Integral polynomials of given discriminant and their applications

(brief <u>survey</u> + some <u>new joint results</u> with <u>Bhargava, Evertse, Remete</u> and <u>Swaminathan</u>)

> K. Győry University of Debrecen

CENT 2023, Sopron

August 28, 2023 Slides have been posted at https://math.unideb.hu/en/talks-kalman-gyory

Introduction

The **theory** of polynomials with coefficients in \mathbb{Z} (integral polynomials) and with given discriminant have a great number of **applications**, among others to Diophantine equations, Diophantine approximations and algebraic number theory.

Comprehensive treatment of the <u>theory</u> and its <u>applications</u> can be found in the work

<u>K. Győry</u>, *Résultats effectifs sur la représentation des entiers par des forms décomposables*, Kingston, Canada, 1980; <u>monic</u> case,

and in the monograph

<u>J. H. Evertse</u> and <u>K. Győry</u>, *Discriminant equations in Diophantine number theory*, Cambridge, 2017.

In our paper <u>M. Bhargava, J. H. Evertse, K. Győry, L. Remete</u> and <u>A. A. Swaminathan</u> (BEGyRS, 2023), *Hermite equivalence of polynomials*, Acta Arith. 2023

we have *integrated* in the <u>theory</u> a long-forgotten *notion of equivalence* for integral polynomials of given discriminant, introduced by <u>Hermite</u> (1850's) and his corresponding *finiteness theorem*. We have *compared Hermite's theorem* with the *most significant results* of this area, obtained by <u>Birch</u> and <u>Merriman</u> (1972) and *independently*, in an *effective form* by <u>Győry</u> (1973), and later by <u>Evertse</u> and <u>Győry</u> (1991, 2017).

We *pointed out* that these results are *much more precise* than Hermite's theorem and require *deeper tools* to prove. In particular, we *corrected* a *faulty reference* to Hermite's result in <u>Narkiewicz</u>'s excellent <u>book</u>

<u>W. Narkiewicz</u>, The story of algebraic numbers in the first half of the 20th century, Springer, 2018.

In our *talk*, we give a *brief overview* of the *most important results* of the *theory*, and following BEGyRS (2023), we *compare them with the* long-forgotten *theorem* of <u>Hermite</u>. Then, as *consequences* of the *theory*, *general effective finiteness theorems* will be presented among others for *monogenic number fields*. Further, *algorithmic/computational* results on *monogenity* will be discussed. Finally, some other *related* results will be stated and **open problems** will be proposed.

Theory

$\mathbb{Z}\text{-equivalence}$ and $\textit{GL}_2(\mathbb{Z})\text{-equivalence}$ of integral polynomials

 $\textit{GL}_2(\mathbb{Z})$: multiplicative group of 2 \times 2 integral matrices with determinant ± 1

- Two monic polynomials $f, f^* \in \mathbb{Z}[X]$ are called \mathbb{Z} -equivalent if $f^*(X) = f(X + a)$ for some $a \in \mathbb{Z}$;
- Two polynomials $f, f^* \in \mathbb{Z}[X]$ of degree $n \ge 2$ are called $GL_2(\mathbb{Z})$ -equivalent if there is $\begin{pmatrix} b & a \\ d & c \end{pmatrix} \in GL_2(\mathbb{Z})$ such that

$$f^*(X) = \pm (dX + c)^n f\left(\frac{bX + a}{dX + c}\right)$$

 \implies in both cases, f, f^* have the same discriminant

 \mathbb{Z} -equivalence is much stronger, \mathbb{Z} -equivalent monic polynomials in $\mathbb{Z}[X]$ are clearly $GL_2(\mathbb{Z})$ -equivalent with $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{Z})$

similar interpretation in terms of binary forms

For $f \in \mathbb{Z}[X]$, H(f) height of f, i.e. the maximum absolute value of its coefficients

<u>Lagrange</u> (1773): For quadratic $f \in \mathbb{Z}[X]$ with discriminant $D \neq 0$, there exists $f^* \in \mathbb{Z}[X]$ $GL_2(\mathbb{Z})$ -equivalent to f such that $H(f^*) \leq c(D)$

 \Leftrightarrow

There are only finitely many $GL_2(\mathbb{Z})$ -equivalence classes of **quadratic** polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant + **effective** (in terms of binary forms)

Similar assertions for monic quadratic polynomials in $\mathbb{Z}[X]$ with \mathbb{Z} -equivalence

Gauss (1801): more precise result

- <u>Hermite</u> (1851): There are only finitely many $GL_2(\mathbb{Z})$ -equivalence classes of **cubic** polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant
- <u>Delone</u> (1930), <u>Nagell</u> (1930), independently: Up to \mathbb{Z} -equivalence, there are only finitely many irreducible **cubic** monic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant + **ineffective**

Very likely, <u>Hermite</u> attempted to extend his theorem to the case of arbitrary degree \geq 3, but without success. Instead, he proved the weaker <u>Theorem A</u> below.

Hermite equivalence of decomposable forms

Consider decomposable forms of degree $n \ge 2$ in n variables

$$F(\underline{X}) = c \prod_{i=1}^{n} (\alpha_{i,1}X_1 + \dots + \alpha_{i,n}X_n) \in \mathbb{Z}[X_1, \dots, X_n].$$

where $c \in \mathbb{Q}^{\times}$ and $\alpha_{i,j} \in \overline{\mathbb{Q}}$ for i, j = 1, ..., n. The <u>discriminant</u> of F is given by

$$D(F) := c^2 (\det(\alpha_{i,j}))^2.$$

We have $D(F) \in \mathbb{Z}$.

Two decomposable forms F, F^* as above are called $GL_n(\mathbb{Z})$ -equivalent if

 $F^*(\underline{X}) = \pm F(U\underline{X})$ for some $U \in GL_n(\mathbb{Z})$

(where $\underline{X} = (X_1, \ldots, X_n)^T$ is a column vector)

Two $GL_n(\mathbb{Z})$ -equivalent decomposable forms have the same <u>discriminant</u>.

Theorem (Hermite, 1850)

Let $n \ge 2, D \ne 0$. Then, the decomposable forms in $\mathbb{Z}[X_1, \ldots, X_n]$ of degree n and discriminant D lie in finitely many $GL_n(\mathbb{Z})$ -equivalence classes.

Hermite equivalence of polynomials and Hermite's finiteness theorem

Let $f(X) = c(X - \alpha_1) \cdots (X - \alpha_n) \in \mathbb{Z}[X]$ with $c \in \mathbb{Z} \setminus \{0\}, \alpha_1, \dots, \alpha_n \in \overline{\mathbb{Q}}$. Then the <u>discriminant</u> of $f : D(f) = c^{2n-2} \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2 \in \mathbb{Z}$.

To f we associate the *decomposable form*

$$[f](\underline{X}) := c^{n-1} \prod_{i=1}^n (X_1 + \alpha_i X_2 + \dots + \alpha_i^{n-1} X_n) \in \mathbb{Z}[X_1, \dots, X_n].$$

We have D(f) = D([f]) (Vandermonde).

<u>Hermite</u> (1857): Two polynomials $f, f^* \in \mathbb{Z}[X]$ of degree n are called **Hermite equivalent** if the associated decomposable forms [f] and $[f^*]$ are $GL_n(\mathbb{Z})$ -equivalent, i.e.,

 $[f^*](\underline{X}) = \pm [f](U\underline{X})$ for some $U \in GL_n(\mathbb{Z})$.

 \implies Hermite equivalent polynomials in $\mathbb{Z}[X]$ have the same discriminant.

<u>Hermite</u>'s <u>theorem</u> on decomposable forms and the above fact imply the following *finiteness theorem on polynomials:*

Theorem A (Hermite, 1857)

Let $n \ge 2, D \ne 0$. Then the polynomials $f \in \mathbb{Z}[X]$ of degree n and of discriminant D lie in finitely many Hermite equivalence classes.

+ ineffective

Comparison of Hermite equivalence with $GL_2(\mathbb{Z})$ -equivalence and \mathbb{Z} -equivalence

Surprisingly, **Theorem A** of <u>Hermite</u> was not mentioned in the literature until <u>Narkiewicz</u> (2018) book quoted above, where $GL_2(\mathbb{Z})$ -equivalence, resp. \mathbb{Z} -equivalence and Hermite equivalence were mixed up. In part, this fact motivated the paper <u>BEGyRS</u> (2023) to provide a thorough treatment of the notion of Hermite equivalence, and <u>compare</u> Hermite equivalence with $GL_2(\mathbb{Z})$ -equivalence resp. \mathbb{Z} -equivalence of integral polynomials.

For polynomials of <u>degree</u> 2 and 3, *Hermite equivalence* and $GL_2(\mathbb{Z})$ equivalence, resp. \mathbb{Z} -equivalence coincide.

Theorem 1 (BEGyRS, 2023)

If $f, f^* \in \mathbb{Z}[X]$ are GL_2 -equivalent, resp. \mathbb{Z} -equivalent, then they are Hermite equivalent.

Theorem 2 (<u>BEGyRS</u>, 2023)

For every $n \ge 4$ there are infinitely many pairs (f, f^*) of irreducible primitive polynomials in $\mathbb{Z}[X]$ with degree n such that f, f^* are Hermite equivalent but $GL_2(\mathbb{Z})$ -inequivalent, resp. \mathbb{Z} -inequivalent in the monic case.

Corollary (<u>BEGyRS</u>, 2023)

 $GL_2(\mathbb{Z})$ -equivalence, resp. \mathbb{Z} -equivalence are stronger than Hermite equivalence.

Reduction theory of integral polynomials II, general case

Breakthroughs in the 1970's

<u>Hermite</u> original objective – proving that there are only finitely many $GL_2(\mathbb{Z})$ -equivalence, resp. \mathbb{Z} -equivalence classes of integral polynomials of given degree and given non-zero discriminant – was finally achieved more than a <u>century</u> later by <u>Birch</u> and <u>Merriman</u> (1972) and *independently*,for <u>monic</u> polynomials, in a <u>more prcise</u> and **effective** form by <u>Győry</u> (1973).

Birch and Merriman proved the following result.

Theorem B (Birch and Merriman, 1972)

Let $n \ge 2$, $D \ne 0$. There are only finitely many $GL_2(\mathbb{Z})$ -equivalence classes of polynomials in $\mathbb{Z}[X]$ with degree n and discriminant D.

<u>Proof</u>, partly based on the finiteness of the number of solutions of <u>unit equations</u> + some *ineffective* arguments \implies **ineffective**

For <u>monic</u> polynomials, the corresponding result with \mathbb{Z} -<u>equivalence</u> was proved independently by <u>Győry</u>.

Theorem C (<u>Győry</u>, 1973)

There are only finitely many \mathbb{Z} -equivalence classes of monic polynomials in $\mathbb{Z}[X]$ with given discriminant $D \neq 0$, and a full set of representatives of these classes can be, at least in principle, **effectively** determined.

Note that here the \underline{degree} of the monic polynomials under consideration is <u>not fixed</u>.

<u>Theorem C</u> confirmed a <u>conjecture</u> of <u>Nagell</u> (1967,68) in an <u>effective</u> form. Further, it made <u>effective</u> and significantly *generalized* the theorems of <u>Delone</u> (1930) and <u>Nagell</u> (1930) obtained in the <u>cubic</u> case.

In the proof of <u>Theorem C</u>, first the <u>degree</u> of the polynomials in question is <u>bounded</u>. Then one reduces the problem to so-called "*connected*" *system of unit equations*, and finally <u>Baker's method</u> is applied to bound the <u>heights</u> of the <u>units</u> and thus of the <u>representatives</u>, see below. <u>First</u> effective version of <u>Theorem B</u> (Birch and <u>Merriman</u>): <u>Evertse</u> and <u>Győry</u> (1991) in a <u>quantitative</u> form. In 2017, <u>improved</u> and completely **explicit** version:

Theorem B' (Evertse and Győry (2017))

Let $f \in \mathbb{Z}[X]$ be a polynomial of degree $n \ge 2$ and discriminant $D \ne 0$. Then f is $GL_2(\mathbb{Z})$ -equivalent to a polynomial $f^* \in \mathbb{Z}[X]$ for which

$$H(f^*) \le \exp\{(4^2n^3)^{25n^2} \cdot |D|^{5n-3}\}.$$
 (1)

Further (<u>Győry</u>, 1974):

 $n \le 3 + 2 \log |D| / \log 3.$

<u>First quantitative</u> version of <u>Theorem C</u> (Győry): <u>Győry</u> (1974). <u>Improved</u> version:

Theorem C' (Evertse and Győry, 2017)

Let $f \in \mathbb{Z}[X]$ be a monic polynomial of degree $n \ge 2$ and discriminant $D \ne 0$. Then f is \mathbb{Z} -equivalent to a polynomial $f^* \in \mathbb{Z}[X]$ for which

$$H(f^*) \le \exp\{n^{20}8^{n^2+19}(|D|(\log|D|)^n)^{n-1}\}.$$
(2)

Further (<u>Győry</u>, 1974):

$$n \le 2 + 2\log|D|/\log 3.$$

Clearly, <u>Theorem B</u> and in particular <u>B'</u>, and in the <u>monic</u> case <u>Theorem C, C'</u> are *much more precise* and *deeper* than <u>Theorem A</u> of <u>Hermite</u>.

The exponential feature of the bounds in (1) and (2) is a <u>consequence</u> of the use of *Baker's method*.

Method of proof of Theorems C and C'

General approach for effective/algorithmic/computational versions

Main steps of the proof of Theorem C:

- The proof can be reduced to the case of irreducible polynomials. Then
 f ∈ Z[X] irreducible, monic with discriminant D ≠ 0 and distinct
 zeros α₁,..., α_n. L splitting field of f ⇒ [L : Q] ≤ n!.
- 2) $n \le c_1(D)$, $|D_L| \le c_2(D)$ explicit, elementary; fix n, L splitting field of f

3)
$$\prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2 = D \Longrightarrow |N_{L/\mathbb{Q}}(\alpha_i - \alpha_j)| \le c_3(D) \text{ explicit}$$
(3)
$$\prod_{1 \le i < j \le n} \alpha_i - \alpha_j = \delta_{ij} \varepsilon_{ij}, \ \varepsilon_{ij} \text{ unit, } H(\delta_{ij}) \le c_4(D) \text{ explicit}$$

4)
$$(\alpha_i - \alpha_j) + (\alpha_j - \alpha_k) + (\alpha_k - \alpha_i) = 0$$
 for every $i, j k$ (4)

graph: vertices $\alpha_i - \alpha_j$, edges $[\alpha_i - \alpha_j, \alpha_j - \alpha_k]$, connected 5) (4) \implies "connected" system of <u>unit equations</u>

$$\delta_{ijk}\varepsilon_{ijk} + \tau_{ijk}\nu_{ijk} = 1, \tag{5}$$

 δ_{ijk}, τ_{ijk} with explicitly bounded heights, $\varepsilon_{ijk}, \nu_{ijk}$ unknown units in L.

17

6) Represent ε_{ijk}

$$\varepsilon_{ijk} = \xi_{ijk} \rho_1^{\mathbf{a}_{ijk,1}} \cdots \rho_r^{\mathbf{a}_{ijk,r}}$$

and similarly ν_{ijk} , where ζ_{ijk} root of unity, ρ_1, \ldots, ρ_r fundamental system of units with effectively/explicitly bounded heights in L with $r \leq n! - 1$ (Dirichlet theorem)

7) Applying Baker's method to (5) \implies effective/explicit bounds for $|a_{ijk,1}|, \ldots, |a_{ijk,r}|.$

Remark: in \underline{Gy} (1974), this was the <u>first</u> application of Baker's method to *general unit equations* of the form (5) with <u>explicit</u> bound.

- using the connectedness of unit equations involved ⇒ effective/explicit bound for the height of α_i - α_j for every i, j;
- 9) adding the differences $\alpha_i \alpha_j$ for j = 1, ..., n, using the fact that $\alpha_1 + \cdots + \alpha_n \in \mathbb{Z}$, putting $\alpha_1 + \cdots + \alpha_n = na + a'$ with $a, a' \in \mathbb{Z}, 0 \le a' < n$, and writing $\alpha_i^* := \alpha_i a$ for i = 1, ..., n, for $f^*(X) := \prod_{i=1}^n (X \alpha_i^*)$ we have $f^*(X) = f(X + a) \in \mathbb{Z}[X]$ with effectively/explicitly bounded height.

Consequences and applications of the theory

I. Integral polynomials with given non-zero discriminant

Generalization of **Theorem B** (<u>Birch</u> and <u>Merriman</u>, 1972) and **Theorem B'** (<u>Evertse</u> and <u>Gy</u>, 1991, 2017) for polynomials over rings of *S*-integers of a number field.

Consequences/applications of Theorem B' (Evertse and Gy, 1991, 2017) to:

- <u>Thue equations</u>, <u>Thue–Mahler equations</u> (Stewart, Evertse and Gy, Evertse, Thunder, Akhtari);
- explicit upper bounds for the minimal non-zero values of binary forms at integral points (Evertse and Gy);
- *GL*₂-equivalence classes of algebraic numbers with given discriminant (Evertse and Gy);
- root separation of integral polynomials (Evertse);
- effective version of Shafarevich' conjecture/Faltings' theorem for hyperelliptic curves (von Känel);
- rational monogenizations of orders in a number field (Evertse)

II. Monic integral polynomials with given non-zero discriminant

 $K \text{ number field, } n = [K : \mathbb{Q}], \text{ discriminant } D_K, \text{ ring of integers } \mathcal{O}_K; \text{ for} \\ \alpha \in \mathcal{O}_K, f_\alpha(X) \in \mathbb{Z}[X] \text{ minimal (monic) polynomial of } \alpha \Longrightarrow \\ \begin{cases} D_{K/\mathbb{Q}}(\alpha) & := D(f_\alpha) \text{ discriminant of } \alpha, \\ I(\alpha) & := [\mathcal{O}_K : \mathbb{Z}[\alpha]] \text{ index of } \alpha; \text{ we have} \end{cases}$ (6) $D_{K/\mathbb{Q}}(\alpha) = I^2(\alpha) \cdot D_K$ (7)

Definition

- $\alpha, \alpha^* \in \mathcal{O}_K$ equivalent if $\alpha^* = \alpha + a$, $a \in \mathbb{Z} \Rightarrow D_{K/\mathbb{Q}}(\alpha) = D_{K/\mathbb{Q}}(\alpha^*)$, $I(\alpha) = I(\alpha^*)$
- *K* monogenic if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K \Leftrightarrow \{1, \alpha, \dots, \alpha^{n-1}\}$ power integral basis in *K*
- K is called k ≥ 1 times monogenic if O_K = Z[α₁] = ... = Z[α_k] for some pairwise inequivalent α₁,..., α_k ∈ O_K; k multiplicity of monogenity

Most important consequences of Theorem C (Győry, 1973): effective finiteness theorems in <u>Gy</u> (1973, 74, 76, 78a, 78b), <u>i.e. in Part I-V of Gy</u> (1973)

for algebraic integer α , $D(\alpha) := D_{K/\mathbb{Q}}(\alpha)$, where $K = \mathbb{Q}(\alpha)$

Corollary 1 of Theorem C

Up to equivalence, there are only finitely many algebraic integers with given non-zero discriminant + effective (Part I; apply Theorem C with $D(\alpha) = D(f_{\alpha})$, f_{α} minimal (monic) polynomial of α)

in **given number field** *K* of degree *n*:

Corollary 2 of Theorem C

Up to equivalence, there are only finitely many $\alpha \in \mathcal{O}_K$ with given index I+ effective and quantitative (Part III, apply Corollary 1 with $D_{K/\mathbb{Q}}(\alpha) = I^2 \cdot D_K$ for $\alpha \in \mathcal{O}_K$)

Corollary 3 of Theorem C

Up to equivalence, there only finitely many $\alpha \in \mathcal{O}_K$ with $\mathcal{O}_K = \mathbb{Z}[\alpha] \Leftrightarrow \{1, \alpha, \dots, \alpha^{n-1}\}$ power integral basis + effective and quantitative (Part III, apply Corollary 2 with I = 1)

breakthrough \implies the first general effective algorithm for deciding the monogenity resp. multiplicity of monogenity of a number field and, up to equivalence, determining all power integral bases in K + generalization for the relative case (Part IV)

An important reformulation of Corollary 2 and 3 in terms of index form equations

<u>Hensel</u> (1894): To every integral basis $\{1, \omega_2, ..., \omega_n\}$ of K there corresponds a form $I(X_2, ..., X_n)$ of degree n(n-1)/2 in n-1 variables with coefficients in \mathbb{Z} such that for $\alpha \in \mathcal{O}_K$,

$$I(\alpha) = |I(x_2, ..., x_n)| \text{ if } \alpha = x_1 + x_2\omega_2 + \dots + x_n\omega_n \text{ with } x_1, \dots, x_n \in \mathbb{Z}$$
(8)
$$I(X_2, ..., X_n) \text{ is called an index form, and for given non-zero } I \in \mathbb{Z}$$

$$I(x_2,\ldots,x_n) = \pm I \text{ in } x_2,\ldots,x_n \in \mathbb{Z}$$
(9)

an index form equation.

In view of (8), Corollary 2 is equivalent to

Corollary 4 of Theorem C

For given $I \in \mathbb{Z} \setminus \{0\}$ the index form equation (9) has only finitely many solutions, and they can be, at least in principle, effectively determined (Part III).

In particular, for l = 1 we get the following equivalent reformulation of Corollary 3

Corollary 5 of Theorem C

The index form equation

S

$$I(x_2,\ldots,x_n) = \pm 1 \text{ in } x_2,\ldots,x_n \in \mathbb{Z}$$
(10)

has only finitely many solutions + effective and quantitative (Part III).

The <u>best known bound</u> for the solutions of (10):

$$\max_{2 \le i \le n} |x_i| < \exp\{10^{n^2} (|D_{\mathcal{K}}| (\log |D_{\mathcal{K}}|)^n)^{n-1}\},$$
(11)
ee Evertse and Győry (2017).

Generalizations of Theorem C (Gy, 1973) and its Corollaries 1–5

- \mathcal{O}_K replaced by any order \mathcal{O} in K (Gy, Part III, IV);
- D resp. I replaced by $\mathbf{p}_1^{z_1} \cdots \mathbf{p}_s^{z_s}$, p_i given primes, $z_i \ge 0$ also unknowns (Gy, Part V; Trelina);
- **discriminant form equations** (Gy, Part III, Gy–Papp, Gy, Evertse–Gy);
- relative case, S-integers (Gy, Part IV; Gy–Papp, Gy, Evertse–Gy);
- more general decomposable form equations (Gy–Papp, Gy, Evertse–Gy);
- "inhomogeneous" case (Gaál);
- analogue results over function fields (Gaál, Gy, Shlapentokh);
- Recently, <u>étale algebras</u> (Evertse–Gy);

case of finitely generated ground domains (Evertse-Gy)

Further applications of Theorem C (Gy, 1973), its Corollaries 1–5 and their generalizations

- Diophantine equations; <u>Thue</u>, <u>Mordell</u>, <u>elliptic</u>, <u>superelliptic</u>, <u>discriminant form</u>, *of discriminant type* (in *alphabetical* order: Bérczes, Brindza, Evertse, Gy, Haristoy, Papp, Pink, Pintér, Trelina);
- minimal index in number fields (Gy);
- irreducible polynomials (Gy);
- arithmetic properties of discriminants and indices of elements of $\mathcal{O}_{\mathcal{K}}(Gy)$;
- canonical number systems in number fields (Kovács, Pethő, and recently Evertse, Gy, Pethő, Thuswaldner);

Problem 1: extend the effective theory and its consequences above to the case of finitely generated groundrings over \mathbb{Z}

main difficulty: Dirichlet unit theorem generalized for finitely generated domains over \mathbb{Z} should be made effective

For further **consequences**, **generalizations**, **applications** and **quantitative versions**, see the **books** with a *great number of references*:

- <u>K. Győry</u>, Résultats effectifs sur la représentation des entiers par des formes décomposables, Kingston, Canada, 1980.
- <u>K. Győry</u>, Discriminant form and index form equations, In: Algebraic Number Theory and Diophantine Analysis, de Gruyter, 2000. pp. 191–214.
- <u>G. Wüstholz</u> (ed.), A Panorama in Number Theory and The View from Baker's Garden, Cambridge, 2002.
- <u>J.-H. Evertse</u> and <u>K. Győry</u>, Unit Equations in Diophantine Number Theory, Cambridge, 2015.
- <u>J.-H. Evertse</u> and <u>K. Győry</u>, Discriminant Equations in Diophantine Number Theory, Cambridge, 2017.
- <u>J.-H. Evertse</u> and <u>K. Győry</u>, Effective Results and Methods for Diophantine Equations over Finitely Generated Domains, Cambridge, 2022.

Algorithmic resolution of index form equations, application to (multiply) monogenic number fields

K number field of degree $n \ge 3$, \mathcal{O}_K ring of integers, $I(X_2, \ldots, X_n)$ an index form over K

$$I(x_2,\ldots,x_n) = \pm 1 \text{ in } x_2,\ldots,x_n \in \mathbb{Z}$$
(10)

(11) **exponential** bound for $\max_i |x_i|$ too large for practical use If $|D_K|$ is not too large, there are *methods* for *solving* (10) in *concrete* cases \Leftrightarrow for computing all generators of power integral bases in K, up to degree $n \leq 6$ in general, and for many special higher degree fields up to about degree $15 \Rightarrow$ for deciding how many times K is monogenic. Breakthrough in the 1990's, computational results and tables, practical algorithms. For $\mathbf{n} = \mathbf{3}, \mathbf{4}, (10) \Longrightarrow$ Thue equations of degree ≤ 4 , efficient algorithm; $\mathbf{n} = \mathbf{3}$, (10) \implies cubic Thue quation (Gaál, Schulte 1989); n = 4, (10) \implies one cubic and some quartic Thue equations (Gaál, Pethő, Pohst, 1991–96), many very interesting results

Refined version of the general approach combined with reduction and enumeration algorithms

In general, for $n \ge 5$, a refined version of the general approach involving unit equations is needed. Since

(10)
$$\iff D_{K/\mathbb{Q}}(\alpha) = D_K \iff D(f_\alpha) = D_K \text{ in } \alpha \in \mathcal{O}_K$$

with minimaly polynomial $f_{\alpha} \in \mathbb{Z}[X]$, in case of concrete equations (10), the **basic idea** of the **proof** of **Theorem C** must be combined with further fundamental algorithms and refinements:

Refined version of the general method: reduction to unit equations but in considerably <u>smaller subfields</u> in the normal closure *L* of *K*. Then the number *r* of unknown exponents a_{ijk} in the unit equation (5) with $\varepsilon_{ijk} = \xi_{ijk}\rho_1^{a_{ijk,1}} \cdots \rho_r^{a_{ijk,r}}$ is <u>much smaller</u>, $\leq n(n-1)/2 - 1$ instead of $r \leq n! - 1$; cf. Gy (1998, 2000), see also Gaál and Gy (1999), Evertse and Gy (2017). Then, in concrete cases *bound* the exponents $|a_{ijk}|$ by *Baker's method*. The *bounds* in concrete cases are still *too large*. Hence **reduction algorithm** is needed, *reducing* the *Baker's bound* for $|a_{ijk}|$ in several steps if necessary by *refined versions* of the L^3 -algorithm; cf. de Weger; Wildanger; Gaál and Pohst.

The *last step* is to apply **enumeration algorithm**, determining the **small** solutions *under the reduced bound*; cf. Wildanger; Gaál and Pohst; Bilu, Gaál and Gy.

Combining the refined version with reduction and enumeration algorithms, for n = 5, 6 Gaál and Győry (1999), resp. Bilu, Gaál and Győry (2004) \implies algorithms for determining all power integral bases \implies checking the monogenity and the multiplicity of the monogenity of K.

The use of the *refined version* of the general approach is *particularly important* in the *enumeration algorithm*.

To perform computations, *algebraic number theory packages*, a *computer algebra system* and in some cases a *supercomputer* were needed.

Examples: Resolution of *index form equations* (10), in the <u>most difficult</u> <u>case</u> when $K = \mathbb{Q}(\alpha)$, degree *n*, *totally real*, with Galois group S_n , $f \in \mathbb{Z}[X]$ minimal polynomial of $\alpha \Longrightarrow$ all power integral bases \Longrightarrow multiplicity of the monogenity of K:

$$\mathbf{n} = \mathbf{3}$$
, $f(X) = X^3 - X^2 - 2X + 1$, K 9 times monogenic (Gaál, Schulte, 1989);

- n = 4, $f(X) = X^4 4X^2 X + 1$, K 17 *times* monogenic (Gaál, Pethő, Pohst, 1990's);
- n = 5, $f(X) = X^5 5X^3 + X^2 + 3X 1$, K 39 times monogenic (Gaál, Gy, 1999); $\approx 8h$
- $\mathbf{n} = \mathbf{6}, f(X) = X^6 5X^5 + 2X^4 + 18X^3 11X^2 19X + 1, K, 45 times$ monogenic (Bilu, Gaál, Gy, 2004); hard computation

There are extremely many *algorithmic results* and several important *algorithms* published in books and in a great number of research papers:

Books

- *B. M. M. de Weger*, Algorithms for Diophantine Equations, CW, Tract 45, Amsterdam, 1989.
- *N. P. Smart*, The Algorithmic Resolution of Diophantine Equations, Cambridge, 1988.
- J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine Number Theory, Cambridge, 2017.
- *I. Gaál*, Diophantine Equations and Power Integral Bases, 2nd ed., Birkhäuser, 2019.

Research papers, a great number of <u>authors</u>, including: Ahmed, Arnóczki, Bilu, El Fadil, Gaál, Gassert, Guardia, Győry, Hamed, Husnine, Jadrijevič, Járási, Kashio, Kim, Lavallee, Montes, Motoda, Nakahara, Nar, Nyul, Olajos, Pethő, Pohst, Remete, Robertson, Schertz, Schulte, Shah, Smart, Smith, Spearman, Stange, Szabó, Tanoé, de Weger, Wildanger, Williams, Ziegler,...

Some other related results and open problems

Diophantine approach via unit equations

1) Integral polynomials with given discriminant

Further generalization: A integrally closed integral domain of characteristic 0 that is finitely generated over \mathbb{Z} (and may contain *transcendental* elements), and G a finite extension of the quotient field of A. Then monic $f, f^* \in A[X]$ A-equivalent if $f^*(X) = f(X + a)$ with some $a \in A \Longrightarrow D(f^*) = D(f)$.

Theorem (Gy, 1982)

Up to A-equivalence, there are only finitely many monic f(X) in A[X] with a given non-zero discriminant having all their zeros in G + effective in <u>Gy</u> (1984) and <u>Evertse</u> and <u>Gy</u> (2017).

- **Problem 2.** Is this statement true without fixing the splitting field G?
- **Problem 3.** *Extend Theorem B to the finitely generated case* (at least in **ineffective** form)

2) Index form equations, monogenity of number fields

K number field of degree $n \ge 3$, $I(X_2, ..., X_n)$ and associated index form

$$I(x_2, \dots, x_n) = \pm 1 \text{ in } x_i \in \mathbb{Z} \Leftrightarrow \mathcal{O}_K = \mathbb{Z}[\alpha],$$

$$\alpha = x_1 + x_2\omega_2 + \dots + x_n\omega_n \quad (x_1 \in \mathbb{Z})$$
(10)

Problem 4. Improve the exponential upper bound (11) for the solutions. Does there exist polynomial bound for the solutions?

For $3 \le n \le 6$, there are practical algorithms for solving (10) in any number field of degree n with not too large discriminant.

Problem 5. For given $n \ge 7$, give such an algorithm.

M(n): for given $n \ge 3$, maximal number of solutions of equations (10); $M(3) \le 10$ (Bennett), $M(4) \le 2760$ (Bhargava), for $n \ge 5$ $M(n) \le 2^{4(n+5)(n-2)}$ (Evertse); for $3 \le n \le 6$, $M(n) \ge n^2$, see above

Problem 6. (Gy, 2000). Is M(n) polynomial or exponential in terms of n?
<u>Extension</u> of <u>finiteness results</u> on (10): number field case, Gy (1981), effective, finitely generated case, Gy (1982), ineffective
Problem 7. Make effective this result in the finitely generated case

Hasse's problem (1960's): give an arithmetic characterization of **monogenic** number fields

a very great number of *important results* for **deciding** the **monogenity** (or **non-monogenity**) of <u>certain special classes</u> of number fields, including *cyclotomic, abelian, cyclic, pure, composible* number fields, *various types of quartic, sextic* and *multiquadratic fields, relative extensions,* and *parametric families of number fields defined by binomial and trinomial irreducible polynomials*

various approaches...

Professors István Gaál and László Remete will speak about such results and methods

Problem 8. Give an arithmetic characterization of **multiply monogenic** number fields

K number field of degree n

- for $\mathbf{n} = \mathbf{1}, \mathbf{2}$, K monogenic;
- for n = 3, first example for *non-monogenic* number field: <u>Dedekind</u> (1878);
- for fixed $n \ge 3$, infinitely many *monogenic* and infinitely many *non-monogenic* number fields of degree *n*;
- for $\mathbf{n} = \mathbf{3}, \mathbf{4}, \mathbf{6}$, tables of <u>Gaál</u> (2019): frequency of monogenic number fields of degree n is decreasing in tendency as $|D_K|$ increases. $N_n(X)$: number of isomorphism classes of monogenic number fields K

of degree n with $|D_K| \leq X$ and with Galois group S_n .

Theorem (Bhargava, Shankar and Wang, 2016, 202?):

 $N_n(X) \gg X^{1/2+1/(n-1)}.$

Method of proof: arithmetic statistics

Problem 9. Give an asymptotic formula for $N_n(X)$ as $X \to \infty$.

Canonical number systems in number fields

Kovács, Pethő, later Pethő, Thuswaldner, Evertse, Győry,...

Monogenic orders in number fields

Bérczes, Evertse, Győry, and recent generalization by Evertse

Further properties of Hermite equivalence

E.g. algebraic criterion for Hermite equivalence, BEGyRS

THANK YOU FOR YOUR ATTENTION!