cv, 55), Ne15(cv, B;) AND ng16(c;, ;)
In this section we consider the metric Lie algebras (ng14(cu, 55), (., -)), (ne15(cs, 85), (., .)), and
(n6,16(vs, B), (., .)). Our goal is to describe the sets of geodesic vectors and to compute the flat

totally geodesic subalgebras.
Let us start with the metric Lie algebra (ng14(cu, 5;), (., .))-

Theorem 3.1. Let (ng14(cv, 535), (.,.)) be the metric Lie algebra defined on E° by non-vanishing
commutators giwen by (1.8). The geodesic vectors of (ne14(a, B;), (.,.)) not belonging to a; Uay U
ag Uay U are the non-zero elements of the set Cy U Cy U Cy in the case asf + agff; = 0 = [y,
for a5y + as By # 0 these are the non-zero elements of the set C; U Cs U Cy, where
Cy :={bEy+ cE5 + dEy : b(aic+ prd) + casd = 0}, at least two of the numbers b, c,d are
non-zero with exception of the cases:
1.b=0, 2.d=0, 3.c=0with B %0,

Oy i={a(By = Z2Bg) + cBy + dBy + eBs :a # 0, asPy + azf = 0 = B,
5

e = (Bsa — %c)%, a(asc+ Brd + Bae + Baf) — c(ase + Bof) — f(Brd + caue) = 0},
5
L Qo & a1y _ Qo0ry By )
Cs .—{a (El Qs Fo + (045 * asf + 04257)E3 as(os P81 + o) E5) TdE a0,
a(arc+ Bid + Poe + Bsf) — c(aze + Bof) — f(Brd + cue) = 0},
C{4 ::{aE1+CE3+dE4+€E5+fE6:G#Oa f;é —(l%, f%ov €= (CCV5—CLB5) fa4 )
Qs at Qg

a a5 1 + anfy

(

n Oé5f + asa Oy

f(ﬁ7d —+ @46) = O}

Proof. According to (1.2) a non-zero vector Y = aEy+bEs+cEs+dE;+eEs+ fEgs € ng14(cv, 55)
is geodesic if and only if one has ([X,Y],Y) = 0 for all X = 30 2,E; € ngya(a, ;) or
equivalently if and only if the system of equations

e—Buf), alonc+ Prd+ Bae+ P3f) — c(aze + Bsf) —

bOé4f = 0,
a(*%e+ B5f) —casf =0,
(3.1) a(agd — 8020 e 4 3, ) + bage + dos f = 0,

a(a1c+51d+ﬁ26+63f) —0(043€+56f) _f(57d+044€) =0,
b(alc+51d+ﬁge)+c(a2d—Wﬁa;%e+ﬁ4f)+d(aé—fe+ﬂ5f) =0

is satisfied. Taking into account that o; # 0, i = {1,...,5} and assume that f = 0 the system
of equations (3.1) reduces to

ae =0,

acad + base = 0,

a(agc + f1d) — caze = 0,

b(aic+ frd + Bre) + c(aad — “5'31;;0‘2576) +d*e = 0.

(3.2)
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If a = 0, then from (3.2) we obtain

be =0 = ce,
b(aic+ fid) + cazd + d*L%e = 0.

In the case e = 0 = a = f the geodesic vectors of (ng14(ay, 5;), (.,.)) are the non-zero elements
of the set C| := {bEy + cEs+dE, : b(aic+ Bid) + casd = 0}. For b = 0 the element Y =
cE; +dE, € O, ¢,d € R, satisfies the condition ascd = 0. Since ay # 0 we obtain that either
¢ = 0 and the element Y = dFE}j is in a3, or d = 0 and the element Y = cFEj3 is in a5. If d = 0,
then for the element Y = bF, + cE5 € O, b, ¢ € R, the condition aybe = 0 holds. Since a; #0
we receive that either ¢ = 0 and the element Y = bFE, is in ay, or b = 0 and the element Y = cFEjs
is in a5. If ¢ = 0 and f; # 0, then for the element Y = bFy + dE, € C4, b,d € R the condition
bd = 0 is satisfied. Hence we get either b = 0 and the element Y = dF, is in a3, or d = 0 and
the element Y = bF, is in a;. Therefore the conditions for the set C; are proved.

In the case b = c =0 =a = f the vector Y = dFE, + eFs is geodesic if and only if either d = 0
or e = 0, and hence it lies either in a4 or as.

If e = 0, then from (3.2) we get

ad =0 = ac,
b (alc + /Bld) + capd = 0.

The case a = 0 = e = f is discussed above. In the case d = ¢ =0 = e = f we receive that any
non-zero vector Y = aF; + bE, is geodesic since it lies in the set a;.
Now, we suppose that b = 0. In this case the system of equations (3.1) reduces to the following
a*t%e = f(cas — afs),

dasf = —a(opd — 20t 02e g, f),

a(arc+ Brd+ Bae + Bsf) — c(aze + Bsf) — f(Brd + eaq) =0,
C(ond — WPEBe 4 g p) 4 (e 4 ) = 0.

(3.3)

Assume that a = 0. The first and second equations of (3.3) give ¢f = 0 = df. In the case
f =0 = a we obtain from the third equation of (3.3) that ce = 0. For c =0 = f = a = b the
vector Y = dFE, + eFs is geodesic if and only if it lies in a4 or in a3. For e = 0 = f = a the vector
Y = cE3 + dFE, is geodesic if and only if it is either in a3 or in as.

In the case ¢ = d = 0 = a the third equation of (3.3) gives fe = 0. In this case the geodesic
vector Y has either the form eFs5 € a4 or the form fFEg € (.

If a # 0, then the system of equations (3.3) is equivalent to the following system:

w8 = Lcas — affs),

(3.4) d(asf + aza) = (21125 e — g, f),
alarc+ brd + Bre + B3 f) — c(ase + B f) — f(Brd + eau) = 0.
Let f = —ag?. Putting this expression into the first and second equations of (3.4) we receive
Qa0
(35) e = (0,55 — C&5)m,
g (673
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The substitution of (3.5) into (3.6) yields that

(3.7) claspr + azflr) = ai ((04551 + af37)B5 + 06104554)

5
If a5 + aof7 = 0, then the equation (3.7) gives 84 = 0. In this case the geodesic vectors are

the non-zero elements of the set Cs.
If a5 + azf7 # 0, then from equation (3.7) we obtain:

_ Bs 14
@3 =o(et B v )

Putting (3.8) into (3.5) we receive

04204454 a
as(asfr + afr)

e=—

Hence the vector Y = al; + cEs + dE, + eFs + fEg is a geodesic vector if and only if it lies in
the set (.
If f # —a%?, then from the first and second equations of (3.4) we have

Jau B a (04551 + 37

) d -
ao o asf + asa o

e= (cag,—aﬁg)) €—ﬁ4f>-

In this case the geodesic vectors of (ng14(cv, 55), (., .)) are the non-zero vectors of the set Cy. For
f = 0 the elements in Cy has the shape Y = aF; + cE3, a # 0, and they satisfy the condition
ajac = 0. Therefore we have ¢ = 0 and hence the element Y = aF) lies in a4;. The intersection
C1 N Cy N Cy is empty because for the elements of C; one has a = 0 but for the elements in
Cy U Cy we have a # 0. Moreover, for the elements in Cs one gets f = —ag?, in contrast to this
for the elements in Cy we have f # —a%2. Hence the sets Cy and Cy are disjoint. Similarly we
can see that the sets (', C3 and C4 are disjoint. This completes the proof. O

Now we determine the flat totally geodesic subalgebras of dimension > 1 in the metric Lie
algebra (ng14(cvi, 85), (-, -))-

Theorem 3.2. Let (ng14(cv, 535), (., .)) be the metric Lie algebra defined on E° by non-vanishing
commutators given by (1.3). The flat totally geodesic subalgebras of dimension > 1 in the metric
Lie algebra (ng14(cu, 55), (., .)) are the 2-dimensional subalgebras:

(1) ba = span(Ey, Eg) in the case f3 = By = P5 = 0,
(2) b3 = span(Bs, Ey) in the case 8, = B7 = 0.

Proof. In view of Proposition 2.3 any flat totally geodesic subalgebra of (ng14(cy, 5;), (.,.)) has
dimension at most 3. Hence firstly we compute the 2- and 3-dimensional abelian subalgebras in
the Lie algebra ng14(a;, 5;).
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The 2- and 3- dimensional abelian subalgebras of the Lie algebra ng14(cv, ;) are:
b1 = span (Ey + ko Es + ksEy + kyEs,  FEs + 11 Eg) ,
ha = span (B + k1 Fy + ko Es + ksEy + kyEs,  FEg),
hs = span (Ey + k1 E3 + ko Es + ksEg, FE4+ 1 E5 + lsEg) with 87 + liay — kjas = 0,
hs = span (Es + k1 E3 + ke Ey + ksEs,  Eg),
hs = span (B3 + k1 Ey + ko Eg,  Es + 1 Eg)
he = span (B3 + k1 Ey + ko Es,  Eg),
b7 = span (Ey + k1 Fs, Es+ 11 Eg),
hs = span (Ey + 1 E5s, FEjg),
9 = span (F5, Fjg),
hio = span (Ey + koFEs + ksEy, FEs, Eg),
b1 =span (B3 + k1 Ey,  Es, Eg),
hi1o =span (Ey, Fs, FEg),
h13 = span (Ey + k1 E3 + koFs, Eqs+ 1 Es, Eg) with 57 + liay — ki = 0,

where kb kQ, lfg, k‘4, ll, I, € R.

The subalgebras bg, b9, b11, and hyo are not flat totally geodesic because for the vector
Es + Eg the fourth equation of (3.1) gives the contradiction oy = 0. Hence is the vector
Es + Eg € by N hio N by N by is not geodesic. Therefore the subalgebras by, Hig, h11, H12
are excluded. The subalgebras hg and h;3 are not flat totally geodesic since for the vector
Eys+ 1 E5s + Eg € bg N by3 the third equation of the system (3.1) yields a; = 0 which is a
contradiction. Therefore the vector Ey + [y E5 + Eg is not geodesic and hence by Lemma 2.1 the
subalgebras bg, hi3 are excluded, too The non-zer vector Eo + k1 E3 + koEy + ksFEs + Eg € by
is geodesic if and only if for a = 0,0 = f =1, ¢ = ki, d = ko, e = k3 the system (3.1) of
equations holds. From the first equation of (3.1) we get the contradiction ay = 0. Hence the
vector Fy + k1 E5 + koEy + ksEs + Eg € by is not geodesic. Thus the subalgebra b4 is not flat
totally geodesic. Therefore the case b, is excluded. The element E3 + k1 Ey + ko Es + Eg € bg is
geodesic if and only if for a = b =0,c = f = 1, d = k1, e = ko, the system (3.1) of equations
is satisfied. From the second equation of (3.1) yields the contradiction as = 0. Therefore the
subalgebras hg is not flat totally geodesic and hence it is excluded.

The non-zer vector F5 + [1Eg € by N b5 N h7 is geodesic if and only if for a = b =c=d =
0,e =1, f = Iy, the system (3.1) of equations holds. The fourth equation of (3.1) gives ayl; = 0.
As ay # 0 we receive that [; = 0.

We treat the subalgebra h;. The non-zero vector Fy + ko3 + k3Fy + kyFg € by is geodesic if
and only if forb=e =0,a = 1,c = ko, d = k3, f = k4 the system (3.1) of equations holds. From
the second equation of (3.1) we receive

(3~9) k4(55 - a5k:2) = 0.

Furthermore, The element F; + koF5 + ksFEy + kyEg + E5 € by is geodesic if and only if for
b=0,a=e=1,¢c=kod=ks, [f= ks the system (3.1) of equations is satisfied. The second
equation of (3.1) gives

10

(3.10)

+ ka(B5 — asks) = 0.

Qg
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Taking into account (3.9), equation (3.10) yields the contradiction #:%> = (. Hence the subal-
gebra b is not flat totally geodesic and therefore it is excluded.

Next we consider the subalgebra hs. According to the system (3.1) of equations the non-zero
vector F3 + k1 Ey + koEg € b5 is geodesic if and only if fora =b=e=0,c=1,d = ky, f = ko,
the system (3.1) of equations holds. From the second equation of (3.1) one obtains asks = 0. As
as # 0 we have ky = f = 0. Using this the fifth equation of gives ask;. Since as # 0 we receive
k1 = 0. But the element vector F3 + E5 € b is not geodesic because the fourth equation of the
system (3.1) gives the contradiction az = 0. Therefore the subalgebra b5 is excluded, too.

Here we deal with subalgebra h;. The element E, + k1 Eg € b7 is geodesic if and only if for
a=b=c=e=0,d=1,f =k, the system (3.1) of equations is satisfied. From the third
equation of (3.1) on obtains ask; = 0. Since az # 0 we get ky = 0. But the vector E; + F5 € by
is not geodesic because from the fifth equation of the system (3.1) we receive the contradiction
&125 = 0. Hence the subalgebra b7 is excluded.

Now we treat the subalgebra hy. The non-zero vector Ey + ki Fo + koE3 + ksEy + kyEs € by is
geodesic if and only if for f = 0,a = 1,0 = ky, ¢ = ko, d = k3, e = k4 the system (3.1) of equations
is satisfied. The second equation of (3.1) gives ajasks = 0. As ayas # 0 we get ky = e = 0.
Using this from the third equation of (3.1) we receive asks = 0. Since ay # 0 we have k3 = d = 0.
Applying this the fourth equation of (3.1) yields a1ks = 0. As ag # 0 we receive ky = ¢ = 0.
The element Ey + k1 Ey + Fg € by is geodesic if and only if fore=c=d=0,a=f=1,b=k
the system (3.1) of equations holds. From the first equation of (3.1) one has ayk; = 0. Since
ay # 0 implies that £ = 0. Additionally, The non-zero vector E; + Eg € b, is geodesic if and
only if for b =c=d =e =0,a = f =1 the system (3.1) of equations is satisfied. From the
second, third, and fourth equation we get 85 = 0, 84 = 0, and 53 = 0. Hence the assertion (1)
follows.

Finally we consider the subalgebra hs. The non-zero vector Ey + ki F3 + koEs + k3FEg € b3 is
geodesic if and only if for a =d = 0,b = 1,¢ = k1, e = ko, f = k3 the system (3.1) of equations
holds. The first equation of (3.1) gives asks = 0. As ay # 0 one has k3 = f = 0. Using this from
the third equation of (3.1) we obtain agks = 0. Since ag # 0 we receive ky = ¢ = 0. Applying
this the fifth equation of (3.1) one gets ayk; = 0. Since ay # 0 yields that k; = ¢ = 0. The
element Fy + 1 F5 + o Fg € b3 is geodesic if and only if fora =b=c=0,d=1,e =11,l =l
the system (3.1) of equations is satisfied. From the third equation of (3.1) we obtain asls = 0
which implies that Iy = f = 0. Using this the fifth equation of (3.1) gives ajasl; = 0. This
yields /; = 0. In addition the non-zero vector Ey + E; € b3 is geodesic if and only if for
a=b=c=f=0,b=d =1 the system (3.1) of equations holds. The fifth equation of (3.1)
gives 51 = 0. Taking into account the abelian condition when [; = k; = 0 we receive that g; = 0.
Therefore the case (2) is proved. This proves Theorem 3.2. O

Next we deal with the N-graded filiform metric Lie algebra (ngi5(cv, 5;),(.,.)) defined by
non-vanishing commutators given by (1.4). Firstly we give the set of its geodesic vectors.

Theorem 3.3. Let (ng15(cv, 535), (., .)) be the metric Lie algebra defined on ES by non-vanishing
commutators giwen by (1.4). The geodesic vectors of (ne15(, Bi), (.,.)) not belonging to a; Uay U
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a3 Uay U are the non-zero elements of the set Cy U Cs, where

Cy:={cEs+dE, + ey + fEs: f #0, ¢ #0, d = _—C(O‘Zo‘5e+ﬁ7f),
asf\ ay
%(a;j% + B7f> (ase + Bof + can) + c(Bae + Bsf) + easf =0},

Cy :={bEy + cE5 + dE, : b(aic + pid) + casd = 0} at least two of the numbers b, c,d are
non-zero with exception of the cases:
1.b=0, 2.d=0, 3. for By #0, ¢ =0.
Proof. Applying the commutators (1.4) and (1.2) we obtain that the non-zero element Y =

aEy +bEy+ cEs +dE, + eEs + fEg € ng15(, ;) is geodesic if and only if for the real numbers
a,b,c,d, e, f with respect to a basis {E1, Es, B3, Ey, E5, Eg} the system of equations

af =0,
aaze + basf =0,
(3.11) a(agd + Bse) + b(*2%5e + B7 f) = 0,

a(arc+ Brd + Pae) — c(“‘i—i‘se + B7f) —dasf =0,
blone+ frd + Bae + Bsf) + c(aad 4 fae + Bsf) + d(ase + Bs f) + easf =0

is satisfied. If @ = 0, then the second and the third equations of (3.11) gives bf = 0 = be. In the
case b = 0 = a the system (3.11) reduces to:

c(“22e+ frf) +dasf =0,

(6%}

3.12
( ) { c(aod + Pae + Bsf) + d(ase + B f) + easf = 0.
Suppose that f = 0. From the first equation of (3.12) we receive either ¢ = 0 or ¢ = 0. In
the case ¢ = 0 the vector Y = dE, + eEj5 is geodesic of (ng15(ay, 5;), (.,.)) if and only if it lies
either in a4 or in a3, whereas if e = 0 the vector Y = cEj3 + dEy is geodesic of (ng 15(cv, 55), (., .))
precisely if it lies either in a5 or in 4as.

Assume that f # 0. From the first equation of (3.12) we obtain
(3.13) a=—(

—Ef e"‘ﬁ?f)-

Substituting (3.13) into the second equation of (3.12) we recieve that
—C¢ [
—( 2 5e+67f>(ca2 + aze + Bof) + c(Bae + Bsf) + easf = 0.
asf\ oy
In this case the vector Y = cEs + dEy + eEs + fEg, f # 0 is geodesic of (ng15(ay, 55), (., .)) if
and only if it lies in the set

C (a0

Oy

Cri={cBy +dBy+eBs + fBq: f #0, d = — (22 4 Brf),
asf\ ay
%(a;jq’e + 67f> (ase + Bof + cag) + c(Bae + Bsf) + eayf = O}.

If ¢ = 0, then any vector Y = eF5 + fEs € C; lies either in a4 or in (. Hence we get the set C;
in the assertion.

In the case f = e =0 = qa, the vector Y = bE, + cE3 + dE, is geodesic of (ng15(as, 5;), (., .))
if and only if it lies in the set C5. The set C5 coincides with the set C] in the filiform metric Lie
algebra (ng14(cv, 55), (., .)). Therefore the validity of the condition for the numbers b, ¢, d in the
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case of the set ()5 in the assertion can be proved in the same manner as in the proof of Theorem
3.1 in the case (.
Now, if f =0, the system (3.11) of equations reduces to

ae = 0,

ad + 52be = 0,

a(arc+ fid) — %2%ce = 0,

b(age + Brd + Bae) + c(aad + Pae) + daze = 0.

We discussed the case a = 0 above. In the case e = 0, from the second and the third equation
of (3.14) one has ad = 0 = ac. The case f = e = a = 0 is discussed above. In the case
d =c =0 = e any vector Y = aF; + bE, is geodesic because it lies in a;. The intersection
C1 N Cy is empty since for the elements of Cy one has f = 0 but for the elements in C; we have
f # 0. This proves Theorem 3.3. OJ

(3.14)

According to |2, Theorem 5.17], the metric Lie algebra (ng 15(c, 5;), (., .)) is isomorphic to the
N-graded filiform Lie algebra (mz(6), (., .)).

Theorem 3.4. Let (ng15(ay, 535), (.,.)) be the metric Lie algebra defined on E® by non-vanishing
commutators given by (1.4). Then the unique flat totally geodesic subalgebra of dimension > 1

in (ne 15, B5), (., .)) is be = span(Es, Eg) in the case B = B = 0.

Proof. In view of Proposition 2.3 and |2, Theorem 4.2|, the dimension of flat totally geodesic sub-
algebras of (ng 15(y, 5;), (.,.)) is at most 3. Hence firstly we determine the 2- and 3-dimensional
abelian subalgebras in the Lie algebra ng 15(ay, 5;).

The 3- and 2-dimensional abelian subalgebras of ng15(c, ;) are:

by = span (Ey + k1 B3 + ko Ey,  Es,  Eg),

ho = span (B3 + k1 Ey, FEs, Fg),

hs = span (Ey, Fs, FEg),

by = span (B3 + k1 Eg, E,+FEs, Es5+ s1Fg),
hs = span (E3 + k1 FE5, E,;+ 1L Es, Eg),

he = span (B3 + k1 Ey + ko Es,  Eg),

by = span (Ey + k1 Es + ko B + ks Ey + kyEs,  Eg),
bs = span (s + k1 E3 + ko Ey + k3B,  Es + s1Es)
ho = span (Ey + k1 E3 + ko By + ksEs,  FEg),

hio = span (Es + k1 Es + koFg, E4+ 1 Es+ [2Es),
b1 = span (s + k1 By + ko Eg,  Es + s1Eg)
bio = span (Ey + lo B, Es + s15s)
hi13 = span (Ey + 1 E5,  Eg),
b14 = span (Es, Es),
where ki, ko, k3, kg, 11,102,571 € R.
The subalgebras by, hs, b3, and b4 are not flat totally geodesic because for the vector E5+ Fg

the fifth equation of (3.11) gives the contradiction oy = 0. Hence is the vector Es + Eg €
b1 Nhy N h3 N Bhy is not geodesic. Therefore the subalgebras by, ha, b3, h14 are excluded. By the
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system (3.11) of equations the vector Ey+1sFg € haNbya, respectively Es+s1FEg € haNbhsNhi1Nby2,
respectively Fy+11 E5 € hsNhy3 is totally geodesic precisely if and only if one has asls = 0 = Fgls,
respectively ays; = 0, respectively asgly = 0. Since asayaz # 0 we receive that I =13 = s1 = 0.
Using this for the vector E4+ E5 € hyN b1 the fifty equation of (3.11) leads to the contradiction
a3 = 0, whereas for the vector Ey+ Eg € hsNh13 the fourth equation (3.11) gives the contradiction
as = 0. Therefore the vectors Es + E5 € by N b1, By + Eg € hs N b3 are not geodesic. Hence
the subalgebras by, b5, hi2, 13 are excluded, too.

The non-zero vector Ey + k1 Es + koFs + ksEy + kyEs + Eg € b7 is not geodesic bacause the
first equation of (3.11) leads to the contradiction 1 = 0. Therefore the subalgebra b7 is not flat
totally geodesic and hence it is excluded.

The element Es+ ki Fs+ ko Ey+ ks Eg + E5 € bg is geodesic if and only if for b =e =1, ¢ = ky,
d = ko, f = k3 the system (3.11) of equations is satisfied. From the second equation of (3.11)
we get asks = 0. As a5 # 0 we have k3 = 0. Using this the third equation of (3.11) gives the
contradiction % = 0. Hence the vector E| + k1 F3 + koFy + k3FEg + E5 € bg is not geodesic.
Therefore the subalgebra bs is excluded.

The non-zero vector Fy+ ki E3+ ko Fy+ ksEs+ Eg € by is geodesic if and only if for b= f =1,
¢ = ki, d = kg, e = k3 the system (3.11) of equations holds. From the second equation of (3.11)
we get the contradiction as; = 0. Hence the vector Fy + k1 Es + koEy + ksFEs + Eg € bg is not
geodesic. So the subalgebra hg is excluded.

The element E3+ k1 E4+ ko Eg € by is geodesic if and only if fora =b=e=0,c=1, d = ky,
f = ko the system (3.11) of equations is satisfied. The fourth equation gives

(315) 57]{72 + Oé5]€1]€2 =0.

In addition, The non-zero vector E3 + ki E4 + koFEg + E5 € b1 is geodesic if and only if for
c=e=1,d=ky, f = ko the system (3.11) of equations holds. The fourth equation of (3.11)
yields
(3.16)

(65187

+ 67]{32 + 045]{51]{32 = 0.

Oy
Comparing (3.15) with (3.16) we obtain the contradiction % = 0. Hence the vector E5 +
k1Es + koEg + E5 € b1y is not geodesic and the subalgebra hq; is excluded.

The vector Fy + 1 5 + loEg € by is geodesic if fora =b=c=0,d=1,e =1y, f =[5 the
system (3.11) of equations holds. The fourth and the fifth equations of (3.11) yield asly = 0,
Oégll +6612+Ck4lll2 =0. As 53 7é 0 we obtain that ll = lg = 0. The element E3+k1E5—|—l€2E6 S
B1o is geodesic if for a = b =d =0, c = 1, e = Iy, f = Iy the system (3.11) of equations is
satisfied. From the fourth and fifth equations of (3.11) we get

a2 kfl + Brko = 0, Bak1 + Bska + cukiky = 0.

(3.17)

The element E5 + E4 + k1E5 + koFg € hyg is geodesicif fora=0=0,c=d=1,e=1;, f =1
the system (3.11) of equations is valid. From the fourth of (3.11) one has
[6D)0%3

(318) k'l + 67]6’2 + Oz5]€2 = 0.

071
Comparing it with the first equation of (3.17) we obtain azky = 0. Since a5 # 0 one gets ko = 0.
Using this from (3.18) we receive that also ks = 0. But the vector E5 + F4 € byg is not geodesic
since fora =b=e = f =0, c = d =1 the fifth equation of (3.11) gives the contradiction ay = 0.
Therefore the subalgebra b is excluded.
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Finally we treat th subalgebra hg. The element E5 + ki Ey + ko E5 € bg is geodesic if and only
if the system (3.11) of equations are satisfied for a = b= f =0, c =1, d = ki, e = ko. From
the fourth and fifth equations of (3.11) we obtain 2%k = 0 agky + Baka + kiasks = 0. As
asas # 0 we get ko = k1 = 0. Using this the vector E3 + FEjg lies in € hg, which is geodesic if for
a=b=d=e=0,c=f =1 the system (3.11) is valid. From the fourth and fifth equations
of (3.11) we receive f; = 5 = 0. Therefore the subalgebra hs = span(FEs, Es) is flat totally

geodesic in the case f5 = f7 = 0. Hence Theorem 3.4 is proved. O

Now we treat the filiform Lie algebra (s 15 defined by the non-vanishing Lie brackets
[Glu G2] = G37 {Glu G3] = G47 [Gla G4] = G57 [G27 G5] = G67 [G47 G3] = G6'

The following theorem describes the isometric isomorphism classes of the metric Lie algebras
(¢6.16, (., -)) and the group of orthogonal automorphisms of (ng 16(cv, 5;), (., .))-

Theorem 3.5. Let (.,.) be an inner product on the 6-dimensional filiform Lie algebra (g 16.

(1) There is a unique metric Lie algebra (ng 16(cv, B;), (., .)) which is isometrically isomorphic
to the metric Lie algebra ({s 16, (.,.)) with a; > 0,4 = 1,...,4 and one of the following
cases is satisfied:

(i) b1 =Bz = Bs=Ps = s = Ps,
(i) B3 >0 or B5 >0, By = s = Bs = s = 0,
(i4) B >0 or By >0, p1 = B3 = s = Bz = 0,
(iv) B1 >0 or fs >0, B3 =4 = s = Bs =0,
(v) at least two of the elements of the set {B1, B3, Bu, Bs, Bs, B3} are positive with the
exception of the cases (51 > 0,083 > 0), (B35 > 0,55 > 0), (B4 > 0,5 > 0).

(2) The group OA(ng16(c, B;)) of orthogonal automorphisms of the metric Lie algebra
(n616(, Bj), (., .)) is the following group:

(a) in case (1i) one has OA(ng16(0, Bi)) = {TE; = e1E;,i = 1,6,TE; = eF;,1 =
2,4, TE’Z = €1€2Ei,i = 3,5, €1,82 = :tl} ~ Z2 X Zg,

(b) i case (111) one has OA (n6,16(ai76j)) = {TE2 = EQ,TE4 = E47TEZ‘ = €Ei,i =
1,3,5,6, ¢ = +1} ~ Z,,

(c) in case (1liil) one has OA (ng16(cv, ;) = {TE3 = E3,TEs = E5,TE; = ¢E;,i =
1,2,4,6, e = £1} ~ Z,,

(d) in case (1iv) one has OA (ng16(cu, ;) = {TEW = E\,TEs = Es,TE; = €E;,i =
2,3,4,5, e = £1} ~ Z,,

(e) in case (1v) the group OA (ne16(c, B;)) is trivial.

Remark 3.6. The proof of Theorem 3.5 can be found in [7, Theorem 3.8, p. 8.] with the
exception of the case (1ii) and its group of orthogonal automorphism given by (2b) which are
missing from there.

Firstly we determine the geodesic vectors of the filiform metric Lie algebra (ng16(cv, 55), (., -))-

Theorem 3.7. Let (ng16(cv, 535), (.,.)) be the metric Lie algebra defined on E° by non-vanishing
commutators given by (1.5). The geodesic vectors of (ne 16, Bi), (.,.)) not belonging to a; Uay U
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a3 Uay U are the non-zero elements of the set Cy U Cs, where

Cy =={bBy + cBy + dBy + eBs : blare + frd + Be) + ¢ azd - (2ahr aﬁs)e) +dage = 0},

! e’
at least two of the numbers b, c,d, e are non-zero with ea:cept;on of ﬂje cases:
1.b=c=0, 2.b=e=0, 3.d=e=0,

4. b=d =0 with agayf + a1asfs # 0, 5.c=d =0 with By # 0,

6. c=e=0 with g, #0,

02 Z—{ <E1 — @EQ) + CE3 + dE4 + €E5 + fEﬁ : le 7& O, ae = i <a5668 + CO@OM - aﬁB)a

iy Q3 iy (0751

ac = i(‘ﬁ? + dfs + eay) — < (Brd + Bae + B3 f),
ap aq
ad:a%((asﬁl +a2ﬁ8)e—ﬁ4f> +i<a5657 _da3a4>7

651 Oy Qg Qg (651

d(aac + aze) = a% (e + Brd + Pae + B f) + ) — [ (cBa+dps + ef) }

4

C€<04351 L Q208
a1 Ay
Proof. According to (1.2) the vector Y = aFE; + bFEy + cE5 + dEy + eEs + fEg is geodesic of
(n6.16(cis B5), (., .)) if and only if the following system of equations

(3.19)
([ f(aBs + bay) =0,

a(ase+ Bsf) + f(bﬁs cea) =0,

oand — (38 4 2280 1 By + 05y + d2asa) = o

a(aic+ ﬂld + Bae + Bsf) — f (cBr +dfs + eay) =0,

blase+ Brd + Boe + Bof) + e and — (%2 4 22%)e 1 B f) + d(age + B5f) + eBof =0

\

is satisfied for a,b,c,d,e, f € R.

Firstly, we suppose that f = 0. Take into account that o; > 0,7 = 1,...,4, the system (3.19)
of equations gives ae = 0 = ad = ac.

Fora = 0 = f the vector Y = bEs+cE3+dEs+eEs is geodesic of (ng 16(cy, 5;), -(., .)) if and only
if it lies in set C) = {bFEy+cE3+dE;+eFEs : b(alc+ﬁ1d+ﬁge)+c(a2d—(a;—?jto‘;—fs)e)deage = 0}.
If b = ¢ = 0, then for the element Y = dE;+eF5 € C}, d,e € R one has dage = 0. As as # 0 we
obtain that Y lies either in a4 or in a3. If b = e = 0, then for the element Y = c¢E5 + dE, € C,
c¢,d € R we have casd = 0. As as # 0 we obtain that Y lies either in a3 or in a;. In the
case d = e = 0 for the element Y = bEy + cE5 € C}, b,c € R one gets bajc = 0. Since
a1 # 0 we receive that Y lies either in a3 or in a;. In the case b = ¢ = 0 for the element
Y = cE; 4+ eF5 € C4, ¢c,e € R one obtains ce(a;—fl + a;—fs) = 0. If azayf + ajasfs # 0, then
we have ce = 0, or equivalently the element Y is either in a3 or in 45. In the case ¢ = d = 0 for
the element Y = bE, 4+ eF5 € C1, b,e € R we receive bfBse = 0. If By # 0, then the element Y
lies either in a4 or in a4;. In the case ¢ = e = 0 for the element Y = bE, + dFE, € C1, b,d € R
we receive bfid = 0. If 1 # 0, then the element Y lies either in a3 or in a;. This proves the
conditions for the set ' in the theorem. I

For e =d=c=0= f any vector Y = aF; + bE, is geodesic of (ng16(v, 55), (., .)) because it
lies in a;.
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Secondly, assume that afg + bay = 0. Hence we receive b = —%. Putting this expression
into (3.19) one obtains that
(3.20)
_ _f (aBeBs azaq
ae = ag( 2 afs),
— a (3B | 2B\, _ S (aBeBr _ josas
a’d—a2<< a11+ ay )6 ﬁ4f>+o¢2< ay d ;14>’

ac = L (cBr + dfs + eau) — 2 (Brd + Bae + Bsf) |
ag—i (aic+ frd + Pre + Bsf) + ce(az—fl + O‘;—fs) — f(cBy+ dpBs + eBs) = d(azc + aze).
Suppose that a = 0. Hence one has b = 0. From system (3.20) of equations we receive fc =0 =
fd = fe. The case f =0 = a = b is discussed above. If c=d =e =0 = a = b, then any vector
Y = fEq, f € R is geodesic since it lies in (.
In the case a # 0 the geodesic vectors of (ng16(cv, 5;), (.,.)) are in the set

(3.21)

Cy :{a(El — g—iEz) +cEs+dEy+eFEs+ fEg:a#0, ae = Oéi?)(ai?fs + ca;?4 — aﬁg,),
ac =L (cBr+ dBs + eaw) — L (Bud+ e + Baf).
Qanq aq
_a (,azf | aofs [ (aBsPq Q304
ad—a_2<( aq + Y )6_B4f)+04_2( y _dOél )7
d(age + aze) = a& (cne+ Brd + Pae + B f) + ce(oqiﬁ1 + a258> — f(cBs+ dBs + €efs) }
Qg (03] Qg

If f =0, then from (3.21) it follows that e = d = ¢ = 0. Hence any element Y = a(FE; — g—iEg)
lies in a;. Therefore we may assume that f # 0. The intersection C; N Cy is empty since for
the elements of C} one has a = 0 and f = 0 but for the elements in C5 we have af # 0. This
completes the proof. 0

Theorem 3.8. Let (ng16(cv;, 5;), (.,.)) be a metric Lie algebra defined on E° by non-vanishing
commutators given by (1.5). The flat totally geodesic subalgebras of dimension > 1 in
(ne,16(0vs, B), (., .)) are the 2-dimensional subalgebras:

(1) B1o = span(Es, E5) in the case azayf3 + asayfs = 0,

(2) b7 = span(Ey — g—iEz, Eg) in the case B3 =0, fi= Bolt g = Bobs

(o7} ayg

(8) bs = span(Eq + k1 Ey + koEs, Es+ 1 Ey + I5Es5) if and only if the equations
T _ 0, Biki + Boky + kiasky = 0,

Br 4+ s + laas + Ky

a1

05351 + aQﬁS)lz + llOéglg = 0,
aq Qy

ay + fily + Baly 4 coky — (agﬁl + 2l

a1 Oy

(3.22) azly — (

)kg + Oég(k‘llg + llkg) =0

are satisfied,
(4) bo = span(Es + %Eg - 0%3(51 + gigi)E& Ey) if and only if for o;,5;, i = 1,3,4,
7 =1,9 the equation
(a1)?Bs n (51 n /88a1) < B & i Psay (04351 n 04258)> —0

Q304 Q30y (0%} (a3)2a4 03] Qg
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holds.

Proof. According to Proposition 2.3 any totally geodesic subalgebra b of (ngi6(a, 55),(.,-))
has dimension less or equal to 3. Firstly we determine the 2- and the 3-dimensional abelian
subalgebras of the Lie algebra ng 16(cv, 5;).

The 3- and the 2-dimensional abelian subalgebras of (ng 16(cv, 5;), (., .)) are:

by = span (Ey + ki1 Ey + kolos + ksEy,  E5,  Eg) with 8s + kiay =0,
by =span (B3 + k1 Ey, Es, Eg),
h3 = sSpan (E47 E57 EG) )

( Qi30ly

by =span (Ey + k1 Ey + koBos,  Es+ UL Ey+ 1B,  Eg) with 87 + 1185 + lao + ky =0,
aq
(6%:10
[]5 = Span (EQ —+ kflEg + k?QE5, E4 + l1E5, EG) Wlth 68 + l10é4 — kl ; 1 0,
1
hﬁ = sSpan (El + /ﬁEQ + /{ZQE:J, + k3E4 + /{34E6, E5 + 81E6> with ]{71 = —%,
4
by = span (B + kyEy + ko s 4 ks By + kyEs,  Eg),
bs = span (Ey + k1 By + ko s + ksEg, Es+ 1 Ey+ 1 Es + [3Eg)
with 87 + 11 8s + laay + ki 2ot =0,
o
h9 = span (EQ + ]{ZlEg + /{52E5 + /{53E6, E4 + 11E5 —+ lgE(;) with 68 + llOé4 — ]{31 a;a4 = 0,
1

Bio = span (Es + k1 By + koEs,  Es + s1Es),
b1 = span (Ey + k1 B + ko Ey + ksE5,  Eg) ,
hi2 = span (B3 + 1By + 1bEs,  Eg),
(
(
(

his =span (Ey + o Es, Es + s1Es),
his = span (B, + 1 E5, Eg),
h15 = Span E5a EG) )

where /{51, /{52, 1{33, ll, lg, l3, 81 € R.

The vector E5 + Eg € h1 N hy N b3 N b5 is not geodesic, because putting a =b=c=d = 0,
e = f = 1 into the fourth equation of the system (3.19) we obtain the contradiction ay = 0.
Therefore the subalgebras by, b, b3 and b5 are not flat totally geodesic. Hence they are excluded.
The vector E5 + 11 Ey + o FEs5 + Eg € hy N byo is not geodesic, since puttinga =b=0,c= f =1,
d =11, e = Iy into the second equation of the system (3.19) we get the contradlctlon agf“ = 0.
Hence the subalgebras b4 and by, are not flat totally geodesic. The vector Ey+11 E5+ FEg € hsNbyy
is not geodesic, because substituting a =b=c=0,d =1= f, e = [; into the third equation of
the system (3.19) we receive the contradiction #2%4 = 0. Hence the subalgebras b5 and b4 are
not flat totally geodesic. The vector F5+s1FEg € hgMNhioMNhys is geodesicif fora =b=c=d =0,
e =1, f = s; the system (3.19) of equations holds. From the fourth and fifth equations of (3.19)
we have ays; = 0, fBgs; = 0. Since ay # 0 we get sy = 0. The vector Ey + lsFg € b3 is
geodesic if fora =b=c=e=0,d =1, f = [y the system (3.19) of equations is satisfied.
From the third, fourth and fifth equations of (3.19) we have “uly =0, Bslo = 0, Bsla = 0.
Since “3—?“‘ # 0 one has I = 0. But the vector FE4 + E5 € b3 is not geodesic because the
substitution a =b=c= f =0, d = e = 1 into the fifth equation of the system (3.19) leads to
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the contradiction a3 = 0. Therefore the subalgebra 3 is not flat totally geodesic. The vector
Es 4+ k1Es + ko Ey 4+ ksEs + Eg € byp is not geodesic, since putting a = 0, b = f =1, ¢ = ky,
d = ko, e = k3 into the first equation of the system (3.19) we obtain the contradiction ay = 0.
Hence the subalgebra bhi; is not flat totally geodesic. The vector E3 + k1Ey + koEg € by is
geodesic if fora=b=e=0,c=1,d =k, f = ky the system (3.19) of equations holds. The
second, fourth and fifth equations yield

Qs
(3.23) ky—— =0, ko(Br + k1Bs) =0, asgky + Baky + k1 Bsky = 0.

a1

As "g—‘f“ # 0,a # 0 we receive that ky = k; = 0. The vector E3 + E5 € by is geodesic if for
a=b=d=f=0,c=e=1, the system (3.19) of equations is satisfied. The fifth equation
gives O‘;—? + ai—fs = 0. Hence the subalgebra h;o = span(FEs, E5) is flat totally geodesic if and
only if agay8; + agaq B = 0. This proves the case (1).

The non-zero vector Fy + k1Fs + koFs + ksFEy + kyEg € bg is geodesic if and only if for
a=1e=0 b=k = —g—i,c = ko,d = ks, f = k4 the equations (3.19) holds. The second
equation of (3.19) gives

(3.24) ki(Bs + Bski —

30y

ky) =0

aq 2)
Furthermore, the element Ey + E5 + k1 FEs + koFs + ksEy + kyFg € bg is geodesic if and only if
fora=1e=1b=Fk = —g—i,c = ko,d = k3, f = k4 the system (3.19) of equations is valid.
From the second equation of (3.19) one has

Q304

(3.25) o + ka(Bs + Bsky —

k‘z) = O

aq

Comparing (3.25) with (3.24) we obtain the contradiction a = 0, which excludes the subalgebra
De-

The non-zero vector Fy + k1 FEs + koFs + ksEy + kyEs € by is geodesic if for a = 1, f = 0,
b=ki,c=ky,d= ks e=ky the system (3.19) of equations holds. From the second equation of
(3.19) we get asky = 0. As a3 # 0 we have e = k4, = 0. Using this from the third equation of
(3.19) we obtain asks = 0. Since ay # 0 we receive that d = k3 = 0. Taking into account that
e = d = 0 from the fourth equations of (3.19) we have a1ky = 0. As oy # 0 we obtain ky = 0.
Using this the vector F; + k1 FEs + Eg € b7 is geodesic if fora =1,b=kj,c=d=e=0,f =1
the system (3.19) is valid. From the first equation of (3.19) we receive that k; = —g—i. Using this

it follows from the second equation of (3.19) that 85 = 62—468, whereas from the third equation of
(3.19) that g, = ﬁg—? From the fourth equation of (3.19) we obtain that 53 = 0. This proves
case (2) of the Theorem.

Now, we consider the subalgebra hg. The element Fy + k1 Ey + koEs + ks Fg € by is geodesic
if and only if for a = ¢ =0, b =1,d = ky,e = ks, f = k3 the system (3.19) of equations holds.
The first equation of (3.19) yields ayks = 0. As oy # 0 one gets f = k3 = 0. Applying this the
fifth equation of (3.19) gives

(326) 61]61 + ng’g + k’lOégk’g = 0.

The non-zero vector E3 + l1Ey + loE5 + [3Fg € bg is geodesic if fora=0=0,c=1,d =1l;,e =
lo, f = I3 the system (3.19) of equations is satisfied. It follows from the second equation of (3.19)
that “2%/; = (0. Since “2** 2 0 we receive f = [3 = 0. Using this the fifth equation of (3.19)



On six-dimensional filiform metric Lie algebras 17

gives

a a
sl _( 301 4 28
o Oy

(327) )12 + llOéng = 0.

Let us consider the non-zero vector Ey + E3 + (k1 + 1) Ey + (k2 + l2) Es € bs. Tt is geodesic if
and only if and only if for a = f = 0,b = ¢ = 1,d = ky + l1,e = ky + [ the system (3.19) of
equations is valid. From the fifth equation of (3.19) one has
azf | aefs

+
Qg Oy

(3.28) 041+51(k’1+l1)+52(k2+12)+042(k’1+l1)—( )(k2+lz)+(k1+ll)a3(k2+lz) =0.

Taking into account (3.26) and (3.27) equation (3.28) reduces to

asﬂl X a2ﬁs

a7 Oy

(329) oy + Blll + /6212 + OéQk?l — ( )/{32 + Oég(]{fllg + llka) = 0.
Therefore the subalgebra by is flat totally geodesic if and only if it satisfies the conditions of the
case (3.22) in the Theorem.

Finally we treat the subalgebra hyg. The non-zero vector Ey + [1E5 + [oFEg € by is geodesic
precisely if fora =b=c¢=0,d =1, e =1, f = I the system (3.19) of equations is satisfied.
From the third equation we obtain %2/, = 0. As 2% 2 0 we have f =l = 0. Using this
the fifth equation of (3.19) gives agly = 0. Since ag # 0 one gets [; = 0. Using this from the
condition fg + liay — ky ag‘:“ = 0 to be abelian the subalgebra by we receive that k; = % The
element Fo + k1E3 + koFs + ksFEg € bg is geodesic if and only if fora =d =0,b=1, ¢ = ky,
e = ko, f = k3 the system (3.19) of equations holds. From the first equation of (3.19) we have
ksay = 0. As oy # 0 it follows that f = k3 = 0. Using this the fifth equation of (3.19) yields

as By n o f3s

aq (671

The element Fs+ k1 E3+ ko Es + Ey € by is geodesic precisely if fora= f=0,b=d =1, c = ky,
e = ko the system (3.19) of equations is valid. From the fifth equation of (3.19) we obtain

(330) a1k1 -+ ngg — klkg(

) =0,

aszf Qg 08
P
aq )y

(331) Oélkl + 51 + ﬁgkg + kl (042 — ( )/{:2) -+ ang =0.

Taking into account equation (3.30) equation (3.31) reduces to
(332) 61 + klOég + @3]€2 = 0.

Putting the expression for ki into (3.32) we obtain that ko = —(%3(61 + 68—0‘) Substituting

1

gy
the expressions of k; and ko into (3.30) for the parameters «;, §;, i = 1,3,4, j = 1,8 of the
filiform metric Lie algebra (ng16(cv, 55), (., .)) we obtain equation (3.31). This proves case (4) of
the Theorem. Thus Theorem 3.8 is shown. U

4. GEODESIC VECTORS AND FLAT TOTALLY GEODESIC SUBALGEBRAS OF LIE ALGEBRAS
ng17(0u, B;) AND ng18(cy, 5;)

In this section we deal with the metric Lie algebras (ng17(cv, 55), (., ) and (ng1s(cv, 55), (-, -))-
The mnext result describes the sets of geodesic vectors of the metric Lie algebras

(nﬁ,j(a/i,ﬁj)v <'7 >)7] S {177 18}
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Theorem 4.1. Let (ng17(cv, 535), (.,.)) be the metric Lie algebra defined on E° by non-vanishing
commutators given by (1.6). The geodesic vectors of (ne17(ay, Bi), (.,.)) not belonging to a; Uay U
as Uay U are the non-zero elements of the set Cy U Cy, where

Cy :={dE;+ eE5+ fEs: d(aze + G f) + eauf = 0,d, e, f € R}, such that at least two of the
numbers d, e, f are non-zero with exception of the cases:

1. f=0, 2.d=0, 3. e =0 with Bg # 0,

Cy :={bEy + cE3 + dE;y + eEs : b(aic + frd + Pee) + c(aod + Bae) + dage = 0,b,¢,d, e € R},
such that at least two of the numbers b, c,d, e are non-zero with exception of the cases:
1.b=c=0, 2.b=e=0, 3.d=e=0, 4.b=d =0 with By # 0,

5. ¢=d =0 with By # 0, 6. c=e=0, with §; # 0.

Let (ng1s(cu, B35), (., .)) be the metric Lie algebra defined on ES by the non-vanishing commutators
given by (1.6) with as = 0. The geodesic vectors of (ng15(cv, 5;), (.,.)) not belonging to a3 Uay U
a3 Uay U ( are the non-zero elements of the set

C3:={bEy + cE3 +dEy + els + fEg - b(arc+ pid + Bae + B3 f) + c(aad + Bse + B f)+
d(aze + Bsf) + easf = 0,b,c,d,e, f € R}, such that at least two of the numbers b, c,d, e, f
are non-zero with exception of the cases:

l.b=c=d=0, 2.b=c=f=0, 3.d=e=f=0,

4. b=c=e =0 with B # 0, 5.c=d=f =0 with B # 0,

6.c=d=e=0, with B3 # 0.

Proof. Using the commutators (1.6) and the claim (1.2) we obtain that the non-zero element
Y = aFE) + bEy + cE5 + dEy + eE5 + fEg € ngar(y, B;) is geodesic if and only if for the real
numbers a, b, ¢, d, e, f with respect to a basis {F1, Fy, F3, Ey, E5, Eg} the system of equations

af =0, ae =0,

acsd + bas f = 0,

a(ayc+ fid) — casf =0,

blarc+ prd + Bae + Baf) + c(aad + Bae + Bs f) + d(ase + Bs f) + easf =0

is satisfied. If a = 0, then the third and the fourth equations of (4.1) give bf = 0 = cf. In the
case b = c = 0 = a, the vector Y = dE, +eFEs+ f Eg is geodesic of (ng17(cy, 55), (., .)) if and only
if it lies in the set C) := {dE, + eEs + fEs : d(ase + Bsf) + easf = 0}, d,e, f € R. For f =0
the element Y = dFE, + eFs € C, d,e € R, satisfies the condition asde = 0. Since az # 0 we
obtain that either d = 0 and the element Y = eFs is in a4, or e = 0 and the element Y = dF,
is in a3. If d = 0, then for the element Y = eE5 + fEs € C4, e, f € R, the condition ayef = 0
holds. Since ay # 0 we receive that either e = 0 and the element Y = fFEg isin (, or f =0 and
the element Y = eFj5 is in a,. If e = 0 and S # 0, then for the element Y = dE, + fFEs € C4,
d, f € R, the condition df = 0 is satisfied. Hence we get either d = 0 and the element Y = fFEjg
isin ¢, or f = 0 and the element Y = dFE} is in a3. Therefore the conditions for the set ' in
the theorem are proved.

In the case f = 0 = a the non-zero vector Y = bE; + cFE5 + dE4 + eFs5 is geodesic of
(ne17(cvi, B5), {.,.)) if and only if it lies in the set Cy := {bEy + cE3 + dEy + eEs : b(ayc + fid +
Bae)+c(agd+Bae) +dase = 0}, b, ¢c,d,e € R. If b = ¢ = 0, then the element Y = dE, +eEs € Cy,
d,e € R, satisfies the condition azde = 0. Since a3z # 0 we obtain that either d = 0 and the

(4.1)
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element Y = eFs is in a4, or e = 0 and the element Y = dF, is in a3. If b = e = 0, then for the
element Y = cBs + dE, € Cs, ¢,d € R, the condition ased = 0 holds. Since ap # 0 we receive
that either ¢ = 0 and the element Y = dFE, is in a3, or d = 0 and the element ¥ = cFEj3 is in
dy. If d = e = 0, then for the element Y = bE, + cFE5 € Cy, b,c € R, the condition a;bc = 0
is satisfied. As a; # 0 we get either b = 0 and the element Y = c¢Fj3 is in ag, or ¢ = 0 and the
element Y = bFy isin a;. If b =d = 0 and 4 # 0, then for the element Y = cE3 + eE5 € Cy
the condition ce = 0 holds. Hence we have either ¢ = 0 and the element Y = el is in ay,
or e = 0 and the element Y = cF3 is in a5. If ¢ = d = 0 and [y # 0, then for the element
Y = bE, + eE5; € Cy, b,e € R the condition be = 0 holds. Therefore we get either b = 0 and
the element Y = eFj is in a4, or e = 0 and the element Y = bE, is in a;. Finally, if c = e =0
and 31 # 0, then for the element Y = bE, + dE, € C5, b,d € R the condition bd = 0 holds. It
follows that either b = 0 and the element Y = dF, is in a3, or d = 0 and the element Y = bF, is
in a;. This proves the conditions for the set C5 in the theorem.

If f =e =0, then from the third and fourth equations of (4.1) we obtain that ad = 0 = ac.
The case a = 0 = f = e is discussed above. In the case d = ¢ = 0 = f = e any vector
Y = aF, + bEs, a,b € R is geodesic because it lies in a;. The intersection C; N Cy is empty,
because for any element of C; one has b = ¢ = 0 and any element of C5 one gets f = 0. Hence
the claim above the set of the geodesic vectors of (ng17(cv, 55), (.,.)) is shown.

In the case of the metric Lie algebra (ng 15(cvi, 55), (., .)) the system (4.1) of equations is satisfied
with a5 = 0. Therefore we obtain that af =0 =ae =ad = ac. Thecase f=e=d=c=0
is discussed above. In the case a = 0 the vector Y = bFEs + cE3 + dE4 + eEs + fEg is geodesic
of (ngis(ay, B),(.,.)) precisely if it lies in the set C3 := {bEy + cF3 + dE, + eE5 + fEg :
b(arc + Bid + Pae + Bsf) + c(aed + Bae + Bsf) + d(aze + B f) + ecauf = 0,b,¢c,d, e, f € R}. If
b=c=d =0, then the element Y = eFs + fEs € Cs, e, f € R, satisfies the condition auef = 0.
Since ay # 0 we obtain that either e = 0 and the element Y = fFEg is in ¢, or f = 0 and
the element Y = eFs is in a,. If b = ¢ = f = 0, then for the element Y = dE, + eE5 € Cj,
d,e € R, the condition azde = 0 holds. Since a3 # 0 we receive that either d = 0 and the
element Y = eFEjs is in 44, or ¢ = 0 and the element Y = dF, isin a3. If d = e = f = 0, then
for the element Y = bE, + cE5 € C3, b,c € R, the condition aybe = 0 is satisfied. As oy # 0
we get either b = 0 and the element Y = cFEj is in a9, or ¢ = 0 and the element Y = bEj is in
4. In the case b= c = e = 0 and S35 # 0, then for the element Y = dE, + fEs € Cs, d, f € R,
the condition df = 0 holds. Hence we have either d = 0 and the element Y = fFEg is in (, or
f = 0 and the element Y = dFE;isin ag. If c =d = f = 0 and 5 # 0, then for the element
Y = bE,+eFEs € Cs, b e € R, the condition be = 0 holds. Therefore we get either b = 0 and the
element Y = eFjs is in a4, or e = 0 and the element Y = 0F5 is in a;. Finally, if c=d=¢e =10
and B3 # 0, then for the element Y = bFE, + fE; € Cs, b, f € R the condition bf = 0 holds. It
follows that either b = 0 and the element Y = fFEg is in (, or f = 0 and the element Y = bF; is
in a;. This shows the conditions for the set C'3 in the theorem. Hence Theorem 4.1 is proved. [

The flat totally geodesic subalgebras of (ng17(cv, 5;), (.,.)) are given in the following theorem.

Theorem 4.2. Let (ng17(a, 535), (., .)) be the metric Lie algebra defined on E® by non-vanishing
commutators given by (1.6). The flat totally geodesic subalgebras of dimension > 1 in the metric
Lie algebra (ng17(c, B;), (., .)) are the 2-dimensional subalgebras:

(1) by = span(Ey — $2Es,  Es) in the case S =0,



20 S. A. Abbas and A. Figula

(2) bs = span(Ey + k1 E3 — %Eﬁ, Es), where ky is a solution of the equation

(4.2) a2 faki + (8184 + anfly — cnas)ky + B182 = 0,

(3) by = span (Es, Es) in the case 4 = 0,
(4) b1 = span(Ey — %%’”Eg + koFEs, Ey), where ky is a solution of the equation

(4.3) asfaki + (nas + B18s — aafa)ky + a1y =0,

(5) b3 = span(Es — 2 Fs, Ey) in the case 4, =0,
(6) b5 = span (Ey4, Eg) in the case fg = 0.

Proof. As pointed out in [1, Theorem 1.19], the metric Lie algebra (ng17(ay, 5;), (.,.)) does not
have a totally geodesic subalgebra greater than 2. Hence we compute only the 2-dimensional
abelian subalgebras in the Lie algebra ng 17(y, ;). These subalgebras are the following:

b1 = span (Ey + k1 Es + ko Es + ksEg, E4+ 11 Es+1:Es),
by = span (Ey + k1 B3 + ko By + ksEs, Es + 11 Eg),
hs = span (B3 + k1 Es + ko Eg,  Ey + 11 E5 + [2Eg) ,
by = span (B3 + k1 Ey + ko Eg,  Es + 11 Eg)
hs = span (Ey + k1 F5, Eg),
e = span (B + k1 Ey + ko Es + ks By + kyEs,  Eg),
hr = span (Ey + k1 E3 + ko Ey + ksEs,  FEg),
hs = span (E3 + k1 Ey + ko Es,  Eg),
ho = span (Ey + k1 Eg, Es+ 11 FEg),
Bio = span (Es, Eg)

where kl, kg, kg, ll, lg e R.

The subalgebra by is not flat totally geodesic because for the vector E5+ Ejg the fifth equation
of (4.1) gives the contradiction ay = 0. Hence the subalgebra by is excluded. Since for the vector
Y = FE1 + k1 By + ko Es + ksEy + kyEs + Eg € hg the first equation of the system (4.1) yields the
contradiction «y = 0 the subalgebra bg is not flat totally geodesic (see Lemma 2.1). Therefore
the subalgebra bg is excluded. the vector Fy + ki FEs5 + koFy + ksEs + Eg € b7 is not geodesic
since the third equation of (4.1) gives the contradiction a5 = 0. Therefore the subalgebra b7 is
not flat totally geodesic. The non-zero vector Y = E3 + k1 Ey + ko Es + Eg € bg is not geodesic
because the fourth equation of (4.1) leads to the contradiction as = 0. Hence the subalgebra bg
is not flat totally geodesic.

The non-zero vector E5 + 11 Fg € ha Ny Nhy is geodesic if fora=b=c=d=0,e=1,f =1
the system (4.1) of equations is satisfied. From the fifth equation of (4.1) one has ayl; = 0. As
ay # 0 we get [; = 0.

Now, we consider the subalgebra hy. The non-zero vector E, + ki Eg € by is geodesic precisely
iffora=b=c=e=0,d=1, f =k the system (4.1) of equations holds. From the fifth
equation we obtain

(4.4) Bk = 0.
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Furthermore, the element E, + k1 Eg + E5 € hg is geodesic iffora=b=c=0,d=e=1,f =k
the system (4.1) of equations is valid. It follows from the fifth equation of (4.1) that

(45) s + ﬂle + Oé4l€1 =0.
Taking into account (4.4) equation (4.5) reduces to
(4.6) az + agk; = 0.

The equation (4.6) gives ki = —52. Putting this expression into (4.4) on has s = 0. Therefore
the case (1) is proved.

Next we deal with the subalgebra hy. The element Ey 4 ki Es + ko Ey 4 ks Eg € by is geodesic
precisely if fora =e=0,b=1,c=ky,d = ko, f = ks the system (4.1) of equations holds. From
the third equation of (4.1) we obtain asks = 0. Since a5 # 0 we receive k3 = 0 = f. Using this
the fifth equation of (4.1) gives

(47) Oélk31 + 51]@ + ]ﬁOéka =0.

Moreover, the element Fs + k1 FE5 + ko Ey + E5 € by is geodesic if and only if fora = f =0,b =
e =1,c=ky,d = ky the system (4.1) of equations is valid. From the fifth equation of (4.1) we
receive

(4.8) arky + Bika + B2 + kiagks 4 k1 By + Kooz = 0.

Taking into account (4.7) equation (4.8) reduces to

(4.9) Ba + Baki + asks = 0.

From (4.9) one has ky = —*324;—/834’“1. Putting this expression into (4.7) we receive the second order

equation (4.2). Therefore the case (2) is proved.

Now we treat the subalgebra hy. The element E3 + ki Ey + ko Eg € by is geodesic if and only
iffora=0b=e=0,¢c=1,d= ki, f = kg the system (4.1) of equation is satisfied. From the
fourth equation of (4.1) we receive asks = 0. As a5 # 0 we get ko = f = 0. Using this the fifth
equation of (4.1) gives axk; = 0. Since ay # 0 we obtain k; = 0. The vector E3 + E5 € by is
geodesic precisely if fora=b=d = f =0, c = e =1, the system (4.1) of equation holds. From
the fifth equation of (4.1) we get 54 = 0. This gives the case (3).

The non-zero vector Ey + 1 Fs + loEg € by N b3 is geodesic if for a = b =c=0,d = 1,e =
l1, f =I5 the system (4.1) of equation is satisfied. The fifth equation of (4.1) yields

(410) Oé3l1 + Bﬁlz + llOé4l2 =0.

Let us consider the subalgebra ;. The element Fy + ki E3 + ko Es + ks Eg € by is geodesic if and
only if for a = d = 0,b = 1,¢ = ky,e = ko, f = k3 the system (4.1) of equation is valid. From
the third equation of (4.1) one has asks = 0. As a5 # 0 we receive k3 = f = 0. Using this the
fifth equation of (4.1) gives

(411) Oéll{?l + /BQkQ + k?164/€2 =0.

Additionally, the non-zero vector Ey + Ey + k1E3 + (ko + 1) E5 + l2Eg € by is geodesic if for
a=0b=d=1,¢c=ky,e=ky+1l,f = Iy the system (4.1) of equation is valid. The third
equation of (4.1) gives asly = 0. Since a5 # 0 we get Il = f = 0. Using this from the equation

(4.10) we get asly = 0. As a3 # 0 we obtain [; = e = 0, and from the fifth equation of (4.1) we
obtain

(4.12) oanky + By + Bake + kiag + ki Baks + aske = 0.
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Applying (4.11) equation (4.12) reduces to

Bl + Oézkl + Oégkz =0.
The above equation gives k; = —25%%  Putting this expression into (4.11) we receive the
second order equation (4.2). Hence the case (4) is proved.

Next we deal with the subalgebra h3. The non-zero vector E3 + ki Fs + ko Eg € b3 is geodesic
if fora=0b=d=0,c=1,e =k, f = ky the system (4.1) of equation is satisfied. From the
fourth equation of (4.1) one obtains asks = 0. As a5 # 0 we get ko = f = 0. Using this the fifth
equation of (4.1) gives

(4.13) Bak1 = 0.
In addition, the element E5 + Ey + (ky + 1) E5 + loEg € b3 is geodesic if fora =b=0,c =d =
l,e = ky + 13, f = ly the system (4.1) of equation is valid. The third equation of (4.1) gives

asly = 0. Since as # 0 one has [, = f = 0. Using this from the equation (4.10) we get asly = 0.
As agz # 0 we receive [} = 0, and from the fifth equation of (4.1) we obtain

(414) Qo + 64]4?1 + OZ3]<71 = 0.

Applying (4.13) equation (4.14) reduces to

Qo + 063]{31 =0.
From the above equation we obtain ky = —Z2. Putting this expression into (4.13) we receive

B4 = 0. This proves the case (5).

Finally we treat the subalgebra h5. The vector Ey + ki1 Fs5 € bs is geodesic if and only if for
a=b=c=f=0,d=1, e=k the system (4.1) of equations is valid. It follows from the fifth
equation of (4.1) that agk; = 0. As as # 0 we gets k; = 0. The vector Ey + Eg € b is geodesic
if and only if fora =b=c=e=0,d= f =1 the system (4.1) of equations is valid. The fifth
equation gives g = 0. Therefore the case (6) is proved. This proves Theorem 4.2. O

Now we determine the flat totally geodesic subalgebras of dimension > 1 in the standard
filiform metric Lie algebra (ng1s(as, 55), (., -))-

Theorem 4.3. Let (ng1s(cv, 55), (., .)) be the metric Lie algebra defined on E° by non-vanishing
commutators given by (1.6) with as = 0. The flat totally geodesic subalgebra of dimension > 1
in the metric Lie algebra (ng1s(ay, 5;), (.,.)) as follow:

(1) The 4-dimensional subalgebras are the following:
(a) b1 = span(Ey— 102 Eg, B3, Eq—22Es,  Ej) in the case i = B3 = B4 = [ = 0,

fs = 2 Py = 1%
ag ag
(b) by = span(Ey, Es3 — S2E5, By, Eg) in the case 1 = B3 = B4 = B = 0,
f5 = 9224 Py = o128 ’
ag az 7

(2) The 3-dimensional subalgebras are the following:
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(a) b = span(Fy + k1 Es + koEg, FEs+ L3 Es+ 1sFEs, Ey+ s1E5+ soFg) if and only
if the following equations

Bak1 + B3ka + kicuks = 0, Baly + Bsla + liauls = 0,
a3s1 + fs2 + s1a452 = 0,
ay + Baly + Bala + Baky + Bska + kilacy + likaay = 0,
B1 + Bas1 + Bas2 + azky + Beka + kisaa + s1keay = 0,
g + 481+ B5s2 + asly + Bsla + l1sacs + s1l2a = 0,
Bak1 + B3ka + Bali + Bslo + azsy + Besa + kisa + kikaay + lilaay + s18204 = 0
are satisfied,

(b) b7 = span (Ey+ k1 Ey + koEg, FEs+ L Ey+1sEs, Es) if and only if o = 0 and
the following equations

Bk + Boky + k1feko = 0, agly + Bsly + 118612 = 0,
ay + Boly + Bsly + anky + Bsko + kilafs + 11 ka5 = 0,
Ba + asky + auky =0, By +asly +auls =0
are satisfied
(c) bs = span (FEy + k1Ey + koEs, Es+ LW Es+ 1oEs,  Eg) if and only if the following
equations

Bik1 + Boka + kragks =0,  aoly + Bala + lilrasz = 0,
ay + Pl + Baly + coky + Baka + kiloas + l1kas = 0,
B3 + Bek1 + asky =0,  B5 + 1106+ lacay = 0
hold,
(d) by = span <E2 + k1 Eg — %E& E, — g—iEg;, E5> such that ky is a solution of
the equation
(4.15) BuPski + k1(BofBs + Bsfa — cray) + a3 = 0,

and Py = §2Ps, P5 = <2,

(6) ho = span <E2 + a3fB3— 04451 Ey — B2(azaa—asBs)+Ba(Bsas— 51&4)E B, — %Eﬁa E5> such

azas—asfs ay(opas—asfs)

that Bs # 0‘;—2‘4 and the equation
(4.16) (aoay — asfs)[(crou — BsfBa — P2P5) (B30 — Brow) — Bafs(caoy — a3fs)
- 5455(53043 - ﬁ1a4)2 =0

holds,

(f) bio = span (Eg + kB3 — ME Ey, E6> such that ky is a solution of the
equation (4.15) and By = a2637 Bs = 224,

(9) bio = span (E2 4 sBs—aufr p 63(”&4 CY3BS)+65(ﬂBO‘E‘_ﬁla“)Eg, E., E5> such that

asay—azfs ay(azas—a3fs)

Bs # 2224 and the equation (4.16) holds.
(h) 12 = span (Ez, Ey — 2 F, E5> in the case 1 = 5 =0, B = 224,

(’Z,) []13 = span (Eg - Z—§E5, E4, Eﬁ) in the case 54 56 = 0 55 = a2a4
(8) The 2-dimensional subalgebras are the following:
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(a) oy = span(Ey — o B, Es) in the case g = 0,

(b) bas = span (Ey4, Eg) in the case 35 = 0,

(C) h18 = span (EQ + kflEg + k2E5 + k’gEﬁ, E4 + l1E5 + l2E6) Zf and OTLly Zf the fOllOU)—
ng equations

asly + Bela + liauly =0, arky + Boka + Bsks + kiBaks + k1 Bsks 4 koouks = 0,

Bi + Baly + Bsla + coky + k1 Baly + k1Bsks + k1 Bsla + okt
ﬁﬁk)g + Oé4k32l2 + Oé4l1k'3 =0

hold,
(d) bar = span(Es+kiEs+koFs, Ey+11Es+15Es) if and only if the following equations

Baky + Bska + kiasks =0, asly + Bela + liouly =0,
ag + Baly + Bsla + agky + Beka + kilocy + likaay = 0

are satisfied,
(e) by = span(Ey + k1 Es + ko oy — %‘W’E@ Es) such that the equation

(4.17) (asks + Pa + Bak1) (k185 + kafs + B3) — avouuk ke — cyagky — frouks =0

15 satisfied,
(f) bao = span(E3 + k1 Ey — B‘IZ—Z‘LSI‘“EG, Es), where ky is a solution of the equation

(4.18) &366/{% + k1 (asfs + Bafs — o) + Bafs =0,

(9) bas = span(Es + k1 E; — ﬁ"’J;—/TI“E& Es), where ki is a solution of the equation
(4.18),
(h) oo = span(Ey + ki1 Es + ko By — %‘ZMQ&*E& Es) such that the equation

(4.19) (asks + Baky + B2) (k185 + kafs + B3) — avouuk ke — cyagky — froauks =0

holds,
(Z) hl? = Spcm(EQ + k’lE4 + k2E5 -+ k3E6, E3 + Z1E4 + ZQE5 -+ lgE@) Zf and only Zf the
following equations

Biky + Boka + Bsks + kiasks + ki Beks + keauks = 0,
aoly + Baly + Bsls + Liagly + 11 Bsls + laouls = 0,

ay + Bily + Baly + Bsls 4+ asky + Baky + Bsks 4 kiloos + i koo +
k)llgﬂ(; + lll{?gﬁG + k213a4 + lzlgOé4 = O

(4.20)

are satisfied.

Proof. According to Proposition 2.3 b) the dimension of the flat totally geodesic subalgebras of
the metric Lie algebra (ng1s(cv, 55), (.,.)) is at most 4. Firstly we list the 4-dimensional, the
3-dimensional and the 2-dimensional abelian subalgebras of the Lie algebra ng 15(c, ;) defined
by the commutators (1.6) such that oy = 0. The 4-dimensional subalgebras have one of the
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following forms:

by = span (Ey + k1 Es, Es + ko Eg,
by =span (Ey + k1 E5, FEs+ koEs,
hs = span (Ey + k1 Ey,  Es+ ko Ey,

b = span(FEsy, By, Es, E),
h5 - Spaﬂ(Eg, E47 E57 E6)7
where k?l, k?g, ]{73, 81 € R.

Ey+ksEs, Es+ s1FEs),
Ey+ ksE5, Eg),
E57 E6) y

The 3-dimensional abelian subalgebras of the Lie algebra ng 15(cv, §;) are:

he = span (Es + k1 E5 + ko Eg,

Es + 1 Es + o Eg,

Ey+ s1E5 + soEg)

b7 = span (Ey + k1 Ey + koEs, Es+ L Ey+ 12Es, Es+ s1Es),
hs = span (Ey + k1 Ey + ko Es, Es+ 11 Ey+ 1sEs,  FEg),

ho = span (Es + k1 E3 + ko Es,  Ey + ksEg, FEs+ s1Eg),

bio = span (o + k1B + ke Es, By + ksls,  Eg),

b1, = span (B + kB + ko Ey,  Es,  Eg),

b2 = span (s + ko B, Ey + k3B, FEs+ s1L%),

bis = span (Es + kolJs, B4+ ksEs, L),

b4 = span (B3 + ko Ey,  Es, Eg),

bis = span (Ey, I, Eg)

where /{Zl,kg,kg,ll,lg,sl,SQ eR.

The 2-dimensional abelian subalgebras of the Lie algebra ng15(c;, 5;) have one of the following

forms:

b6 = span (£ + koEy + ksEs + kqEy + ks Es,

b7 = span (Ey + k1 By + ko s + ks g,
bis = span (B + k1 Es + ko5 + ks Eg,

E6)7
Es+ L E,+ ,Es + I3Es) ,
E,+ L Es+1:E),

hio = span (Ey + k1 E3 + ko Fy + ksEgs, Es + 1 Eg) ,
Boo = span (Es + ki By + ko Ey + ksEs,  Eg) ,

Ey+ L Es + 1:Es),
Boo = span (Es + ki Ey + ko Eg,  Es + 11 ) ,
hos = span (E5 + k1 Ey + koFs,  Eg),
B4 = span (B + ki1 Es, Es + 1, Eg),

Bos = span (L + ki Es,
B2s = span (s, EG) )
where ]{71, kg, kg, k4, ll, lg, lg c R.

(
(
(
(
(
ho1 = span (B3 + ki Es + ko F,
(
(
(
( Es),
(

The vector Fy + koEy + k3Fs + kyEy + ksEs + Fg € byg is not geodesic since for a = f =1,

b:k2702k37d:k47
the subalgebra b4 is not flat totally geodesic.

e = kj, the first equation of (4.1) gives the contradiction 1 = 0. Hence
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For all elements of the remaining subalgebras we have a = 0. Since a5 = 0 for the metric Lie
algebra (ng1s(, 85), (., .)) the system (4.1) of equations reduces to the equation

(4.21) b(arc+ Brd + Bae + Bsf) + c(agd + Bae + Bsf) + d(aze + B f) + easf = 0.

The vector E5+ Fg € hsNhsNbhsNbh11Nbh1aNhi5Mhag is not geodesic because for b = c=d = 0,
e = f =1 the equation of (4.21) gives the contradiction ay = 0. Hence the subalgebras bs, b,
bs, bi1, b1, bis, hoe are not flat totally geodesic.

The subalgebra b, is totally geodesic precisely if for all Y, Z € h; and X € h{ = span(FEy, Es—
S kiEiy) equation (1.1) is satisfied. The subalgebra b is totally geodesic if and only if for
all Y,Z € by and X € bhy = span(Ey, Es — >0 k;Fi 1) equation (1.1) is satisfied. Since the
commutation relations of the elements (Fg — Zf‘zl k;E; 1) and the elements of h; as well as of
the elements (E5 — Z?zl kiEiH) and the elements of h, are zero, we may assume that X = Fj.
The element X = E; lies in the orthogonal complement bi- for all i = 3,--- 15, too. Using the
equation (1.1) we receive the following:

(1) For Y = Z = E5 + s1Eg € b1 N hz N hg N b2 we have 2a45; = 0 and hence s, = 0.

(2) Taking the elements Y = E; + k3Es, Z = Es5 in by N hg N h12 we get ag + agks = 0 and
hence k3 = —z—j < 0.

(3) For Y = Z = Ey + k3Es € h1 Nhg N b12 one has 255ks = 0 and hence [g = 0.

(4) The elements Y = E3 + k?QEG, Z = E4 + ]{33E6 in []1 N [)12 y1€ldS that Qo + B5k}3 + 66]{;2 =

— P55 = 0 and hence 5 = <22+ > 0.

(5) For Y = E3 + k2E6, Z = E5 m hl N b12 we obtain 64 + 044]{32 = 0 and hence k‘g a4

(6) For Y = Z = FE3+ koFg € b1 N h1o, then one has 265k, = 0 and hence ky = 0 and §, = 0.

(7) For the elements Y = FEy + k1Eg, Z = Es5 in h; we get [y + asky = 0 and therefore
oy = =22,

(8) Foi" the elements Y = Fy + k1 Eg, Z = E5 in b we receive aq + sk = aq — Z—iﬁg =0 and
hence fy = 0‘10‘3 > 0, moreover k; = gig; <0.

(9) Taking the elements Y = Z = FEy + k1 Fg € by one has 233k; = 0 and hence 3 = 0.

(10) For Y = Eg + k‘lEg, Z = E4 + k’gEG of b1 we obtain 61 + ng‘g + 56]{71 51 = 0.

Taking into account (1)-(10) the subalgebra b, is flat totally geodesic if and only if f; = 83 =
Bi=Pe =0, B5 =22, [y = 2% Hence the case (1a) is proved.

(11) For Y = Z = E, + k3Fs € ha N hyo N h13 we obtain asks = 0 and hence ks = 0.

(12) For the elements Y = E,, Z = Eg of ha N h1p N h13 we receive g = 0.

(13) Taking the elements Y = E3 + koF5, Z = FE4 in ha N b3 one gets ag + aszks = 0 which
implies that ky = —Z—i < 0.

(14) For Y = Z = E3 + koFs € ha N 13 we have S4ky = 0 and hence 84 = 0.

(15) For the elements Y = FE3 + koFE5, Z = Eg of by N b3 one obtains 5 + ayks = 0 which
yields 5 = <422,

(16) For Y E2 + ]{?1E5, Z = E3 + k2E5 in hg we receive aq + 62]@2 + ﬂ4]{71 = 0 and hence
[y = =23 > 0.

(17) ]%‘or Y =7 = Ey + k1 E5 € by one has k185 = 0 and hence k; = 0.

(18) Taking the elements Y = FEy, Z = Ey4 of by we get 51 = 0.

(19) For the elements Y = Ey, Z = Eg in ha we receive 3 = 0. According to (11)—(19) the
subalgebra b, is flat totally geodesic precisely if 81 = 33 = 4 = 35 =0, 35 = 2%, B = ux,
Hence the assertion (1b) follows.
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Taking into account (1)—(12) it follows from equation (4.21) that the subalgebra b5 in (2h)
as well as the subalgebra b3 in (2i) with the conditions 5, = 55 = 0, 35 = 0‘3—2‘4 are flat totally
geodesic.

Now we consider the subalgebra bho. Taking into account (1)—(3) we have s; = g = 0,
ks = —g—z. The element Es+ ki E3+ ko Eg € by is geodesic if and only if for b =1, ¢ = kq, f = ko,
d = e = 0 the equation (4.21) is satisfied. This gives the equation

(422) 041]{1 -+ ﬁgkg + klﬂg)kz =0.

The element Fy + ki F3 + koEg + E5 € by is geodesic if and only if forb=e =1, ¢ = ky, f = ko,
d = 0 the equation (4.21) is valid. Using equation (4.22) we obtain the equation

(423) ﬂQ + k164 + Oé4/<}2 =0.

Since ay # 0 from equation (4.23) we receive

_ﬁ2 + k154‘

4.24 =
(4.24) ka o

The element Ey + Ey + k1 E3 + (ko — %E)EG € by is geodesic precisely if for b =d =1, ¢ = ky,
[ =ks— 22, e =0 the equation (4.21) holds. Taking into account (4.22) from equation (4.21)
we get

(4.25) b — Z—iﬁg + ki (og — ﬁsz—j)-

If B5 = “224, then from (4.25) we obtain 8; = ¢2f; and from (4.22) we get the second order
equation (4.15). This proves case (2d).
If 85 # 2%, then from (4.25) we have ky = 22222194 " Putting this into (4.24) we obtain
Ly — _ Ba(azag—asfs)+Pa(Bzas—Piay
2= as(azag—aszfs)
equation (4.16). Hence case (2e) is shown.

Now we treat the subalgebra bi9. According to (11)—(12) one has k3 = g = 0. The element
Es+ ki1 Es+ ko Es € by is geodesic if and only if for b =1, ¢ = k1, e = ko, d = f = 0 the equation
(4.21) is satisfied. This gives the equation
(426) O[lkil + 53]{32 -+ k’164k’2 = 0.

The element Fy + k1 E3+ ko Es + Ey € by is geodesic if and only if for b =d =1, ¢ = k1, e = ko,
J = 0 the equation (4.21) is valid. Using equation (4.26) we obtain the equation

(427) ,61 + k’la/g + (13]{?2 = 0.

The element Ey + k1 E3 + ko5 + Eg € b is geodesic precisely if for b= f =1, ¢ = ky, e = ko,
d = 0 the equation (4.21) holds. Taking into account (4.26) from equation (4.21) we get

(428) 53 + k’1ﬁ5 + k?g&4 =0.

_ Bat+kiBs
Q4

) Substituting the expression of k; and ky into (4.22) we receive

Hence we obtain kg = . Putting this expression of ks into (4.27) we receive

(4.29) ki(aoay — asfs) = asflz — aufh.

If B; = #224, then from (4.29) we obtain 8; = ¢2f; and from (4.26) we get the second order
equation (4.15). This proves case (2f).
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If B5 # <224, then from (4.29) we have k; = % Putting this into (4.28) we obtain

ky = — Balazaa—asbBs)+Bs(Bsas—fraa) Substituting the expression of k; and ks into (4.26) we receive

ay(azas—a3Ps)

equation (4.16). Hence case (2g) is proved.
Here we deal with subalgebra hg. The element Fy + ki E5 + ko Eg € bg is geodesic if and only
if for b =1, e = ky, f = ko, c = d = 0 the equation (4.21) holds. From this we obtain

(430) 62/?1 + 53/{72 + k1a4k2 =0.

The non-zero vector F3 + l1 F5 + s Fg € hg is geodesic if and only if for c = 1, e = [y, f = lg,
b =d = 0 the equation (4.21) is satisfied. This gives

(431) Bélll —+ 6512 -+ l1£¥4l2 =0.

The element E; + s1E5 + soFg € hg is geodesic if and only if ford =1, e =51, f =59, b=¢c=0
the equation (4.21) holds. This gives

(432) o381 + ﬁ682 + 510489 = 0.

The element Fy + E3 + (k1 4+ 11)Es + (ko + [2)Eg € bg is geodesic if and only if for d = ¢ = 1,
e=k +1li, f=ky+ 1y, d=0 the equation (4.21) is satisfied. Using (4.30), (4.31) we receive

(433) oy + 62[1 + ﬁ3l2 + 64/€1 + ﬁg)k'g + k1l2a4 + l1k2a4 =0.

The element Ey + Ey + (k1 + s1)E5 + (k2 + s2) Eg € bg is geodesic if and only if for d = b = 1,
e =ky + s1, f = ko + s9, ¢ = 0 the equation (4.21) is satisfied. Using (4.30), (4.32) we get

(4.34) B+ Bast + Basa + asky + Beky + kisaoy + s1kaay = 0.

The element E3 + Eq+ (I3 4+ s1)Es + (o + s2) Eg € g is geodesic if and only if for d = ¢ = 1,
e =11+ s1, f =la+ s9, b =0 the equation (4.21) is satisfied. Using (4.31), (4.32) we obtain
(435) Qo + 6451 + 6552 + Oé3l1 + BﬁlQ + l182064 + 81l2a4 =0.

The element Fy + E3 + Ey + (k1 + 11 + s1)E5 + (k2 + lo + s2) Eg € bg is geodesic if and only if
forb=d=c=1,e=ki +1l+s1, f=ky+1la+ s2, b =0 the equation (4.21) is satisfied. Using
(4.33), (4.34), and (4.35) we receive

(436) 52/{71 + ,83]€2 + 64l1 + ﬁ5l2 + 381 + 5682 + k182 + /{71]{?2&4 + lllQOé4 + 818900y = 0.

This gives the case (2a).

Nw we deal with the subalgebra h;. Taking into account (1) we get s; = 0. The element
Es+ ki Ey+ ko Eg € b7 is geodesic if and only if for b =1, d = ky, f = ko, ¢ = e = 0 the equation
(4.21) holds. This gives the equation
(4.37) Biki + Boks + k1 Bsks = 0.

The element E3+ 11 E4+ s FEg € b7 is geodesic precisely if for c =1, d =1y, f =13, b =e =0 the
equation (4.21) holds. Hence we obtain the equation
(438) OZQll + 65l2 + lLBGlQ = 0.

The element Fy + E5 + (k1 + 1) Ey + (ko + l2) Eg € b7 is geodesic if and only if for b = ¢ = 1,
d=k+1li, f=ky+ s e =0 the equation (4.21) is valid. Using (4.37) and (4.38) we receive
the equation

(4.39) ay + Boly + Balo + aoky + Bska + kilafBs + l1kaBs = 0.
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The element Es + ki Ey + ko g + E5 € by is geodesic precisely if forb=e=1,d = ky, f = ko,
¢ = 0 the equation (4.21) holds. Using (4.37) one gets the equation

(440) ,62 + (13]{?1 + Oz4k’2 = 0.

The element F5 + [ Fy + loFg + E5 € by is geodesic precisely if forc =e=1,d =1y, f = Iy,
b = 0 the equation (4.21) is satisfied. Applying (4.38) one obtains the equation

(441) 64 + Oégll + Oé4l2 = 0.

The element Ey+ E3+ Es+ (k1 +11) B4+ (ko+12) Eg € b7 is geodesic if and only if for b = c = e = 1,
d = ki + 1y, f = k2 + l5 the equation (4.21) is valid. Taking into account (4.37), (4.38), (4.39)
we receive the equation

(442) Oég/{?l + Oé4]€2 = 0.

Comparing the equations (4.40) and (4.42) we get 5y = 0 and equations (4.37), (4.38), (4.39),
(4.40), (4.41) yield the case (2b).

Now we consider the subalgebra hg. The non-zer vector Fy + ki Ey + ko Es € by is geodesic if
and only if for b =1, d = ky, e = ko, ¢ = f = 0 the equation (4.21) is satisfied. This gives the
equation
(443) 61]?1 + 52]472 + ]’Clozgkg = 0.

The element E5 + I3 E4 + o FE5 € bg is geodesic if and only if forc=1,d =1, e=10,,b=f =0
the equation (4.21) holds. Hence we receive
(444) OZQll + B4l2 + lllgozg = 0.

The non-zero vector Fo+ Es+ (ki1 +11)Eq+ (k2 +13) E5 € bg is geodesic if and only if for b = ¢ = 1,
d=ky+1, e =ky+ Iy, f =0 the equation (4.21) is satisfied. Using (4.43), (4.44) one has the
following equation
(445) a1 + Blll + BQlQ + Oéle + 64/{32 + k1l2a3 + lleOég = 0.
The element Fy + Eg + ki Ey + ko Es € bg is geodesic if and only if for b= f =1, d = ki, e = ko,
¢ = 0 the equation (4.21) is satisfied. Applying (4.43) one gets
(446) 53 + 661{71 + Oé4]€2 =0.
The element F3 + 1 Ey + s E5 + Eg € bg is geodesic if and only if for c = f =1, d =4, e = s,
b = 0 the equation (4.21) holds. Using (4.44) we receive
(447) ﬁ5 + l1/86 + 12044 =0.
The non-zero vector Ey + E3 + (k1 + 1) Ey + (ko + I2) E5 + Eg € bg is geodesic if and only if for
c=b=f=1,d=k +1i, e =ky + [ the equation (4.21) is satisfied. This gives
ay + Biky + Bily + Boky + Bala + B3 + qoky + anly + Baks + Bals + B5 + kikoas+
kiloas + likaas + lilaas + ki B + 11 s + koo + laag = 0.

Using the equations (4.43), (4.44), (4.45), (4.46), and (4.47), the equation (4.48) holds. Therefore
the subalgebra bg is proved. This gives the case (2c)

The subalgebra by, coincides with the subalgebra b in (ng 17(cy, 5;), (., .)). Hence the case (3a)

is valid. Furthermore, the subalgebra hos coincides with the subalgebra b in (ng17(cu, 55), (., -))-
Therefore the case (3b) is shown.

(4.48)
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The non-zero vector Ey+11 E5+1>Eg € hi1gsMNboy coincides with the element Ey+1 Es+1Eg € by
in the filiform metric Lie algebra (ng17(cv, 55), (.,.)). It is geodesic if the equation

(449) Oé3l1 + 6(5[2 + 1104412 = 0.

holds. Now we treat the subalgebra hs. The element Fs + ki F3 + ko E5 + k3 Eg € h1g is geodesic
if for d=0,b=1,c=ky,e = ko, f = k3 the equation (4.21) is valid. Hence we get

(4.50) a1k'1 + ﬁzk’z + 53]{33 + k‘lﬁ4k‘2 + ]{?155]{33 + k2a4k3 =0.

In addition, the non-zero vector Ey + Ey + k1 E3 + (ks 4+ 11)E5 + (ks + l2) Eg € b1s is geodesic if
forb=d=1,c=ky,e =ky+ 1y, f = k3 + l5 the system (4.21) is satisfied. Therefore we obtain

arky + Bi + Boka + Boly + Bsks + Bsly + ki + ki Baka + k1 Baly + ki Bsks + k1 Psla+
azky + asly + Beks + Bela + kakzay + kalaay + l1ksoy + lilzay = 0.
Due to the equations (4.49) and (4.50), equation (4.51) becomes
B+ Bali + Bala + agky + ki Baly + ki Bsks + k1 Bsla + asks + Beks + askaly + culiks = 0.

This proves case (3¢).
Here we consider the case ho;. The element Fs + ki E5 + ko Eg € hoy is geodesic if for b= d =
0,c=1,e =ky, f = ky the equation (4.21) is satisfied. From this we obtain

(452) @4]@1 + 55/'6’2 + k’lOé4/€2 = 0.

Moreover, the non-zero vector E3 + Eq + (ki + l1)E5s + (ko + l2)Eg € bhay is geodesic if for
b=0,c=1,d=1,e =ky + 1y, f = ko + [ the equation (4.21) is valid. This gives

ag + Baky + Baly + Bska + Bsla + asky + asly + Beka + Bela+
]{51]{72044 + k‘llgOé4 + l1k2a4 + l1l2a4 =0.

(4.51)

(4.53)

Exploiting equations (4.49) and (4.52), equation (4.53) reduces to
o + Bali + Bsla + asky + Beka + kiloa + likoay = 0.

This proves the case (3d).

The non-zero vector Es + [1Fg € 19 N hoo coincides with the element Es + [1 Eg € by in the
filiform metric Lie algebra (ng17(a, 53;), (.,.)). It is geodesic if one has iy = 0. Now we deal
with the subalgebra bi9. The element Fy + ki FEs + ko By + k3 Eg € g is geodesic precisely if for
a=e=0,b=1,¢=ky,d=ky, f = k3 the equation (4.21) is satisfied. This yields

(454) Oélkl -+ ﬁle -+ 53]4]3 + k1a2k2 + klﬁg,kg + k256]€3 = 0.

Furthermore, the non-zero vector Ey + ki FEs + koFy + ksEg + E5 € by is geodesic if and only if
forb=e=1,c=ky,d = ks, f = k3 the equation (4.21) holds. It follows from the fifth equation
of (4.1) that

(455) Oélk'l + 61]62 + 52 + B3l€3 + klOéQkQ + ]f1ﬁ4 + /{31B5k’3 + ]CQOég + kQ/Bﬁkg + Oé4]€3 = O
Taking into account (4.54), equation (4.55) can be written as follows
(456) 62 + /{31B4 + k‘QOég + 054/{33 =0.

From equation (4.56) we obtain that k3 = — BathiPathoas Putting this expression into equation

(4.54) we receive equation (4.17). This proves the case (3e).
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Next we consider the subalgebra hss. The non-zero vector E3 + ki Ey + kaEg € has is geodesic
precisely if for b=e =0,c=1,d = ky, f = ko the equation 4.21 holds. This gives
(457) Oézkl + ﬁ5k2 + klﬂﬁkQ =0.

Additionally, the element E3 + ki Ey + koFg + E5 € boo is geodesic if and only if for b = 0,
c=1,d =ky, f = ks the equation 4.21 is satisfied. From this it follows that

(4.58) aoky + By + Bsko + kiag + ki Beka + auky = 0.

Comparing with equation (4.57), equation (4.58) reduces to

(4.59) B4 + azki + azks = 0.

From (4.59) one has ky = —@. Substituting this expression into (4.57) we have the second

order equation (4.18) for k. This gives the case (3f).
Now we consider the subalgebra ho3. The element E3+ ki Ey+ ko E5 € haog is geodesic precisely
if forb=f=0,c=1,d=ky,e = ky the system (4.1) of equation is satisfied. Hence we receive

(460) Clégk?l + 54]{?2 + k’l(l/gk’g = 0.

Moreover, the non-zero vector E3 + k1 Ey + ko Es + Eg € b7 is geodesic if and only if for b = 0,
c=f=1,d = ky,e = ky the equation (4.21) holds. This gives

(4.61) aoky + Bako + Bs + kiasks 4 k1 Bs 4+ auky = 0.

Using equation (4.60) equation (4.61) reduces to

(4.62) Bs + Bek1 + auks = 0.

From (4.62) we obtain ky = —&’Z—iﬁkl. Putting this expression into (4.60) we have the second

order equation (4.18) for k;. Thus, the case (3g) is proved.

Now we deal with the subalgebra hoo. The element Es + ki Es + ko Fy + ksEs € b is geodesic
precisely if for f = 0,b = 1,¢ = ky,d = ko, e = k3 the equation (4.21) is satisfied. From this we
get
(463) Oélkl -+ ﬁle -+ ﬁzkg + ]ﬁOéQkQ + k1ﬁ4/€3 + ]{32063/{33 = 0
Additionally, the non-zero vector Ey + ki E3 + ko gy 4+ ksEs + Eg € by is geodesic if and only if
forb=f =1, c = ky,d = ks, e = ks, the equation (4.21) holds. Hence one obtains
(4.64) Oélk‘l + 5116’2 + 62]63 + 53 + k’lOézkz + k’lﬁ4]€3 + klﬁg) + k’20é3]€3 + k’gﬁ(; + ]{33@4 =0.
Applying (4.63) equation (4.64) reduces to
(465) Bg + lﬁﬁ{) + ]{?256 + Oé4/€3 = 0.

From (4.65) we obtain k3 = —%‘2%259 Putting this expression into (4.63) we obtain equation
((4.19)). Hence the case (3h) is shown.

Finally, we consider the subalgebra hi7. The non-zero vector Ey + k1 Ey + ko Es 4+ ksEg € b7
is geodesic precisely if for c = 0,0 = 1,d = ky,e = ko, f = k3 the equation (4.21) is valid. Hence
we get

(466) Blkl + 52]@ + ﬂgkg + k’lOéglfQ + klﬁ(‘,k’g + kQOé4k’3 =0.

The element E3 + [ Ey + [oE5 4 [3Eg € b7 is geodesic if and only if for b=0,c=1,d=1;,e =
la, f = I3 the equation (4.21) holds. From this we receive

(4.67) agly + Baly + Bsls + liazly + 11 Bsls + laayls = 0,
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Furthermore, the non-zero vector Fy + E3 + (k1 + 1) Ey + (ko + lo)Es + (ks + I3)Eg € b7 is
geodesic precisely if for b = c =1, d = ky + l1,e = ko + lo, f = k3 + I3 the equation (4.21) is
satisfied. Therefore one obtains

o1 + ik + Bily + Boka + Pala + Bsks + P3ls + asks + aoly + Baka + Bala + Psks+
(4.68) Bsls + krkaas + kilaas + likaas + lLilaas + kiksfe + kilsBs + liksfe + L3 06+
]{32]{33(14 + k213a4 + lgk3@4 + l2[30&4 =0.

Taking into account (4.66) and (4.67), equation (4.68) reduces to

ay + Bily + Bala + Bsls + aoky + Baks + Bsks + kilaog + l1kacs+

4.69
( ) kilsBs + liksBs + kalgay + lalsay = 0.

This gives (3i). Hence Theorem 4.3 is proved. O
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