Integral polynomials of given discriminant and their applications

(brief survey + some new joint results with
Bhargava, Evertse, Remete and Swaminathan)

K. Györy
University of Debrecen

CENT 2023, Sopron

August 28, 2023
Slides have been posted at
https://math.unideb.hu/en/talks-kalman-gyory

Introduction

The theory of polynomials with coefficients in \mathbb{Z} (integral polynomials) and with given discriminant have a great number of applications, among others to Diophantine equations, Diophantine approximations and algebraic number theory.

Comprehensive treatment of the theory and its applications can be found in the work
K. Györy, Résultats effectifs sur la représentation des entiers par des forms décomposables, Kingston, Canada, 1980; monic case, and in the monograph
J. H. Evertse and K. Györy, Discriminant equations in Diophantine number theory, Cambridge, 2017.

In our paper M. Bhargava, J. H. Evertse, K. Győry, L. Remete and A. A. Swaminathan (BEGyRS, 2023), Hermite equivalence of polynomials, Acta Arith. 2023
we have integrated in the theory a long-forgotten notion of equivalence for integral polynomials of given discriminant, introduced by Hermite (1850's) and his corresponding finiteness theorem. We have compared Hermite's theorem with the most significant results of this area, obtained by Birch and Merriman (1972) and independently, in an effective form by Györy (1973), and later by Evertse and Györy (1991, 2017).
We pointed out that these results are much more precise than Hermite's theorem and require deeper tools to prove. In particular, we corrected a faulty reference to Hermite's result in Narkiewicz's excellent book
W. Narkiewicz, The story of algebraic numbers in the first half of the 20th century, Springer, 2018.

In our talk, we give a brief overview of the most important results of the theory, and following BEGyRS (2023), we compare them with the long-forgotten theorem of Hermite. Then, as consequences of the theory, general effective finiteness theorems will be presented among others for monogenic number fields. Further, algorithmic/computational results on monogenity will be discussed. Finally, some other related results will be stated and open problems will be proposed.

Theory

\mathbb{Z}-equivalence and $G L_{2}(\mathbb{Z})$-equivalence of integral polynomials
$G L_{2}(\mathbb{Z})$: multiplicative group of 2×2 integral matrices with determinant ± 1

- Two monic polynomials $f, f^{*} \in \mathbb{Z}[X]$ are called \mathbb{Z}-equivalent if $f^{*}(X)=f(X+a)$ for some $a \in \mathbb{Z}$;
- Two polynomials $f, f^{*} \in \mathbb{Z}[X]$ of degree $n \geq 2$ are called $G L_{2}(\mathbb{Z})$ -equivalent if there is $\left(\begin{array}{cc}b & a \\ d & c\end{array}\right) \in G L_{2}(\mathbb{Z})$ such that

$$
f^{*}(X)= \pm(d X+c)^{n} f\left(\frac{b X+a}{d X+c}\right)
$$

\Longrightarrow in both cases, f, f^{*} have the same discriminant
\mathbb{Z}-equivalence is much stronger, \mathbb{Z}-equivalent monic polynomials in $\mathbb{Z}[X]$ are clearly $G L_{2}(\mathbb{Z})$-equivalent with $\left(\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right) \in G L_{2}(\mathbb{Z})$
similar interpretation in terms of binary forms

Reduction theory of integral polynomials I, degree ≤ 3 case

For $f \in \mathbb{Z}[X], H(f)$ height of f, i.e. the maximum absolute value of its coefficients

Lagrange (1773): For quadratic $f \in \mathbb{Z}[X]$ with discriminant $D \neq 0$, there exists $f^{*} \in \mathbb{Z}[X] G L_{2}(\mathbb{Z})$-equivalent to f such that $H\left(f^{*}\right) \leq c(D)$ \Longleftrightarrow
There are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of quadratic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant + effective (in terms of binary forms)

Similar assertions for monic quadratic polynomials in $\mathbb{Z}[X]$ with \mathbb{Z}-equivalence

Gauss (1801): more precise result
Hermite (1851): There are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of cubic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant

Delone (1930), Nagell (1930), independently: Up to \mathbb{Z}-equivalence, there are only finitely many irreducible cubic monic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant + ineffective

Very likely, Hermite attempted to extend his theorem to the case of arbitrary degree ≥ 3, but without success. Instead, he proved the weaker Theorem A below.

Hermite equivalence of decomposable forms

Consider decomposable forms of degree $n \geq 2$ in n variables

$$
F(\underline{X})=c \prod_{i=1}^{n}\left(\alpha_{i, 1} X_{1}+\cdots+\alpha_{i, n} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]
$$

where $c \in \mathbb{Q}^{\times}$and $\alpha_{i, j} \in \overline{\mathbb{Q}}$ for $i, j=1, \ldots, n$. The discriminant of F is given by

$$
D(F):=c^{2}\left(\operatorname{det}\left(\alpha_{i, j}\right)\right)^{2} .
$$

We have $D(F) \in \mathbb{Z}$.

Two decomposable forms F, F^{*} as above are called $G L_{n}(\mathbb{Z})$-equivalent if

$$
F^{*}(\underline{X})= \pm F(U \underline{X}) \text { for some } U \in G L_{n}(\mathbb{Z})
$$

(where $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is a column vector)
Two $G L_{n}(\mathbb{Z})$-equivalent decomposable forms have the same discriminant.

Theorem (Hermite, 1850)

Let $n \geq 2, D \neq 0$. Then, the decomposable forms in $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ of degree n and discriminant D lie in finitely many $G L_{n}(\mathbb{Z})$-equivalence classes.

Hermite equivalence of polynomials and Hermite's

finiteness theorem

Let $f(X)=c\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right) \in \mathbb{Z}[X]$ with $c \in \mathbb{Z} \backslash\{0\}, \alpha_{1}, \ldots, \alpha_{n} \in$ $\overline{\mathbb{Q}}$. Then the discriminant of $f: D(f)=c^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}$.

To f we associate the decomposable form

$$
[f](\underline{X}):=c^{n-1} \prod_{i=1}^{n}\left(X_{1}+\alpha_{i} X_{2}+\cdots+\alpha_{i}^{n-1} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right] .
$$

We have $D(f)=D([f])$ (Vandermonde).

Hermite (1857): Two polynomials $f, f^{*} \in \mathbb{Z}[X]$ of degree n are called Hermite equivalent if the associated decomposable forms [f] and $\left[f^{*}\right]$ are $G L_{n}(\mathbb{Z})$-equivalent, i.e.,

$$
\left[f^{*}\right](\underline{X})= \pm[f](U \underline{X}) \text { for some } U \in G L_{n}(\mathbb{Z})
$$

\Longrightarrow Hermite equivalent polynomials in $\mathbb{Z}[X]$ have the same discriminant.
Hermite's theorem on decomposable forms and the above fact imply the following finiteness theorem on polynomials:

Theorem A (Hermite, 1857)

Let $n \geq 2, D \neq 0$. Then the polynomials $f \in \mathbb{Z}[X]$ of degree n and of discriminant D lie in finitely many Hermite equivalence classes.

+ ineffective

Comparison of Hermite equivalence with $G L_{2}(\mathbb{Z})$-equivalence and \mathbb{Z}-equivalence

Surprisingly, Theorem A of Hermite was not mentioned in the literature until Narkiewicz (2018) book quoted above, where $G L_{2}(\mathbb{Z})$-equivalence, resp. \mathbb{Z}-equivalence and Hermite equivalence were mixed up. In part, this fact motivated the paper BEGyRS (2023) to provide a thorough treatment of the notion of Hermite equivalence, and compare Hermite equivalence with $G L_{2}(\mathbb{Z})$-equivalence resp. \mathbb{Z}-equivalence of integral polynomials.

For polynomials of degree 2 and 3 , Hermite equivalence and $G L_{2}(\mathbb{Z})$ equivalence, resp. \mathbb{Z}-equivalence coincide.

Theorem 1 (BEGyRS, 2023)

If $f, f^{*} \in \mathbb{Z}[X]$ are $G L_{2}$-equivalent, resp. \mathbb{Z}-equivalent, then they are Hermite equivalent.

Theorem 2 (BEGyRS, 2023)

For every $n \geq 4$ there are infinitely many pairs $\left(f, f^{*}\right)$ of irreducible primitive polynomials in $\mathbb{Z}[X]$ with degree n such that f, f^{*} are Hermite equivalent but $G L_{2}(\mathbb{Z})$-inequivalent, resp. \mathbb{Z}-inequivalent in the monic case.

Corollary (BEGyRS, 2023)
$G L_{2}(\mathbb{Z})$-equivalence, resp. \mathbb{Z}-equivalence are stronger than Hermite equivalence.

Reduction theory of integral polynomials II, general case

Breakthroughs in the 1970's

Hermite original objective - proving that there are only finitely many $G L_{2}(\mathbb{Z})$-equivalence, resp. \mathbb{Z}-equivalence classes of integral polynomials of given degree and given non-zero discriminant - was finally achieved more than a century later by Birch and Merriman (1972) and independently,for monic polynomials, in a more prcise and effective form by Györy (1973).

Birch and Merriman proved the following result.

Theorem B (Birch and Merriman, 1972)

Let $n \geq 2, D \neq 0$. There are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of polynomials in $\mathbb{Z}[X]$ with degree n and discriminant D.

Proof, partly based on the finiteness of the number of solutions of unit equations + some ineffective arguments \Longrightarrow ineffective

For monic polynomials, the corresponding result with \mathbb{Z}-equivalence was proved independently by Györy.

Theorem C (Györy, 1973)

There are only finitely many \mathbb{Z}-equivalence classes of monic polynomials in $\mathbb{Z}[X]$ with given discriminant $D \neq 0$, and a full set of representatives of these classes can be, at least in principle, effectively determined.

Note that here the degree of the monic polynomials under consideration is not fixed.

Theorem C confirmed a conjecture of Nagell $(1967,68)$ in an effective form. Further, it made effective and significantly generalized the theorems of Delone (1930) and Nagell (1930) obtained in the cubic case.

In the proof of Theorem C, first the degree of the polynomials in question is bounded. Then one reduces the problem to so-called "connected" system of unit equations, and finally Baker's method is applied to bound the heights of the units and thus of the representatives, see below.

Explicit versions of Theorems B and C

First effective version of Theorem B (Birch and Merriman): Evertse and Győry (1991) in a quantitative form. In 2017, improved and completely explicit version:

Theorem B' (Evertse and Györy (2017))

Let $f \in \mathbb{Z}[X]$ be a polynomial of degree $n \geq 2$ and discriminant $D \neq 0$. Then f is $G L_{2}(\mathbb{Z})$-equivalent to a polynomial $f^{*} \in \mathbb{Z}[X]$ for which

$$
\begin{equation*}
H\left(f^{*}\right) \leq \exp \left\{\left(4^{2} n^{3}\right)^{25 n^{2}} \cdot|D|^{5 n-3}\right\} \tag{1}
\end{equation*}
$$

Further (Győry, 1974):

$$
n \leq 3+2 \log |D| / \log 3
$$

First quantitative version of Theorem C (Györy): Györy (1974). Improved version:

Theorem C' (Evertse and Györy, 2017)

Let $f \in \mathbb{Z}[X]$ be a monic polynomial of degree $n \geq 2$ and discriminant $D \neq 0$. Then f is \mathbb{Z}-equivalent to a polynomial $f^{*} \in \mathbb{Z}[X]$ for which

$$
\begin{equation*}
H\left(f^{*}\right) \leq \exp \left\{n^{20} 8^{n^{2}+19}\left(|D|(\log |D|)^{n}\right)^{n-1}\right\} . \tag{2}
\end{equation*}
$$

Further (Győry, 1974):

$$
n \leq 2+2 \log |D| / \log 3 .
$$

Clearly, Theorem B and in particular B', and in the monic case Theorem C, C' are much more precise and deeper than Theorem A of Hermite.

The exponential feature of the bounds in (1) and (2) is a consequence of the use of Baker's method.

Method of proof of Theorems C and C'

General approach for effective/algorithmic/computational versions
Main steps of the proof of Theorem C:

1) The proof can be reduced to the case of irreducible polynomials. Then $f \in \mathbb{Z}[X]$ irreducible, monic with discriminant $D \neq 0$ and distinct zeros $\alpha_{1}, \ldots, \alpha_{n}$. L splitting field of $f \Longrightarrow[L: \mathbb{Q}] \leq n!$.
2) $n \leq c_{1}(D),\left|D_{L}\right| \leq c_{2}(D)$ explicit, elementary; $\underline{f i x} n, L$ splitting field of f
3)

$$
\begin{align*}
& \left.\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}=D \Longrightarrow \alpha_{i}-\alpha_{j}=\delta_{i j} \varepsilon_{i j}, \varepsilon_{i j} \text { unit, } H\left(\delta_{i j}\right) \leq \alpha_{j}\right) \mid \leq c_{3}(D) \text { explicit } \tag{3}\\
& 1 D) \text { explicit } \tag{4}
\end{align*}
$$

graph: vertices $\alpha_{i}-\alpha_{j}$, edges $\left[\alpha_{i}-\alpha_{j}, \alpha_{j}-\alpha_{k}\right.$], connected
5) $(4) \Longrightarrow$ "connected" system of unit equations

$$
\begin{equation*}
\delta_{i j k} \varepsilon_{i j k}+\tau_{i j k} \nu_{i j k}=1, \tag{5}
\end{equation*}
$$

$\delta_{i j k}, \tau_{i j k}$ with explicitly bounded heights, $\varepsilon_{i j k}, \nu_{i j k}$ unknown units in L.

Effective/explicit bound for the solutions

6) Represent $\varepsilon_{i j k}$

$$
\varepsilon_{i j k}=\xi_{i j k} \rho_{1}^{a_{j j k}, 1} \cdots \rho_{r}^{a_{j k}, r}
$$

and similarly $\nu_{i j k}$, where $\zeta_{i j k}$ root of unity, $\rho_{1}, \ldots, \rho_{r}$ fundamental system of units with effectively/explicitly bounded heights in L with $r \leq n!-1$ (Dirichlet theorem)
7) Applying Baker's method to (5) \Longrightarrow effective/explicit bounds for $\left|a_{i j k, 1}\right|, \ldots,\left|a_{i j k, r}\right|$.
Remark: in Gy (1974), this was the first application of Baker's method to general unit equations of the form (5) with explicit bound.
8) using the connectedness of unit equations involved \Longrightarrow effective/explicit bound for the height of $\alpha_{i}-\alpha_{j}$ for every i, j;
9) adding the differences $\alpha_{i}-\alpha_{j}$ for $j=1, \ldots, n$, using the fact that $\alpha_{1}+$ $\cdots+\alpha_{n} \in \mathbb{Z}$, putting $\alpha_{1}+\cdots+\alpha_{n}=n a+a^{\prime}$ with $a, a^{\prime} \in \mathbb{Z}, 0 \leq a^{\prime}<n$, and writing $\alpha_{i}^{*}:=\alpha_{i}-a$ for $i=1, \ldots, n$, for $f^{*}(X):=\prod_{i=1}^{n}\left(X-\alpha_{i}^{*}\right)$ we have $f^{*}(X)=f(X+a) \in \mathbb{Z}[X]$ with effectively/explicitly bounded height.

Consequences and applications of the theory

I. Integral polynomials with given non-zero discriminant

Generalization of Theorem B (Birch and Merriman, 1972) and Theorem B' (Evertse and Gy, 1991, 2017) for polynomials over rings of S-integers of a number field.

Consequences/applications of Theorem B' (Evertse and Gy, 1991, 2017) to:

- Thue equations, Thue-Mahler equations (Stewart, Evertse and Gy, Evertse, Thunder, Akhtari);
- explicit upper bounds for the minimal non-zero values of binary forms at integral points (Evertse and Gy);
- GL2-equivalence classes of algebraic numbers with given discriminant (Evertse and Gy);
- root separation of integral polynomials (Evertse);
- effective version of Shafarevich' conjecture/Faltings' theorem for hyperelliptic curves (von Känel);
- rational monogenizations of orders in a number field (Evertse)

II. Monic integral polynomials with given non-zero discriminant

K number field, $n=[K: \mathbb{Q}]$, discriminant D_{K}, ring of integers \mathcal{O}_{K}; for $\alpha \in \mathcal{O}_{K}, f_{\alpha}(X) \in \mathbb{Z}[X]$ minimal (monic) polynomial of $\alpha \Longrightarrow$

$$
\begin{cases}D_{K / \mathbb{Q}}(\alpha) & :=D\left(f_{\alpha}\right) \text { discriminant of } \alpha, \\ I(\alpha) & :=\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right] \text { index of } \alpha ; \text { we have } \tag{7}\\ & D_{K / \mathbb{Q}}(\alpha)=I^{2}(\alpha) \cdot D_{K}\end{cases}
$$

Definition

- $\alpha, \alpha^{*} \in \mathcal{O}_{K}$ equivalent if $\alpha^{*}=\alpha+a, a \in \mathbb{Z} \Rightarrow D_{K / \mathbb{Q}}(\alpha)=$ $D_{K / \mathbb{Q}}\left(\alpha^{*}\right), I(\alpha)=I\left(\alpha^{*}\right)$
- K monogenic if $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_{K} \Leftrightarrow\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ power integral basis in K
- K is called $k \geq 1$ times monogenic if $\mathcal{O}_{K}=\mathbb{Z}\left[\alpha_{1}\right]=\ldots=\mathbb{Z}\left[\alpha_{k}\right]$ for some pairwise inequivalent $\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{O}_{k} ; k$ multiplicity of monogenity

Most important consequences of Theorem C (Györy, 1973): effective finiteness theorems in Gy (1973, 74, 76, 78a, 78b), i.e. in Part I-V of Gy (1973)
for algebraic integer $\alpha, D(\alpha):=D_{K / \mathbb{Q}}(\alpha)$, where $K=\mathbb{Q}(\alpha)$

Corollary 1 of Theorem C

Up to equivalence, there are only finitely many algebraic integers with given non-zero discriminant + effective (Part I; apply Theorem C with $D(\alpha)=D\left(f_{\alpha}\right), f_{\alpha}$ minimal (monic) polynomial of α)
in given number field K of degree n :

Corollary 2 of Theorem C

Up to equivalence, there are only finitely many $\alpha \in \mathcal{O}_{K}$ with given index I + effective and quantitative (Part III, apply Corollary 1 with $D_{K / \mathbb{Q}}(\alpha)=$ $I^{2} \cdot D_{K}$ for $\left.\alpha \in \mathcal{O}_{K}\right)$

Corollary 3 of Theorem C

Up to equivalence, there only finitely many $\alpha \in \mathcal{O}_{K}$ with $\mathcal{O}_{K}=\mathbb{Z}[\alpha] \Leftrightarrow$ $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ power integral basis + effective and quantitative (Part III, apply Corollary 2 with $I=1$)
breakthrough \Longrightarrow the first general effective algorithm for deciding the monogenity resp. multiplicity of monogenity of a number field and, up to equivalence, determining all power integral bases in $K+$ generalization for the relative case (Part IV)

An important reformulation of Corollary 2 and $\mathbf{3}$ in terms of index form equations

Hensel (1894): To every integral basis $\left\{1, \omega_{2}, \ldots, \omega_{n}\right\}$ of K there corresponds a form $I\left(X_{2}, \ldots, X_{n}\right)$ of degree $n(n-1) / 2$ in $n-1$ variables with coefficients in \mathbb{Z} such that for $\alpha \in \mathcal{O}_{K}$,

$$
\begin{equation*}
I(\alpha)=\left|I\left(x_{2}, \ldots, x_{n}\right)\right| \text { if } \alpha=x_{1}+x_{2} \omega_{2}+\cdots+x_{n} \omega_{n} \text { with } x_{1}, \ldots, x_{n} \in \mathbb{Z} \tag{8}
\end{equation*}
$$

$I\left(X_{2}, \ldots, X_{n}\right)$ is called an index form, and for given non-zero $I \in \mathbb{Z}$

$$
\begin{equation*}
I\left(x_{2}, \ldots, x_{n}\right)= \pm I \text { in } x_{2}, \ldots, x_{n} \in \mathbb{Z} \tag{9}
\end{equation*}
$$

an index form equation.

In view of (8), Corollary 2 is equivalent to

Corollary 4 of Theorem C

For given $I \in \mathbb{Z} \backslash\{0\}$ the index form equation (9) has only finitely many solutions, and they can be, at least in principle, effectively determined (Part III).

In particular, for $I=1$ we get the following equivalent reformulation of Corollary 3

Corollary 5 of Theorem C

The index form equation

$$
\begin{equation*}
I\left(x_{2}, \ldots, x_{n}\right)= \pm 1 \text { in } x_{2}, \ldots, x_{n} \in \mathbb{Z} \tag{10}
\end{equation*}
$$

has only finitely many solutions + effective and quantitative (Part III).
The best known bound for the solutions of (10):

$$
\begin{equation*}
\max _{2 \leq i \leq n}\left|x_{i}\right|<\exp \left\{10^{n^{2}}\left(\left|D_{K}\right|\left(\log \left|D_{K}\right|\right)^{n}\right)^{n-1}\right\}, \tag{11}
\end{equation*}
$$

see Evertse and Györy (2017).

Generalizations of Theorem C (Gy, 1973) and its Corollaries 1-5

- \mathcal{O}_{K} replaced by any order \mathcal{O} in K (Gy, Part III, IV);
- D resp. I replaced by $\mathbf{p}_{1}^{\mathbf{z}_{1}} \cdots \mathbf{p}_{\mathrm{s}}^{\mathbf{z s}_{s}}, p_{i}$ given primes, $\mathbf{z}_{\mathbf{i}} \geq \mathbf{0}$ also unknowns (Gy, Part V; Trelina);
- discriminant form equations (Gy, Part III, Gy-Papp, Gy, Evertse-Gy);
- relative case, S-integers (Gy, Part IV; Gy-Papp, Gy, Evertse-Gy);
- more general decomposable form equations (Gy-Papp, Gy, Evertse-Gy);
- "inhomogeneous" case (Gaál);
- analogue results over function fields (Gaál, Gy, Shlapentokh);
- Recently, étale algebras (Evertse-Gy);
case of finitely generated ground domains (Evertse-Gy)

Further applications of Theorem C (Gy, 1973), its Corollaries 1-5 and their generalizations

- Diophantine equations; Thue, Mordell, elliptic, superelliptic, discriminant form, of discriminant type (in alphabetical order: Bérczes, Brindza, Evertse, Gy, Haristoy, Papp, Pink, Pintér, Trelina);
- minimal index in number fields (Gy);
- irreducible polynomials (Gy);
- arithmetic properties of discriminants and indices of elements of $\mathcal{O}_{K}(\mathrm{~Gy})$;
- canonical number systems in number fields (Kovács, Pethő, and recently Evertse, Gy, Pethő, Thuswaldner);

Problem 1: extend the effective theory and its consequences above to the case of finitely generated groundrings over \mathbb{Z}
main difficulty: Dirichlet unit theorem generalized for finitely generated domains over \mathbb{Z} should be made effective

For further consequences, generalizations, applications and quantitative versions, see the books with a great number of references:

- K. Győry, Résultats effectifs sur la représentation des entiers par des formes décomposables, Kingston, Canada, 1980.
- K. Győry, Discriminant form and index form equations, In: Algebraic Number Theory and Diophantine Analysis, de Gruyter, 2000. pp. 191-214.
- G. Wüstholz (ed.), A Panorama in Number Theory and The View from Baker's Garden, Cambridge, 2002.
- J.-H. Evertse and K. Győry, Unit Equations in Diophantine Number Theory, Cambridge, 2015.
- J.-H. Evertse and K. Györy, Discriminant Equations in Diophantine Number Theory, Cambridge, 2017.
- J.-H. Evertse and K. Györy, Effective Results and Methods for Diophantine Equations over Finitely Generated Domains, Cambridge, 2022.

Algorithmic resolution of index form equations, application

to (multiply) monogenic number fields

K number field of degree $n \geq 3, \mathcal{O}_{K}$ ring of integers, $I\left(X_{2}, \ldots, X_{n}\right)$ an index form over K

$$
\begin{equation*}
I\left(x_{2}, \ldots, x_{n}\right)= \pm 1 \text { in } x_{2}, \ldots, x_{n} \in \mathbb{Z} \tag{10}
\end{equation*}
$$

(11) exponential bound for $\max _{i}\left|x_{i}\right|$ too large for practical use

If $\left|D_{K}\right|$ is not too large, there are methods for solving (10) in concrete cases \Leftrightarrow for computing all generators of power integral bases in K, up to degree $\mathbf{n} \leq \mathbf{6}$ in general, and for many special higher degree fields up to about degree $15 \Rightarrow$ for deciding how many times K is monogenic. Breakthrough in the 1990's, computational results and tables, practical algorithms.
For $\mathbf{n}=\mathbf{3}, \mathbf{4},(10) \Longrightarrow$ Thue equations of degree ≤ 4, efficient algorithm;
$\mathbf{n}=\mathbf{3},(10) \Longrightarrow$ cubic Thue quation (Gaál, Schulte 1989);
$\mathbf{n}=\mathbf{4},(10) \Longrightarrow$ one cubic and some quartic Thue equations (Gaál,
Pethő, Pohst, 1991-96), many very interesting results

Refined version of the general approach combined with

reduction and enumeration algorithms

In general, for $\mathbf{n} \geq \mathbf{5}$, a refined version of the general approach involving unit equations is needed. Since

$$
(10) \Longleftrightarrow D_{K / \mathbb{Q}}(\alpha)=D_{K} \Longleftrightarrow D\left(f_{\alpha}\right)=D_{K} \text { in } \alpha \in \mathcal{O}_{K}
$$

with minimaly polynomial $f_{\alpha} \in \mathbb{Z}[X]$, in case of concrete equations (10), the basic idea of the proof of Theorem \mathbf{C} must be combined with further fundamental algorithms and refinements:

Refined version of the general method: reduction to unit equations but in considerably smaller subfields in the normal closure L of K. Then the number r of unknown exponents $a_{i j k}$ in the unit equation (5) with $\varepsilon_{i j k}=\xi_{i j k} \rho_{1}^{a_{j k, 1}} \cdots \rho_{r}^{a_{i j k, r}}$ is much smaller, $\leq n(n-1) / 2-1$ instead of $r \leq n!-1$; cf. Gy (1998, 2000), see also Gaál and Gy (1999), Evertse and Gy (2017). Then, in concrete cases bound the exponents $\left|a_{i j k}\right|$ by Baker's method.

The bounds in concrete cases are still too large. Hence reduction algorithm is needed, reducing the Baker's bound for $\left|a_{i j k}\right|$ in several steps if necessary by refined versions of the L^{3}-algorithm; cf. de Weger; Wildanger; Gaál and Pohst.

The last step is to apply enumeration algorithm, determining the small solutions under the reduced bound; cf. Wildanger; Gaál and Pohst; Bilu, Gaál and Gy.

Combining the refined version with reduction and enumeration algorithms, for $\mathbf{n}=\mathbf{5}, \mathbf{6}$ Gaál and Györy (1999), resp. Bilu, Gaál and Győry (2004) \Longrightarrow algorithms for determining all power integral bases \Longrightarrow checking the monogenity and the multiplicity of the monogenity of K.

The use of the refined version of the general approach is particularly important in the enumeration algorithm.
To perform computations, algebraic number theory packages, a computer algebra system and in some cases a supercomputer were needed.

Examples: Resolution of index form equations (10), in the most difficult case when $K=\mathbb{Q}(\alpha)$, degree n, totally real, with Galois group $S_{n}, f \in$ $\mathbb{Z}[X]$ minimal polynomial of $\alpha \Longrightarrow$ all power integral bases \Longrightarrow multiplicity of the monogenity of K :
$\mathbf{n}=3, f(X)=X^{3}-X^{2}-2 X+1, K 9$ times monogenic (Gaál, Schulte, 1989);
$\mathbf{n}=4, f(X)=X^{4}-4 X^{2}-X+1, K 17$ times monogenic (Gaál, Pethő, Pohst, 1990's);
$\mathbf{n}=\mathbf{5}, f(X)=X^{5}-5 X^{3}+X^{2}+3 X-1, K 39$ times monogenic (Gaál, Gy, 1999); $\approx 8 \mathrm{~h}$
$\mathbf{n}=\mathbf{6}, f(X)=X^{6}-5 X^{5}+2 X^{4}+18 X^{3}-11 X^{2}-19 X+1, K, 45$ times monogenic (Bilu, Gaál, Gy, 2004); hard computation

Books, research papers

There are extremely many algorithmic results and several important algorithms published in books and in a great number of research papers:

Books

- B. M. M. de Weger, Algorithms for Diophantine Equations, CW, Tract 45, Amsterdam, 1989.
- N. P. Smart, The Algorithmic Resolution of Diophantine Equations, Cambridge, 1988.
- J.-H. Evertse and K. Györy, Discriminant Equations in Diophantine Number Theory, Cambridge, 2017.
- I. Gaál, Diophantine Equations and Power Integral Bases, 2nd ed., Birkhäuser, 2019.

Research papers, a great number of authors, including: Ahmed, Arnóczki, Bilu, El Fadil, Gaál, Gassert, Guardia, Győry, Hamed, Husnine, Jadrijevič, Járási, Kashio, Kim, Lavallee, Montes, Motoda, Nakahara, Nar, Nyul, Olajos, Pethő, Pohst, Remete, Robertson, Schertz, Schulte, Shah, Smart, Smith, Spearman, Stange, Szabó, Tanoé, de Weger, Wildanger, Williams, Ziegler,...

Some other related results and open problems

Diophantine approach via unit equations

1) Integral polynomials with given discriminant

Further generalization: A integrally closed integral domain of characteristic 0 that is finitely generated over \mathbb{Z} (and may contain transcendental elements), and G a finite extension of the quotient field of A. Then monic $f, f^{*} \in A[X] A$-equivalent if $f^{*}(X)=f(X+a)$ with some $a \in A \Longrightarrow$ $D\left(f^{*}\right)=D(f)$.

Theorem (Gy, 1982)

Up to A-equivalence, there are only finitely many monic $f(X)$ in $A[X]$ with a given non-zero discriminant having all their zeros in $G+$ effective in Gy (1984) and Evertse and Gy (2017).
Problem 2. Is this statement true without fixing the splitting field G ?
Problem 3. Extend Theorem B to the finitely generated case (at least in ineffective form)
2) Index form equations, monogenity of number fields
K number field of degree $\mathbf{n} \geq \mathbf{3}, I\left(X_{2}, \ldots, X_{n}\right)$ and associated index form

$$
\begin{gather*}
I\left(x_{2}, \ldots, x_{n}\right)= \pm 1 \text { in } x_{i} \in \mathbb{Z} \Leftrightarrow \mathcal{O}_{K}=\mathbb{Z}[\alpha], \\
\alpha=x_{1}+x_{2} \omega_{2}+\cdots+x_{n} \omega_{n} \quad\left(x_{1} \in \mathbb{Z}\right) \tag{10}
\end{gather*}
$$

Problem 4. Improve the exponential upper bound (11) for the solutions.
Does there exist polynomial bound for the solutions?
For $\mathbf{3} \leq \mathbf{n} \leq \mathbf{6}$, there are practical algorithms for solving (10) in any number field of degree n with not too large discriminant.
Problem 5. For given $\mathbf{n} \geq \mathbf{7}$, give such an algorithm.
$M(n)$: for given $n \geq 3$, maximal number of solutions of equations (10); $M(3) \leq 10$ (Bennett), $M(4) \leq 2760$ (Bhargava), for $n \geq 5$ $M(n) \leq 2^{4(n+5)(n-2)}$ (Evertse); for $3 \leq n \leq 6, M(n) \geq n^{2}$, see above
Problem 6. (Gy, 2000). Is $M(n)$ polynomial or exponential in terms of n ? Extension of finiteness results on (10): number field case, Gy (1981), effective, finitely generated case, Gy (1982), ineffective
Problem 7. Make effective this result in the finitely generated case

Arithmetic characterization approach

Hasse's problem (1960's): give an arithmetic characterization of monogenic number fields
a very great number of important results for deciding the monogenity (or non-monogenity) of certain special classes of number fields, including cyclotomic, abelian, cyclic, pure, composible number fields, various types of quartic, sextic and multiquadratic fields, relative extensions, and parametric families of number fields defined by binomial and trinomial irreducible polynomials
various approaches...
Professors István Gaál and László Remete will speak about such results and methods

Problem 8. Give an arithmetic characterization of multiply monogenic number fields

Distribution of monogenic number fields

K number field of degree n for $\mathbf{n}=\mathbf{1}, \mathbf{2}, K$ monogenic;
for $\mathbf{n}=\mathbf{3}$, first example for non-monogenic number field: Dedekind (1878);
for fixed $\mathbf{n} \geq \mathbf{3}$, infinitely many monogenic and infinitely many non-monogenic number fields of degree n;
for $\mathbf{n}=\mathbf{3}, \mathbf{4}, \mathbf{6}$, tables of Gaál (2019): frequency of monogenic number
fields of degree n is decreasing in tendency as $\left|D_{K}\right|$ increases.
$N_{n}(X)$: number of isomorphism classes of monogenic number fields K of degree n with $\left|D_{K}\right| \leq X$ and with Galois group S_{n}.

Theorem (Bhargava, Shankar and Wang, 2016, 202?):

$$
N_{n}(X) \gg X^{1 / 2+1 /(n-1)}
$$

Method of proof: arithmetic statistics
Problem 9. Give an asymptotic formula for $N_{n}(X)$ as $X \longrightarrow \infty$.

Canonical number systems in number fields
Kovács, Pethő, later Pethő, Thuswaldner, Evertse, Győry,...
Monogenic orders in number fields
Bérczes, Evertse, Györy, and recent generalization by Evertse
Further properties of Hermite equivalence
E.g. algebraic criterion for Hermite equivalence, BEGyRS

Thank you for your attention!

