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Introduction

The theory of polynomials with coefficients in Z (integral polynomi-

als) and with given discriminant have a great number of applications,

among others to Diophantine equations, Diophantine approximations and

algebraic number theory.

Comprehensive treatment of the theory and its applications can be

found in the work

K. Győry, Résultats effectifs sur la représentation des entiers par des

forms décomposables, Kingston, Canada, 1980; monic case,

and in the monograph

J. H. Evertse and K. Győry, Discriminant equations in Diophantine

number theory, Cambridge, 2017.
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In our paper M. Bhargava, J. H. Evertse, K. Győry, L. Remete and

A. A. Swaminathan (BEGyRS, 2023), Hermite equivalence of polynomials, Acta

Arith. 2023

we have integrated in the theory a long-forgotten notion of equivalence for

integral polynomials of given discriminant, introduced by Hermite (1850’s) and

his corresponding finiteness theorem. We have compared Hermite’s theorem with

the most significant results of this area, obtained by Birch and Merriman (1972)

and independently, in an effective form by Győry (1973), and later by Evertse

and Győry (1991, 2017).

We pointed out that these results are much more precise than Hermite’s theorem

and require deeper tools to prove. In particular, we corrected a faulty reference

to Hermite’s result in Narkiewicz’s excellent book

W. Narkiewicz, The story of algebraic numbers in the first half of the 20th

century, Springer, 2018.

In our talk, we give a brief overview of the most important results of the theory,

and following BEGyRS (2023), we compare them with the long-forgotten theor-

em of Hermite. Then, as consequences of the theory, general effective finiteness

theorems will be presented among others for monogenic number fields. Furt-

her, algorithmic/computational results on monogenity will be discussed. Finally,

some other related results will be stated and open problems will be proposed.
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Theory

Z-equivalence and GL2(Z)-equivalence of integral polynomials

GL2(Z): multiplicative group of 2 × 2 integral matrices with

determinant ±1

- Two monic polynomials f , f ∗ ∈ Z[X ] are called Z-equivalent if

f ∗(X ) = f (X + a) for some a ∈ Z;

- Two polynomials f , f ∗ ∈ Z[X ] of degree n ≥ 2 are called GL2(Z)
-equivalent if there is

(
b a
d c

)
∈ GL2(Z) such that

f ∗(X ) = ±(dX + c)nf

(
bX + a

dX + c

)
=⇒ in both cases, f , f ∗ have the same discriminant

Z-equivalence is much stronger, Z-equivalent monic polynomials in Z[X ]

are clearly GL2(Z)-equivalent with ( 1 a
0 1 ) ∈ GL2(Z)

similar interpretation in terms of binary forms
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Reduction theory of integral polynomials I, degree ≤ 3 case

For f ∈ Z[X ],H(f ) height of f , i.e. the maximum absolute value of its

coefficients

Lagrange (1773): For quadratic f ∈ Z[X ] with discriminant D ̸= 0, there

exists f ∗ ∈ Z[X ] GL2(Z)-equivalent to f such that H(f ∗) ≤ c(D)

⇐⇒
There are only finitely many GL2(Z)-equivalence classes of quadratic poly-
nomials in Z[X ] with given non-zero discriminant + effective (in terms of

binary forms)

Similar assertions for monic quadratic polynomials in Z[X ] with Z-equivalence
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Gauss (1801): more precise result

Hermite (1851): There are only finitely many GL2(Z)-equivalence classes
of cubic polynomials in Z[X ] with given non-zero discriminant

Delone (1930), Nagell (1930), independently: Up to Z-equivalence, there
are only finitely many irreducible cubic monic polynomials in Z[X ]

with given non-zero discriminant + ineffective

Very likely, Hermite attempted to extend his theorem to the case of ar-

bitrary degree≥ 3, but without success. Instead, he proved the weaker

Theorem A below.
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Hermite equivalence of decomposable forms

Consider decomposable forms of degree n ≥ 2 in n variables

F (X ) = c
n∏

i=1

(αi,1X1 + · · ·+ αi,nXn) ∈ Z[X1, . . . ,Xn],

where c ∈ Q× and αi,j ∈ Q for i , j = 1, . . . , n. The discriminant of F is

given by

D(F ) := c2(det(αi,j))
2.

We have D(F ) ∈ Z.
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Two decomposable forms F ,F ∗ as above are called GLn(Z)-equivalent
if

F ∗(X ) = ±F (UX ) for some U ∈ GLn(Z)

(where X = (X1, . . . ,Xn)
T is a column vector)

Two GLn(Z)-equivalent decomposable forms have the same discriminant.

Theorem (Hermite, 1850)

Let n ≥ 2,D ̸= 0. Then, the decomposable forms in Z[X1, . . . ,Xn] of deg-

ree n and discriminant D lie in finitely many GLn(Z)-equivalence classes.
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Hermite equivalence of polynomials and Hermite’s

finiteness theorem

Let f (X ) = c(X −α1) · · · (X −αn) ∈ Z[X ] with c ∈ Z\{0}, α1, . . . , αn ∈
Q. Then the discriminant of f : D(f ) = c2n−2

∏
1≤i<j≤n(αi − αj)

2 ∈ Z.

To f we associate the decomposable form

[f ](X ) := cn−1
n∏

i=1

(X1 + αiX2 + · · ·+ αn−1
i Xn) ∈ Z[X1, . . . ,Xn].

We have D(f ) = D([f ]) (Vandermonde).
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Hermite (1857): Two polynomials f , f ∗ ∈ Z[X ] of degree n are called

Hermite equivalent if the associated decomposable forms [f ] and [f ∗]

are GLn(Z)-equivalent, i.e.,

[f ∗](X ) = ±[f ](UX ) for some U ∈ GLn(Z).

=⇒ Hermite equivalent polynomials in Z[X ] have the same discriminant.

Hermite’s theorem on decomposable forms and the above fact imply the

following finiteness theorem on polynomials:

Theorem A (Hermite, 1857)

Let n ≥ 2,D ̸= 0. Then the polynomials f ∈ Z[X ] of degree n and of

discriminant D lie in finitely many Hermite equivalence classes.

+ ineffective
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Comparison of Hermite equivalence with GL2(Z)-equivalence
and Z-equivalence

Surprisingly, Theorem A of Hermite was not mentioned in the literature

until Narkiewicz (2018) book quoted above, where GL2(Z)-equivalence,
resp. Z-equivalence and Hermite equivalence were mixed up. In part, this

fact motivated the paper BEGyRS (2023) to provide a thorough treatment

of the notion of Hermite equivalence, and compare Hermite equivalence

with GL2(Z)-equivalence resp. Z-equivalence of integral polynomials.

For polynomials of degree 2 and 3, Hermite equivalence and GL2(Z)-
equivalence, resp. Z-equivalence coincide.
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Theorem 1 (BEGyRS, 2023)

If f , f ∗ ∈ Z[X ] are GL2-equivalent, resp. Z-equivalent, then they are

Hermite equivalent.

Theorem 2 (BEGyRS, 2023)

For every n ≥ 4 there are infinitely many pairs (f , f ∗) of irreducible pri-

mitive polynomials in Z[X ] with degree n such that f , f ∗ are Hermite

equivalent but GL2(Z)-inequivalent, resp. Z-inequivalent in the monic ca-

se.

Corollary (BEGyRS, 2023)

GL2(Z)-equivalence, resp. Z-equivalence are stronger than Hermite equi-

valence.



13

Reduction theory of integral polynomials II, general case

Breakthroughs in the 1970’s

Hermite original objective – proving that there are only finitely many

GL2(Z)-equivalence, resp. Z-equivalence classes of integral polynomials of

given degree and given non-zero discriminant – was finally achieved more

than a century later by Birch and Merriman (1972) and independently,for

monic polynomials, in a more prcise and effective form by Győry (1973).

Birch and Merriman proved the following result.

Theorem B (Birch and Merriman, 1972)

Let n ≥ 2,D ̸= 0. There are only finitely many GL2(Z)-equivalence classes
of polynomials in Z[X ] with degree n and discriminant D.

Proof, partly based on the finiteness of the number of solutions of

unit equations + some ineffective arguments =⇒ ineffective
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For monic polynomials, the corresponding result with Z-equivalence was
proved independently by Győry.

Theorem C (Győry, 1973)

There are only finitely many Z-equivalence classes of monic polynomials

in Z[X ] with given discriminant D ̸= 0, and a full set of representatives of

these classes can be, at least in principle, effectively determined.

Note that here the degree of the monic polynomials under consideration

is not fixed.

Theorem C confirmed a conjecture of Nagell (1967,68) in an effective

form. Further, it made effective and significantly generalized the theorems

of Delone (1930) and Nagell (1930) obtained in the cubic case.

In the proof of Theorem C, first the degree of the polynomials in quest-

ion is bounded. Then one reduces the problem to so-called ”connected”

system of unit equations, and finally Baker’s method is applied to bound

the heights of the units and thus of the representatives, see below.
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Explicit versions of Theorems B and C

First effective version of Theorem B (Birch and Merriman): Evertse and

Győry (1991) in a quantitative form. In 2017, improved and completely

explicit version:

Theorem B’ (Evertse and Győry (2017))

Let f ∈ Z[X ] be a polynomial of degree n ≥ 2 and discriminant D ̸= 0.

Then f is GL2(Z)-equivalent to a polynomial f ∗ ∈ Z[X ] for which

H(f ∗) ≤ exp{(42n3)25n
2

· |D|5n−3}. (1)

Further (Győry, 1974):

n ≤ 3 + 2 log |D|/ log 3.
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First quantitative version of Theorem C (Győry): Győry (1974). Improved

version:

Theorem C’ (Evertse and Győry, 2017)

Let f ∈ Z[X ] be a monic polynomial of degree n ≥ 2 and discriminant

D ̸= 0. Then f is Z-equivalent to a polynomial f ∗ ∈ Z[X ] for which

H(f ∗) ≤ exp{n208n
2+19(|D|(log |D|)n)n−1}. (2)

Further (Győry, 1974):

n ≤ 2 + 2 log |D|/ log 3.

Clearly, Theorem B and in particular B’, and in the monic case

Theorem C, C’ are much more precise and deeper than Theorem A of

Hermite.

The exponential feature of the bounds in (1) and (2) is a consequence

of the use of Baker’s method.
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Method of proof of Theorems C and C’

General approach for effective/algorithmic/computational versions

Main steps of the proof of Theorem C:

1) The proof can be reduced to the case of irreducible polynomials. Then

f ∈ Z[X ] irreducible, monic with discriminant D ̸= 0 and distinct

zeros α1, . . . , αn. L splitting field of f =⇒ [L : Q] ≤ n!.

2) n ≤ c1(D), |DL| ≤ c2(D) explicit, elementary; fix n, L splitting field

of f

3)
∏

1≤i<j≤n

(αi − αj)
2 = D =⇒ |NL/Q(αi − αj)| ≤ c3(D) explicit

=⇒ αi − αj = δijεij , εij unit, H(δij) ≤ c4(D) explicit
(3)

4) (αi − αj) + (αj − αk) + (αk − αi ) = 0 for every i , j k (4)

graph: vertices αi − αj , edges [αi − αj , αj − αk ], connected

5) (4) =⇒ ”connected” system of unit equations

δijkεijk + τijkνijk = 1, (5)

δijk , τijk with explicitly bounded heights, εijk , νijk unknown units in L.
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Effective/explicit bound for the solutions

6) Represent εijk
εijk = ξijkρ

aijk,1
1 · · · ρaijk,rr

and similarly νijk , where ζijk root of unity, ρ1, . . . , ρr fundamental

system of units with effectively/explicitly bounded heights in L with

r ≤ n!− 1 (Dirichlet theorem)

7) Applying Baker’s method to (5) =⇒ effective/explicit bounds for

|aijk,1|, . . . , |aijk,r |.
Remark: in Gy (1974), this was the first application of Baker’s method

to general unit equations of the form (5) with explicit bound.

8) using the connectedness of unit equations involved =⇒ effective/explicit

bound for the height of αi − αj for every i , j ;

9) adding the differences αi−αj for j = 1, . . . , n, using the fact that α1+

· · · + αn ∈ Z, putting α1 + · · · + αn = na + a′ with

a, a′ ∈ Z, 0 ≤ a′ < n, and writing α∗
i := αi − a for i = 1, . . . , n, for

f ∗(X ) :=
∏n

i=1(X − α∗
i ) we have f ∗(X ) = f (X + a) ∈ Z[X ] with

effectively/explicitly bounded height.
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Consequences and applications of the theory

I. Integral polynomials with given non-zero discriminant

Generalization of Theorem B (Birch and Merriman, 1972) and Theorem B’

(Evertse and Gy, 1991, 2017) for polynomials over rings of S-integers of a num-

ber field.

Consequences/applications of Theorem B’ (Evertse and Gy, 1991, 2017) to:

-
::::
Thue

::::::::
equations,

:::::::::::
Thue–Mahler

::::::::
equations (Stewart, Evertse and Gy, Evertse,

Thunder, Akhtari);

-
:::::
explicit

::::::
upper

::::::
bounds

:::
for

:::
the

:::::::
minimal

:::::::
non-zero

:::::
values

:::
of

:::::
binary

:::::
forms

::
at

::::::
integral

:::::
points (Evertse and Gy);

- GL2- ::::::::
equivalence

::::::
classes

::
of

:::::::
algebraic

:::::::
numbers

::::
with

::::
given

::::::::::
discriminant (Evert-

se and Gy);

-
:::
root

:::::::::
separation

::
of

::::::
integral

::::::::::
polynomials (Evertse);

-
::::::
effective

::::::
version

::
of

::::::::::
Shafarevich’

::::::::::::::::
conjecture/Faltings’

::::::
theorem

:::
for

:::::::::
hyperelliptic

:::::
curves (von Känel);

-
::::::
rational

:::::::::::::
monogenizations

::
of
::::::
orders

::
in

:
a
:::::::
number

:::
field (Evertse)
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II. Monic integral polynomials with given non-zero discriminant

K number field, n = [K : Q], discriminant DK , ring of integers OK ; for

α ∈ OK , fα(X ) ∈ Z[X ] minimal (monic) polynomial of α =⇒DK/Q(α) := D(fα) discriminant of α,

I (α) := [OK : Z[α]] index of α; we have
(6)

DK/Q(α) = I 2(α) · DK (7)

Definition

- α, α∗ ∈ OK equivalent if α∗ = α + a, a ∈ Z ⇒ DK/Q(α) =

DK/Q(α
∗), I (α) = I (α∗)

- K monogenic if OK = Z[α] for some α ∈ OK ⇔ {1, α, . . . , αn−1}
power integral basis in K

- K is called k ≥ 1 times monogenic if OK = Z[α1] = . . . = Z[αk ]

for some pairwise inequivalent α1, . . . , αk ∈ OK ; k multiplicity of

monogenity
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Most important consequences of Theorem C (Győry, 1973): effective

finiteness theorems in Gy (1973, 74, 76, 78a, 78b), i.e. in Part I-V of Gy

(1973)

for algebraic integer α, D(α) := DK/Q(α), where K = Q(α)

Corollary 1 of Theorem C

Up to equivalence, there are only finitely many algebraic integers with

given non-zero discriminant + effective (Part I; apply Theorem C with

D(α) = D(fα), fα minimal (monic) polynomial of α)

in given number field K of degree n:

Corollary 2 of Theorem C

Up to equivalence, there are only finitely many α ∈ OK with given index I

+ effective and quantitative (Part III, apply Corollary 1 with DK/Q(α) =

I 2 · DK for α ∈ OK )
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Corollary 3 of Theorem C

Up to equivalence, there only finitely many α ∈ OK with OK = Z[α] ⇔
{1, α, . . . , αn−1} power integral basis + effective and quantitative (Part

III, apply Corollary 2 with I = 1)

breakthrough =⇒ the first general effective algorithm for deciding

the monogenity resp. multiplicity of monogenity of a number field

and, up to equivalence, determining all power integral bases in K +

generalization for the relative case (Part IV)
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An important reformulation of Corollary 2 and 3 in terms of index

form equations

Hensel (1894): To every integral basis {1, ω2, . . . , ωn} of K there corres-

ponds a form I (X2, . . . ,Xn) of degree n(n − 1)/2 in n − 1 variables with

coefficients in Z such that for α ∈ OK ,

I (α) = |I (x2, . . . , xn)| if α = x1 + x2ω2 + · · ·+ xnωn with x1, . . . , xn ∈ Z (8)

I (X2, . . . ,Xn) is called an index form, and for given non-zero I ∈ Z

I (x2, . . . , xn) = ±I in x2, . . . , xn ∈ Z (9)

an index form equation.
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In view of (8), Corollary 2 is equivalent to

Corollary 4 of Theorem C

For given I ∈ Z \ {0} the index form equation (9) has only finitely many

solutions, and they can be, at least in principle, effectively determined

(Part III).

In particular, for I = 1 we get the following equivalent reformulation of

Corollary 3

Corollary 5 of Theorem C

The index form equation

I (x2, . . . , xn) = ±1 in x2, . . . , xn ∈ Z (10)

has only finitely many solutions + effective and quantitative (Part III).

The best known bound for the solutions of (10):

max
2≤i≤n

|xi | < exp{10n
2

(|DK |(log |DK |)n)n−1}, (11)

see Evertse and Győry (2017).
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Generalizations of Theorem C (Gy, 1973) and its Corollaries 1–5

- OK replaced by any order O in K (Gy, Part III, IV);

- D resp. I replaced by pz11 · · ·pzss , pi given primes, zi ≥ 0 also unk-

nowns (Gy, Part V; Trelina);

- discriminant form equations (Gy, Part III, Gy–Papp, Gy,

Evertse–Gy);

- relative case, S-integers (Gy, Part IV; Gy–Papp, Gy, Evertse–Gy);

- more general decomposable form equations (Gy–Papp, Gy,

Evertse–Gy);

- ”inhomogeneous” case (Gaál);

- analogue results over function fields (Gaál, Gy, Shlapentokh);

- Recently, étale algebras (Evertse–Gy);

case of finitely generated ground domains (Evertse–Gy)
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Further applications of Theorem C (Gy, 1973), its Corollaries 1–5

and their generalizations

- Diophantine equations; Thue, Mordell, elliptic, superelliptic,

discriminant form, of discriminant type (in alphabetical order: Bérczes,

Brindza, Evertse, Gy, Haristoy, Papp, Pink, Pintér, Trelina);

- minimal index in number fields (Gy);

- irreducible polynomials (Gy);

- arithmetic properties of discriminants and indices of elements of OK (Gy);

- canonical number systems in number fields (Kovács, Pethő, and recently

Evertse, Gy, Pethő, Thuswaldner);

...

Problem 1: extend the effective theory and its consequences above to the

case of finitely generated groundrings over Z
main difficulty: Dirichlet unit theorem generalized for finitely generated do-

mains over Z should be made effective
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For further consequences, generalizations, applications and quantita-

tive versions, see the books with a great number of references:

- K. Győry, Résultats effectifs sur la représentation des entiers par des

formes décomposables, Kingston, Canada, 1980.

- K. Győry, Discriminant form and index form equations, In: Algebraic

Number Theory and Diophantine Analysis, de Gruyter, 2000. pp.

191–214.

- G. Wüstholz (ed.), A Panorama in Number Theory and The View

from Baker’s Garden, Cambridge, 2002.

- J.-H. Evertse and K. Győry, Unit Equations in Diophantine Number

Theory, Cambridge, 2015.

- J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine

Number Theory, Cambridge, 2017.

- J.-H. Evertse and K. Győry, Effective Results and Methods for Diop-

hantine Equations over Finitely Generated Domains,

Cambridge, 2022.
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Algorithmic resolution of index form equations, application

to (multiply) monogenic number fields

K number field of degree n ≥ 3, OK ring of integers, I (X2, . . . ,Xn) an

index form over K

I (x2, . . . , xn) =± 1 in x2, . . . , xn ∈ Z (10)

(11) exponential bound for maxi |xi | too large for practical use

If |DK | is not too large, there aremethods for solving (10) in concrete cases

⇔ for computing all generators of power integral bases in K , up to degree

n ≤ 6 in general, and for many special higher degree fields up to about

degree 15 ⇒ for deciding how many times K is monogenic. Breakthrough

in the 1990’s, computational results and tables, practical algorithms.

For n = 3, 4, (10) =⇒ Thue equations of degree ≤ 4, efficient algorithm;

n = 3, (10) =⇒ cubic Thue quation (Gaál, Schulte 1989);

n = 4, (10) =⇒ one cubic and some quartic Thue equations (Gaál,

Pethő, Pohst, 1991–96), many very interesting results
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Refined version of the general approach combined with

reduction and enumeration algorithms

In general, for n ≥ 5, a refined version of the general approach involving

unit equations is needed. Since

(10) ⇐⇒ DK/Q(α) = DK ⇐⇒ D(fα) = DK in α ∈ OK

with minimaly polynomial fα ∈ Z[X ], in case of concrete equations (10),

the basic idea of the proof of Theorem C must be combined with further

fundamental algorithms and refinements:

Refined version of the general method: reduction to unit equations

but in considerably smaller subfields in the normal closure L of K . Then

the number r of unknown exponents aijk in the unit equation (5) with

εijk = ξijkρ
aijk,1
1 · · · ρaijk,rr is much smaller, ≤ n(n − 1)/2 − 1 instead of

r ≤ n!− 1; cf. Gy (1998, 2000), see also Gaál and Gy (1999), Evertse and

Gy (2017). Then, in concrete cases bound the exponents |aijk | by Baker’s

method.
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The bounds in concrete cases are still too large. Hence reduction al-

gorithm is needed, reducing the Baker’s bound for |aijk | in several steps

if necessary by refined versions of the L3-algorithm; cf. de Weger; Wild-

anger; Gaál and Pohst.

The last step is to apply enumeration algorithm, determining the small

solutions under the reduced bound ; cf. Wildanger; Gaál and Pohst; Bilu,

Gaál and Gy.

Combining the refined version with reduction and enumeration algo-

rithms, for n = 5, 6 Gaál and Győry (1999), resp. Bilu, Gaál and Győry

(2004) =⇒ algorithms for determining all power integral bases =⇒ chec-

king the monogenity and the multiplicity of the monogenity of K .

The use of the refined version of the general approach is particularly

important in the enumeration algorithm.

To perform computations, algebraic number theory packages, a computer

algebra system and in some cases a supercomputer were needed.
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Examples: Resolution of index form equations (10), in the most difficult

case when K = Q(α), degree n, totally real, with Galois group Sn, f ∈
Z[X ] minimal polynomial of α =⇒ all power integral bases =⇒ multiplicity

of the monogenity of K :

n = 3, f (X ) = X 3 − X 2 − 2X + 1, K 9 times monogenic (Gaál,

Schulte, 1989);

n = 4, f (X ) = X 4 − 4X 2 − X + 1, K 17 times monogenic (Gaál, Pethő,

Pohst, 1990’s);

n = 5, f (X ) = X 5 − 5X 3 + X 2 + 3X − 1, K 39 times monogenic (Gaál,

Gy, 1999); ≈ 8h

n = 6, f (X ) = X 6 − 5X 5 + 2X 4 + 18X 3 − 11X 2 − 19X + 1, K , 45 times

monogenic (Bilu, Gaál, Gy, 2004); hard computation
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Books, research papers

There are extremely many algorithmic results and several important algo-

rithms published in books and in a great number of research papers:

Books

- B. M. M. de Weger, Algorithms for Diophantine Equations, CW, Tract

45, Amsterdam, 1989.

- N. P. Smart, The Algorithmic Resolution of Diophantine Equations,

Cambridge, 1988.

- J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine

Number Theory, Cambridge, 2017.

- I. Gaál, Diophantine Equations and Power Integral Bases, 2nd ed.,

Birkhäuser, 2019.

Research papers, a great number of authors, including: Ahmed, Arnóczki,

Bilu, El Fadil, Gaál, Gassert, Guardia, Győry, Hamed, Husnine, Jadri-

jevič, Járási, Kashio, Kim, Lavallee, Montes, Motoda, Nakahara, Nar,

Nyul, Olajos, Pethő, Pohst, Remete, Robertson, Schertz, Schulte, Shah,

Smart, Smith, Spearman, Stange, Szabó, Tanoé, de Weger, Wildanger,

Williams, Ziegler,. . .
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Some other related results and open problems

Diophantine approach via unit equations

1) Integral polynomials with given discriminant

Further generalization: A integrally closed integral domain of characteristic 0

that is finitely generated over Z (and may contain transcendental

elements), and G a finite extension of the quotient field of A. Then monic

f , f ∗ ∈ A[X ] A-equivalent if f ∗(X ) = f (X + a) with some a ∈ A =⇒
D(f ∗) = D(f ).

Theorem (Gy, 1982)

Up to A-equivalence, there are only finitely many monic f (X ) in A[X ] with

a given non-zero discriminant having all their zeros in G + effective in

Gy (1984) and Evertse and Gy (2017).

Problem 2. Is this statement true without fixing the splitting

field G?

Problem 3. Extend Theorem B to the finitely generated case (at least in

ineffective form)
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2) Index form equations, monogenity of number fields

K number field of degree n ≥ 3, I (X2, . . . ,Xn) and associated index form

I (x2, . . . , xn) = ±1 in xi ∈ Z ⇔ OK = Z[α],

α = x1 + x2ω2 + · · ·+ xnωn (x1 ∈ Z)
(10)

Problem 4. Improve the exponential upper bound (11) for the solutions.

Does there exist polynomial bound for the solutions?

For 3 ≤ n ≤ 6, there are practical algorithms for solving (10) in any

number field of degree n with not too large discriminant.

Problem 5. For given n ≥ 7, give such an algorithm.

M(n) : for given n ≥ 3, maximal number of solutions of equations (10);

M(3) ≤ 10 (Bennett), M(4) ≤ 2760 (Bhargava), for n ≥ 5

M(n) ≤ 24(n+5)(n−2) (Evertse); for 3 ≤ n ≤ 6, M(n) ≥ n2,

see above

Problem 6. (Gy, 2000). Is M(n) polynomial or exponential in terms of n?

Extension of finiteness results on (10): number field case, Gy (1981),

effective, finitely generated case, Gy (1982), ineffective

Problem 7. Make effective this result in the finitely generated case



35

Arithmetic characterization approach

Hasse’s problem (1960’s): give an arithmetic characterization of mono-

genic number fields

a very great number of important results for deciding the monogenity

(or non-monogenity) of certain special classes of number fields, inclu-

ding cyclotomic, abelian, cyclic, pure, composible number fields, various

types of quartic, sextic and multiquadratic fields, relative extensions, and

parametric families of number fields defined by binomial and trinomial ir-

reducible polynomials

various approaches. . .

Professors István Gaál and László Remete will speak about such

results and methods

Problem 8. Give an arithmetic characterization of multiply monogenic

number fields
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Distribution of monogenic number fields

K number field of degree n

for n = 1, 2, K monogenic;

for n = 3, first example for non-monogenic number field: Dedekind (1878);

for fixed n ≥ 3, infinitely manymonogenic and infinitely many non-monogenic

number fields of degree n;

for n = 3, 4, 6, tables of Gaál (2019): frequency of monogenic number

fields of degree n is decreasing in tendency as |DK | increases.
Nn(X ): number of isomorphism classes of monogenic number fields K

of degree n with |DK | ≤ X and with Galois group Sn.

Theorem (Bhargava, Shankar and Wang, 2016, 202?):

Nn(X ) ≫ X 1/2+1/(n−1).

Method of proof: arithmetic statistics

Problem 9. Give an asymptotic formula for Nn(X ) as X −→ ∞.
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Canonical number systems in number fields

Kovács, Pethő, later Pethő, Thuswaldner, Evertse, Győry,. . .

Monogenic orders in number fields

Bérczes, Evertse, Győry, and recent generalization by Evertse

Further properties of Hermite equivalence

E.g. algebraic criterion for Hermite equivalence, BEGyRS
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Thank you for your attention!


