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Correlation clustering of graphs and integers
S. Akiyama, L. Aszalós, L. Hajdu, A. Pethő

Abstract—Correlation clustering can be modeled in the fol-
lowing way. Let A be a nonempty set, and ∼ be a symmetric
binary relation on A. Consider a partition (clustering) P of A.
We say that two distinct elements a, b ∈ A are in conflict, if
a ∼ b, but a and b belong to different classes (clusters) of P ,
or if a 6∼ b, however, these elements belong to the same class
of P . The main objective in correlation clustering is to find an
optimal P with respect to ∼, i.e. a clustering yielding the minimal
number of conflicts. We note that correlation clustering, among
others, plays an important role in machine learning.

In this paper we provide results in three different, but closely
connected directions. First we prove general new results for
correlation clustering, using an alternative graph model of the
problem. Then we deal with the correlation clustering of positive
integers, with respect to a relation ∼ based on coprimality. Note
that this part is in fact a survey of our earlier results. Finally, we
consider the set of so-called S-units, which are positive integers
having all prime divisors in a fixed finite set. Here we prove new
results, again with respect to a relation defined by the help of
coprimality. We note that interestingly, the shape of the optimal
clustering radically differs for integers and S-units.

Index Terms—correlation clustering, graphs, integers, S-units.

I. INTRODUCTION

Correlation clustering was introduced in the field of machine
learning. We refer to the paper of Bansal et al. [4], which also
gives an excellent overview of the mathematical background.
Let G be a complete graph on n vertices and label its edges
with +1 or −1 depending on whether the endpoints have
been deemed to be similar or different. Consider a partition
of the vertices. Two edges are in conflict with respect to the
partition if they belong to the same class, but are different,
or they belong to different classes although they are similar.
The ultimate goal of correlation clustering is to find a partition
with minimal number of conflicts. The special feature of this
clustering is that the number of clusters is not specified. In
some applications G is not necessarily a complete graph like
in [5] or the labels of the edges are real numbers like in [9].

Correlation clustering admits the following equivalent
model too. Let A be a nonempty set, ∼ be a tolerance relation
on A, i.e., a reflexive and symmetric binary relation. Consider
a partition (clustering) P of A. We say that two elements
a, b ∈ A are in conflict, if a ∼ b, but a and b belong
to different classes (clusters) of P , or if a 6∼ b, however,
these elements belong to the same class of P . The main
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objective is to find an optimal P with respect to ∼, i.e. a
clustering yielding the minimal number of conflicts. It is worth
to mention that if we also assume that ∼ is transitive, then it
is an equivalence relation. In this case the optimal clustering
is obviously provided by the equivalence classes of ∼. So
this is the lack of the transitive property which makes the
problem of correlation clustering interesting and important.
Every clustering of A implies an equivalence relation on
A. The number of conflicts in a clustering reflects a kind
of distance of ∼ to this equivalence relation. An optimal
correlation clustering causes the least number of conflicts
among all clusterings, thus it induces a nearest equivalence
relation to ∼.

A typical application of correlation clustering is the classifi-
cation of unknown topics of (scientific) papers. In this case the
papers represent the elements of A and two papers are consid-
ered to be similar (or being in relation ∼), if one of them refers
to the other. The classes of an optimal clustering then can be
interpreted as the topics of the papers. This kind of clustering
has many applications: image segmentation [12], identifying
biologically relevant groups of genes [2], examining social
coalitions [16], reducing energy consumption in wireless sen-
sor networks [6], modeling physical processes [13], etc.

The number of partitions of sets having n elements grows
exponentially, so the exhaustive search is not available to find
an optimal clustering. Bansal et al. [4] showed that to find an
optimal clustering is NP-hard. Beside this, they also proposed
and analyzed algorithms for approximate solutions of the
problem. In fact the correlation clustering can be considered
to be an optimization problem: one should find the clustering
minimizing the number of conflicts. Thus it is possible to
apply traditional and modern optimization algorithms to find
almost optimal clusterings. Following this approach, Bakó and
Aszalós [3] have implemented several traditional methods, and
have also invented some new ones.

In this paper we consider infinite growing sequences of
labeled graphs such that the labeling is hereditary (see Section
II). Then we can define lower and upper densities of edges with
label +1 as well as of the classes in an optimal correlation
clustering. The aim of Section II is to show relations between
these quantities. Our results show that the choice of the
labeling heavily affects the structure of the optimal clustering.
For example Theorem 1 implies that if the upper density of
edges with +1 is less than 1/2 then there are at least two
classes in an optimal correlation clustering. The value 1/2 is
the best possible by Remark 1.

In Sections III and IV we investigate particular examples.
To introduce them we switch to the relational model. In that
case we may assume that Ai, i = 1, 2, . . . is a chain of subsets
of N and ∼i is the restriction of ∼ to Ai. Here ∼ denotes a
reflexive and symmetric relation on N. After fixing the basic
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set to N it is natural to use the coprimality to define the relation
∼. More precisely, for positive integers a, b ∈ A we set a ∼ b
if gcd(a, b) > 1 or a = b = 1. In Section III we consider this
relation with sets An of positive integers not exceeding n (n =
1, 2, . . . ). The results of this section are published in the paper
[1], so we only outline the main results and methods here.
We present a natural greedy algorithm, Algorithm 1, which
computes locally optimal clustering and prove that it behaves
regularly for n < n0 = 3·5·7·11·13·17·19·23 = 111 546 435,
but from n0 on this regularity disappears. Further we show
that its optimal correlation clustering has at least two classes.
In Section IV we give a similar analysis, but for the sets of
S-units (or generalized Hamming numbers) not exceeding n
(n = 1, 2, . . . ). The results presented here are all new. We
show that the optimal correlation clustering is in this case
asymptotically trivial, i.e. has only one class. Although the
asymptotic result is smooth, there are usually many growing
classes in the early stages, but after a while the largest class
starts to collect all elements like a black hole.

Finally, we give concluding remarks in Section V.

II. CORRELATION CLUSTERING OF GRAPHS

In this section we consider the problem of correlation
clustering not for a single graph, but for an increasing family
of graphs. For n ≥ 1, let Kn be the complete graph of n
vertices. Write V (Kn) and E(Kn) for the set of vertices and
edges of Kn, respectively. Take an arbitrary labeling

cn : E(Kn)→ {−1, 1}

of the edges of Kn, subject to the hereditary (consistency)
condition that for some embedding

σn−1 : Kn−1 → Kn

of Kn into Kn−1 the coloring is invariant, that is

cn−1(e) = cn(σn−1(e)) for e ∈ E(Kn−1).

Thus
K1

σ1−→ K2
σ2−→ . . .

can be considered as an increasing sequence of labeled graphs.
We define the upper and lower densities of the edges having
label 1 in the usual way:

g = lim sup
n→∞

|{e ∈ E(Kn) : cn(e) = 1}|
|E(Kn)|

=

= lim sup
n→∞

|{e ∈ E(Kn) : cn(e) = 1}|
n(n− 1)/2

and

g = lim inf
n→∞

|{e ∈ E(Kn) : cn(e) = 1}|
|E(Kn)|

=

= lim inf
n→∞

|{e ∈ E(Kn) : cn(e) = 1}|
n(n− 1)/2

.

Here and later on, |H| denotes the number of elements of
the set H . Let P(n) be an optimal clustering of (Kn, cn),
with classes P1(n),P2(n), . . . ,Pm(n)(n). Here without loss

of generality we may assume that the classes are arranged in
non-increasing order with respect to cardinality, that is

|Pj(n)| ≥ |Pj+1(n)| (j = 1, . . . ,m(n)− 1).

Define the upper and lower cluster densities of Pj(n) by

ρj = lim sup
n→∞

|Pj(n)|
n

, ρ
j
= lim inf

n→∞

|Pj(n)|
n

for j = 1, . . . ,m(n). If j > m(n) then we set Pj(n) = ∅.
Clearly we have ρj ≥ ρj+1 and ρ

j
≥ ρ

j+1
for j ≥ 1.

Theorem 1. We have∑
i

ρ2
i
≤ 2g, ρ1

2 ≤ 2g

and

g −
∑
i<j

ρiρj ≤
∑
i

ρ2i , g −
∑
i<j

ρ
i
ρ
j
≤
∑
j

ρ2
i
.

Proof. We claim that
∑
i ρi ≤ 1. In fact, for any m ∈ N and

any ε > 0, there exists an n0 ∈ N such that

ρ
j
− ε/m ≤ |Pj(n)|/n

for j ≤ m and n ≥ n0. Thus
m∑
j=1

ρ
j
≤

m∑
n=1

|Pj(n)|
n

+ ε ≤ 1 + ε.

As one can choose ε and m arbitrarily, the above inequality
proves our claim. This fact is used in the last part of the proof
of the first inequality.

As Pj(n) is an optimal cluster, in the induced graph to
Pj(n) of (Kn, cn), at least half of the edges belonging to
each vertex of Pj(n) must have label 1. Indeed, if this does
not hold for some vertex v of Pj(n), then the cluster Pj(n)
can be divided into Pj(n) \ {v} and {v}, and in the new
clustering the number of conflicts is less. This implies that
among |E(Pj(n))| edges, there are at least |E(Pj(n))|/2
edges with label 1. From the inequality

1

2

∑
j

|E(Pj(n))| ≤ |{e ∈ E(Kn) : cn(e) = 1}|, (1)

for any m ∈ N and ε1 > 0, there exists an n1 ∈ N such that

1

2

m∑
j=1

((ρ
j
− ε1)n)((ρj − ε1)n− 1)

2
≤

≤ |{e ∈ E(Kn) : cn(e) = 1}|

for n ≥ n1. Thus for any ε2 > 0

1

2

m∑
j=1

((ρ
j
− ε1)n)((ρj − ε1)n− 1)

2
≤ (g + ε2)

n(n− 1)

2

holds for infinitely many n. Dividing by n2/2 and letting n
tend to ∞, we obtain the first inequality, since m, ε1, and ε2
are arbitrary.

It is also clear from (1) that for any ε1 > 0 and ε2 > 0, we
have

((ρ1 − ε1)n)((ρ1 − ε1)n− 1)

2
≤
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≤ |{e ∈ E(Kn) : cn(e) = 1}| ≤ (g + ε2)
n(n− 1)

2

for infinitely many n, giving the second inequality.
Consider now two clusters Pi(n) and Pj(n). Among the

|Pi(n)|·|Pj(n)| edges joining the two clusters in Kn, the num-
ber of edges labeled by 1 can be at most |Pi(n)| · |Pj(n)|/2.
Indeed, otherwise we could decrease the number of conflicts
by taking Pi(n) ∪ Pj(n) as a new cluster. So

1

2

∑
i<j

|Pi(n)| · |Pj(n)|

is an upper bound for the number of edges labeled by 1,
connecting two distinct clusters Pi(n) and Pj(n). On the other
hand, for any ε3 > 0 and for infinitely many n, there exist at
least

(g − ε3)|E(Kn)| −
∑
|E(Pj(n))|

edges labeled by 1, connecting two distinct clusters Pi(n) and
Pj(n). Thus we get the inequality

1

2

∑
i<j

|Pi(n)| · |Pj(n)| ≥

≥ (g − ε3)|E(Kn)| −
∑
|E(Pj(n))|

for infinitely many n. Therefore for any ε2 > 0, we have
1

2

∑
i<j

((ρi + ε2)n)((ρj + ε2)n) ≥

≥ (g − ε3)
n(n− 1)

2
−
∑
j

((ρj + ε2)n)(((ρj + ε2)n)− 1)

2

for infinitely many n. This implies the third inequality. The
proof of the last inequality is similar, and our statement
follows.

Corollary 1. Using the previous notation, we have√
g ≤

∑
j

ρj and
√
g ≤

∑
j

ρ
j
.

Proof. The first assertion follows from

g ≤ g +
∑
i<j

ρiρj ≤

∑
j

ρj

2

using the third inequality of Theorem 1. The proof of the
second inequality is similar.

We say that the clusters are full if
∑∞
j=1 ρj = 1.

Not all clusterings are full. For example, we may introduce
an ordering of vertices of Kn and let P1(n) be the first half
of the vertices and remaining Pj(n) be singletons for j ≥ 2.
Then we have ρ

1
= 1/2 and ρ

j
= 0 for j ≥ 2.

Corollary 2. Assume that the optimal clusters are full. If g =
g = g then we have

1/2−
∑
i<j

ρ
i
ρ
j
≤ g ≤ 1−

∑
i<j

ρ
i
ρ
j
.

In particular, ρ
1
= 1 and ρ

j
= 0 for j > 1 holds if and only

if g = 1.

Proof. The statement follows from

g +
∑
i<j

ρ
i
ρj ≤

∑
j

ρ
j

2

≤ 2g + 2
∑
i<j

ρ
i
ρ
j

and
∑
j ρj = 1. Since ρ

j+1
≥ ρ

j
by definition, the inequality

shows that ρ
1
ρ
2
> 0 holds if and only if g < 1.

The last statement shows that the edges labeled by 1 must
be of density 1 in order to have only one non-empty class
(namely, the whole Kn) in an optimal clustering. At this point
we need to introduce some new notions.

A graph G is locally stable if the degree of each vertex is
at least d(|G| − 1)/2e. It is globally stable if for any partition
V (G) = A ∪ B (disjoint), there are at least d|A| · |B|/2e
edges connecting A and B. Denote by G(Pj(n)) the graph
obtained from the graph induced by the optimal cluster Pj(n)
of (Kn, cn), by removing all its edges labeled by −1. Then
G(Pj(n)) is globally stable, since otherwise a corresponding
partition A∪B gives lower number of conflicts. For brevity, we
say that Pj(n) is globally stable if G(Pj(n)) has this property.

Theorem 2. If Kn is a single cluster, then its global stability
implies that this is an optimal clustering (consisting of one
cluster).

Proof. Assume that Kn = P is globally stable and consider
a different partition

Kn =
⋃̀
i=1

Qi.

Let c(Qi, Qj) be the total number of conflicts between Qi and
Qj , that is

c(Qi, Qj) =
∑
e

1 + cn(e)

2
,

where the sum is taken over all edges between Qi, Qj . By the
global stability of P , the partition

Pi = Qi ∪

 ⋃
j:j 6=i

Qj


gives not less conflicts. So we see that

c(Qi,
⋃
j:j 6=i

Qj) =
∑
j:j 6=i

c(Qi, Qj) ≥ 0

for all i. Summing these inequalities we obtain

(`− 1)
∑
i<j

c(Qi, Qj) ≥ 0.

Thus the partition
⋃`
i=1Qi gives not less conflicts than P , and

the statement follows.

Lemma 1. Complete bipartite graphs Km,m and Km,m+1 are
globally stable.

Proof. Let U , V be the vertex sets of Km,m. (That is, all edges
of Km,m run between U and V .) Let A∪B be a partition of
the vertex set U ∪ V . Put x = |A ∩ U |, y = |A ∩ V |. Then

m− x = |B ∩ U |, m− y = |B ∩ V |.
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The number of edges between A and B is

x(m− y) + y(m− x) = m(x+ y)− 2xy.

This is not less than

|A| · |B|/2 = (x+ y)(2m− x− y)/2.

For Km,m+1, the computation is similar. With the same
notation, the number of edges between A and B is

x(m+ 1− y) + y(m− x) = m(x+ y) + x− 2xy.

This is not less than

|A| · |B|/2 = (x+ y)(2m+ 1− x− y)/2

since

x− 2xy− (x+ y)(1− x− y)/2 = (x− y)(x− y+ 1)/2 ≥ 0

holds for x, y ∈ Z. This implies the statement.

Remark 1. In the proof of Theorem 1 we only used the
fact that G(Pj(n)) is locally stable. However, the second
inequality is the best possible in the sense that the constant
2 cannot be chosen smaller. Indeed, consider the natural
embedding

Km,m ⊂ Km,m+1 ⊂ Km+1,m+1 ⊂ . . . ,

and consider Km,n to be a subgraph of Km+n. Define the
labeling cm+n by

cm+n(e) =

{
1, if e ∈ E(Km,n),

−1, if e ∈ E(Km+n) \ E(Km,n).

Then this labeling ck is consistent and asymptotically k2/4
edges have label 1. This gives an example that g = 1/2,
ρ1 = 1 and ρj = 0 for j > 1, which attains the equality for
the second inequality of Theorem 1.

III. CORRELATION CLUSTERING OF POSITIVE INTEGERS
WITH RESPECT TO COPRIMALITY

As we have mentioned already in the introduction, it is
obvious that the role of the relation ∼ (or, in the graph model,
the definitions of the labels ±1) is crucial for the structure
of the optimal clustering. This motivates the investigations in
the present section. We mention that the results presented here
were published in the paper [1].

Consider the sequence of complete graphs Kn together with
a hereditary labeling cn : E(Kn) 7→ {−1,+1}. Labeling the
vertices of Kn by the integers An = {1, . . . , n} the mapping
cn implies a reflexive and symmetric relation ∼n on An. By
the hereditary property of cn we may assume that ∼n admits
this property too, i.e., the restriction of ∼n+1 to An is equal
to ∼n.

Let, more generally, An ⊂ N be finite and satisfying
An ⊆ An+1 for n = 1, 2, . . . . Assume that there is a
reflexive and symmetric relation ∼n on An. Further assume
that the restriction of ∼n+1 to An is equal to ∼n. Setting
A = ∩∞n=1An we have A ⊆ N. Define the relation ∼ on A
as follows: for a, b ∈ A we set a ∼ b if there exist n ≥ 1
such that a, b ∈ An and a ∼n b. By the hereditary property

of ∼n the relation ∼ is well defined on A, moreover it is
reflexive and symmetric. Of course we can consider ∼ on N
too. This justifies that in the sequel we consider a relation on
N. Divisibility is the best understood relation of integers. As
it is not symmetric (2|4 but 4 - 2) we cannot use it in our
investigations. Fortunately the coprime relation, i.e. a ∼ b if
gcd(a, b) > 1 or if a = b = 1, is closely related to divisibility
and is symmetric.

In this section we work with sets An of positive integers
greater than 1, but not exceeding n (for n = 2, 3, . . . ).
Moreover we assume that An is equipped with the above
defined coprime relation. Note that the behavior of the gcd
among the first n positive integers has been investigated from
many aspects; see e.g. a paper of Nymann, [14].

Bakó and Aszalós [3] have made several experiments con-
cerning the optimal clustering of An with respect to ∼. They
have discovered that the classes of a near optimal clustering
have regular structure. In the sequel denote by pi the i-th
prime, i.e., p1 = 2, p2 = 3, . . . . Set

Ai,n = {m : m ≤ n, pi|m, pj - n (j < i)}.

In other words, Ai,n is the set of integers at most n, which
are divisible by pi, but coprime to the smaller primes. Aszalós
and Bakó found that

[2, n] ∩ Z =

∞⋃
j=1

Aj,n (2)

is an optimal correlation clustering for n ≤ 20 and very
probably for n ≤ 500 too. Notice that Aj,m = ∅ for all large
enough j, i.e., the union on the right hand side is actually
finite.

The main result of this section (and of [1]) is that for

n0 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 = 111 546 435

the decomposition (2) is not optimal. We prove that the number
of conflicts in

[2, n0] ∩ Z = (A1,n0 ∪ {n0}) ∪ (A2,n0 \ {n0})
∞⋃
j=3

Aj,n (3)

is less than in (2) with n = n0. We cannot prove that (2)
is optimal for n < n0. However, we show that the natural
greedy algorithm (Algorithm 1), presented below, produces
the clustering (2) for all n < n0, and it yields (3) for n = n0.

As we have mentioned already in the introduction, by results
from [4] we know that to find an optimal correlational cluster-
ing is an NP-hard problem. Hence to find an approximation of
the optimal solution, it is natural to use some kind of greedy
algorithm. For the sets An we use the following approach.
The optimal clustering for A2 = {2} is itself. Assume that
we have a partition of An−1 with n > 2, and adjoin n to
that class, which causes the less new conflicts. As a result we
obtain a locally optimal clustering, which is not necessarily
globally optimal on An.

Starting with a partition of An−1 this algorithm returns a
partition of An such that the conflicts caused by putting n into
one of the classes is minimal. The output of Algorithm 1 on



5

Algorithm 1 Natural greedy algorithm
Require: an integer n ≥ 2
Ensure: a partition P of N

1: P ← {{2}};
2: if n = 2 then return P
3: end if
4: m← 3
5: while m ≤ n do
6: PM ← P ∪ {{m}}
7: M ← CONFLICTS(PM ,m) .

the number of conflicts with respect to the partition PM
caused by the pairs (m, a), a < m

8: C ← number of classes in P
9: j ← 1

10: while j ≤ C do
11: O ← OP(j,P) . OP (j,P) denotes the j-th class

in the partition P .
12: P1 ← P \ {O}
13: P1 ← P1 ∪ {O ∪ {m}}
14: M1 ← NUPAIR(P1,m) . the number of pairs

(m, a) with a < m causing a conflict in the partition P1

15: if M1 < M then
16: M ←M1

17: PM ← P1

18: end if
19: end while
20: end while
21: return PM

the input n is denoted by G(n). It is certainly a clustering of
An. As one can easily check, we obtain

G(3) = {{2}, {3}}
G(4) = {{2, 4}, {3}}
G(5) = {{2, 4}, {3}, {5}}
G(6) = {{2, 4, 6}, {3}, {5}}

...
G(15) = {{2, 4, 6, 8, 10, 12, 14}, {3, 9, 15},

{5}, {7}, {11}, {13}}.

For these values of n one can readily show that the above
partitions provide (in fact the unique) optimal clusterings for
An (2 ≤ n ≤ 15), as well.

The main result of this section is the following

Theorem 3. If m < n0 = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 =
111 546 435 then

G(m) =

∞⋃
j=1

Aj,m (4)

holds. However, we have

G(n0) = (A1,n0 ∪ {n0}) ∪ (A2,n0 \ {n0})
∞⋃
j=3

Sj,n0 .

Elements of the proof of Theorem 3. Since the complete proof
of Theorem 3 is given in [1], here we only indicate the main

ingredients of the proof. On this way, we recall several lemmas
from [1], always without proofs.

The first important information we need is to characterize
that class of G(n− 1) to which Algorithm 1 adjoins n. This
is done with the following

Lemma 2. Let n > 2 be an integer. Write G(n − 1) =
{P1, . . . , PM} and set P0 = ∅. For 1 ≤ j ≤M let

Ej,n = {m : m ∈ Pj , gcd(m,n) = 1}

and
Bj,n = {m : m ∈ Pj , gcd(m,n) > 1}.

Define E0,n = B0,n = ∅. Let J be the smallest index for which
|Bj,n| − |Ej,n| (j = 0, . . . ,M) is maximal. Then G(n) =
{P ′0, . . . , P ′M} such that

P ′j =

{
Pj ∪ {n}, if j = J,

Pj , otherwise.

This lemma has the following important consequence.

Corollary 3. The following assertions are true.
(1) If n is even, then n ∈ A1,n.
(2) If n is a prime, then {n} ∈ G(n).
(3) If the smallest prime factor of n is pi and n ∈ Sj,n, then

j ≤ i.

The next result gives a useful bound for the sizes of the sets
Ai,u.

Lemma 3. Let u be an odd integer. Then we have |A1,u| =
u−1
2 . Further, if pi is an odd prime, then∣∣∣∣∣|Ai,u| − u

pi

i−1∏
`=1

(
1− 1

p`

)∣∣∣∣∣ ≤ 2i−2.

The next lemma provides an estimation for |Bj,n| − |Ej,n|,
where

Bj,n = {m : m ∈ Aj,n−1, gcd(m,n) > 1}

and

Ej,n = {m : m ∈ Aj,n−1, gcd(m,n) = 1}.

Note that the elements of Bj,n and Ej,n are those elements of
Aj,n−1, which are, and which are not in the relation ∼ with
n, respectively.

Lemma 4. Let q1 < · · · < qt be odd primes, α1, . . . , αt
positive integers and n = qα1

1 · · · q
αt
t . Let j ≥ 2 be such that

pj < q1. Then

||Bj,n| − |Ej,n| − Cn,j,t| ≤ 2t+j−2

holds, where

Cn,j,t =
n− 1

pj

j−1∏
`=1

(
1− 1

p`

)(
1− 2

t∏
k=1

(
1− 1

qk

))
.

The next lemma plays an important role in the proof of
Theorem 3. We use the previous notation.
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Lemma 5. Let n = qα1
1 · · · q

αt
t with q1 < · · · < qt odd primes

and α1, . . . , αt positive integers. Then

|E1,n| =
ϕ(n)

2
=
n

2

(
1− 1

q1

)
· · ·
(
1− 1

qt

)
,

|B1,n| =
n− 1

2
− |E1,n|.

Now, in principle, we are ready to give the main steps of
the proof of Theorem 3. However, the proof is rather detailed,
tricky and complicated, so we restrict ourselves to indicate
how the argument proceeds. We refer the interested reader
again to [1] for details.

Step 1. We start with confirming the cases where n is odd
and 3 | n. The difficult part is to show that (4) holds
for n < n0. This assertion is verified by comparing the
estimates of Lemmas 2, 3, 4, and 5, some computer search, and
applying a tool from prime number theory namely, estimates
for expressions of the form∏

p<x

(
1− 1

p

)
.

For the latter one can use e.g. formulas from [15].

Step 2. Next we check Theorem 3 for integers n with one
or two prime factors. For this we need to combine Lemmas
2, 3, and 4, involved computer search, and the following two
lemmas are also needed. The first one verifies Theorem 3 if
n is a prime power.

Lemma 6. Let p = pi ≥ 3 be a prime. If p ≤ 67 and pα < n0,
α > 0 then pα ∈ Ai,n. In general, n = pα ∈ Ai,n holds for
α ≤ 4.

The second lemma proves our theorem for n with two
distinct prime divisors, where the smaller one is at most 53.

Lemma 7. Let p = pi ≥ 3 and q > p be primes. If p ≤ 53
and pαqβ < n0, α, β > 0 then pαqβ ∈ Ai,n. In general,
n = pq ∈ Ai,n is valid whenever q < p3.

Step 3. Consider now numbers n with three distinct prime
factors. Unfortunately, for such values of n we could not
find any general assertion or formula like in Lemma 6 or 7.
However, our previous calculations yielded that here we may
assume that the smallest prime factor of n is at least 19. For
each prime 29 ≤ p ≤ 43 we computed all integers, which
are divisible by p, lie below a preliminary computed bound,
and have three distinct prime divisors, which are at least p.
Then we used a variant of the wheel algorithm, see e.g. [17],
to handle these cases. Altogether, up to this point we could
cover all values of n whose smallest prime factor is at most
47.

Step 4. To cover the remaining values of n (which have only
"large" prime factors), we applied again formulas concerning
the distribution of primes. Namely, we used estimates for π(x),
from [15]. This finishes the proof of Theorem 3. 2

We proved that applying Algorithm 1 for An (n ≥ 1), the
outputs (i.e. the clusterings of the An) have a regular shape

until a certain large value of n (in fact up to n0), but at that
point the regularity vanishes. From the proof it is clear that
n0 is the first, but not at all the last integer, which behaves
in this irregular way. For example, the number 3n0 is odd
and is divisible by 3, however, adjoining it to A1,n causes
less conflicts than adjoining it to A2,n. Let A∗i,n denote the
class containing pi, produced by Algorithm 1. We can neither
guess the structure of these sets, nor what is their asymptotic
behavior. For example, it would be interesting to know whether
the limit

lim
n→∞

|A∗1,n|
n

exists or not, or is

lim sup
n→∞

|A∗1,n|
n

= 1

or not.
On the other hand Theorem 1 shad some light to the

asymptotic behavior of the optimal correlation clustering of
(An,∼). Indeed denote by g, g, g, and ρj , j ≥ 1 the quantities
defined in Section II in the case (An,∼). The next theorem
is new.

Theorem 4. With the above notation we have

ρ1 ≤

√
2

(
1− 6

π2

)
= 0.885520071...

In particular the optimal correlation clustering of (An,∼) has
at least two classes.

Proof. First we prove that in the actual case g exists, i.e.,
g = g = g. Indeed we have

g = lim
n→∞

an
bn
,

where

an = |{(a, b) : 1 ≤ a ≤ b ≤ n, gcd(a, b) > 1}| ,

and

bn = |{(a, b) : 1 ≤ a ≤ b ≤ n}| = n(n− 1)

2
.

Obviously

an = bn − |{(a, b) : 1 ≤ a ≤ b ≤ n, gcd(a, b) = 1}|

= bn −
n∑
d=1

ϕ(d),

where ϕ(x) denotes Euler’s totient function. It is well known,
see e.g. [11], that

n∑
d=1

ϕ(d) =
3

π2
n2 +O(n log n).

Combining everything together we get

g = 1− 6

π2
.

By the second assertion of Theorem 1 we get

ρ2
1
≤ 2g,

which together with the last inequality implies the statement
of the theorem.
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IV. CORRELATION CLUSTERING OF S-UNITS WITH
RESPECT TO COPRIMALITY

In this section we perform a similar analysis as in Section
III, with the same relation, but the set of positive integers
replaced by the set of positive integers having all prime
divisors in a preliminary fixed finite set. As it will turn out, this
modification changes the structure of the optimal clustering
drastically. All the results presented in this section are new.

To formulate our results in this direction, we need to
introduce some notions and notation. In what follows, let
S = {p1, . . . , pk} be a finite set of primes. Those positive
integers which has no prime divisors outside S will be called
S-units, and their set is denoted by ZS . This terminology is
widely used in number theory, but in computer science the
elements of the set ZS for S = {2, 3, 5} are also called
Hamming numbers, see e.g. [8]. For a given positive x ∈ R,
let ZS(x) denote the subset of ZS consisting of S-units not
greater than x. The sets ZS(n), n = 1, 2, . . . play the same
role as An in the last section. First we give a sharp upper
bound for the number of elements of ZS(x) and some of its
subsets. For this we need some preparation. The following
result due to Davenport [7] will be very useful.

Lemma 8 ([7, Theorem]). Let R be a closed bounded region
in the n dimensional space Rn and let N(R) and V(R) denote
the number of points with integral coordinates in R and the
volume of R, respectively. Suppose that:
• Any line parallel to one of the n coordinate axes inter-

sects R in a set of points which, if not empty, consists of
at most h intervals.

• The same is true (with m in place of n) for any of the
m dimensional regions obtained by projecting R on one
of the coordinate spaces defined by equating a selection
of n −m of the coordinates to zero; and this condition
is satisfied for all m from 1 to n− 1.

Then

|N(R)−V(R)| ≤
n−1∑
m=0

hn−mVm,

where Vm is the sum of the m dimensional volumes of the
projections of R on the various coordinate spaces obtained
by equating any n −m coordinates to zero, and V0 = 1 by
convention.

The next lemma will also play an important role later on.

Lemma 9. Let y1, . . . , yr, x be positive real numbers, and let
N(y, x) denote the number of non-negative integer solutions
n1, . . . , nr of the inequality

0 ≤ y1n1 + · · ·+ yrnr ≤ x. (5)

Then we have

N(y, x) = c(y)xr +O(xr−1),

where c(y) is the volume of the r-dimensional polyhedron
defined by the inequalities

xi ≥ 0 (i = 1, . . . , r),

y1x1 + · · ·+ yrxr ≤ 1.

Proof. It is clear that the non-negative integers n1, . . . , nr
satisfy (5) if and only if the lattice point (n1, . . . , nr) belongs
to the polyhedron P (y, x) defined by the inequalities

xi ≥ 0 (i = 1, . . . , r),

y1x1 + · · ·+ yrxr ≤ x.

Hence it is sufficient to bound the number of lattice points
inside P (y, x). Obviously, P (y, x) satisfies the conditions of
Lemma 8. Moreover, the volume of P (y, x) equals xr times
the volume of P (y, 1). The domains Vm occurring in Lemma
8 are polyhedra of dimensions at most r − 1, hence their
total volume can be bounded by O(xr−1), and the statement
follows.

Now using Lemma 9 we can easily bound the number of
elements of ZS(x).

Corollary 4. Letting cS = c(log p1, . . . , log pk, 1), we have

|ZS(x)| = cS(log x)
k +O((log x)k−1).

Proof. A positive integer m belongs to ZS(x) if and only if
m ≤ x and there exist non-negative integers n1, . . . , nk such
that

m = pn1
1 · · · p

nk

k .

This implies that

0 ≤ logm = n1 log(p1) + · · ·+ nk log(pk) ≤ log x.

Since log p1, . . . , log pk > 0 are real numbers, the conditions
of Lemma 9 are satisfied, and the statement follows.

Now we shall investigate correlation clustering on ZS
equipped with the same coprimality relation which we used
in Section III. More precisely, for a, b ∈ ZS let a ∼ b, if and
only if gcd(a, b) > 1 or a = b = 1. For an integer n ≥ 1 let
P be a partition of ZS(n). As before, we say that the S-units
a and b are in conflict with respect to P , if either they are in
the same class but a 6∼ b, or they are in different classes and
still a ∼ b. As before, the purpose of correlation clustering is
to find a partition with minimal number of conflicts.

The partition of ZS(n) with only one class (i.e. when all
elements of ZS(n) belong to the same class) is called the
trivial partition.

Lemma 10. Let CS(n) denote the number of conflicts in the
trivial partition of ZS(n). Then we have

CS(n) ≤ c(log n)k,

where c is a positive constant.

Proof. In case of the trivial partition, two different S-units
are in conflict precisely when they are coprime. Thus we
have to count those pairs of S-units (a, b), a 6= b which are
coprime. Let a, b be distinct S-units (not necessarily elements
of ZS(n)), and assume that gcd(a, b) = 1. Then there exists
a T ⊆ S, such that

a =
∏
pj∈T

p
αj

j , b =
∏

pj∈S\T

p
αj

j .
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If T = ∅ or S \T = ∅ then the empty product is defined as 1,
i.e. the pairs (a, b) with a = 1 or b = 1 are included. These
equations mean that a is a T -unit, and b is an (S \ T )-unit.
Hence for fixed T ⊆ S, the (S \ T )-units up to n are the
positive integers which are coprime to the T -units in ZS(n).
Thus

CS(n) ≤
∑
T⊆S

|ZT (n)| · |ZS\T (n)|.

Using Corollary 4 and |T |+ |S \ T | = k, we obtain that

CS(n) ≤
∑
T⊆S

cT cS\T (log n)
|T |(log n)|S\T | +

+ O((log n)|T |+|S\T |−1 =

=

∑
T⊆S

cT cS\T

 (log n)k +O((log n)k−1).

Clearly, for fixed S the sum∑
T⊆S

cT cS\T

is independent of n, hence it is a constant. This proves the
statement.

Denoting by g = g(ZS) and ρ
1
= ρ

1
(ZS) the densities

defined in Section II, in the actual case we obtain

Corollary 5. We have

g = ρ
1
= 1.

Proof. Corollary 4 and Lemma 10 imply g = 1 immediately.
Thus by Corollary 1 we have

∑
j ρj ≥ 1, which together

with the obvious inequality
∑
j ρj ≤ 1 implies that any

optimal clustering of ZS(n) is full. Hence we have ρ
1
= 1 by

Corollary 2.

The equality ρ
1

= 1 does not mean that the optimal
correlation clustering is asymptotically trivial, i.e. the optimal
correlation clustering of ZS(n) is trivial for all large enough
n. Thus the statement of the next theorem is much sharper as
that of the last corollary.

Theorem 5. Suppose that n is large enough. Then the optimal
correlation clustering of ZS(n) is given by the trivial partition.

Proof. If k = 1, i.e. S contains only one element, then all
members of ZS are divisible by it. Thus ∼ is an equivalence
relation on ZS , which corresponds to the trivial partition.
Hence the proof is complete for k = 1 and we may assume
k ≥ 2 in the sequel.

Let 1 ≤ i ≤ k arbitrary, and let a ∈ ZS(n) be such
that pi | a. Denote by Za the set of elements b ∈ ZS(n)
with a 6= b, gcd(a, b) > 1. It is clear that Za contains all
elements of ZS(n) \ {a}, which are multiples of pi. Thus
the number of these elements can be bounded by the number
of elements of the set obtained from ZS(n) by omitting its
elements which are not divisible by pi. Observe that the latter

set is just ZS\{pi}(n). Thus by Corollary 4 we obtain

|Za| ≥ cS(log n)
k +O((log n)k−1)−

− cS\{pi}(log n)
k−1 +O((log n)k−2) (6)

= cS(log n)
k +O((log n)k−1).

Consider now an optimal clustering of ZS(n), denoted by
P . In view of Lemma 10, the number of conflicts with respect
to P is at most c(log n)k, where c is a positive constant.

Assume that the elements of Zpi are distributed in r
different classes, which contain m1, . . . ,mr elements of Zpi ,
respectively. As the elements divisible by pi corresponding
to different classes are in conflict, thus the total number of
conflicts with respect to P is at least

V =
∑

1≤j1<j2≤r

mj1mj2 .

Assume that
max
1≤j≤r

mj ≤ (log n)1/2.

Then by (6) we have

r ≥ cS(log n)k−1/2,

whence

V ≥ r(r − 1)

2
>
r2

4
≥ c2S

4
(log n)2k−1,

whose magnitude is larger than that of the conflicts of the
trivial partition. This implies that for an optimal clustering

max
1≤j≤r

mj > (log n)1/2

holds.
Let now d > (c + 1)/cS , where c is the constant given in

Lemma 10. Suppose that

(log n)1/2 < max
1≤j≤r

mj < |Zpi | − d.

Assume further that the mj take their maximum for j = 1.
Then

V ≥ m1(m2 + · · ·+mr) = m1(m1 + · · ·+mr −m1)

= m1(|Zpi | −m1).

The function m1(|Zpi | −m1) can attain its minimum in the
endpoints of the given interval. If m1 = (log n)1/2, then by
(6) we have

V ≥ cS(log n)k+1/2,

while m1 = |Zpi | − d implies

V ≥ d(|Zpi | − d) > (c+ 1)(log n)k +O((log n)k−1).

Hence we get that the number of conflicts in both endpoints
are larger than that of the trivial partition.

This implies that there exists a class, say P1, in which the
number of multiples of pi is at least |Zpi | − d. Suppose that
d > 0 and let a be such that pi|a, but a /∈ P1. Then a is in
conflict with all the elements of P1 ∩Zpi , and the number of
such elements is

|Zpi | − d = cS(log n)
k +O((log n)k−1).
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Fig. 1. Simulation result: from the 96th Hamming numbers the correlation
clustering gives only one cluster.

Moving a to P1, these conflicts will disappear. Of course, new
conflicts can arise, on the one hand with those d−1 multiples
of pi which are not in P1, and on the other hand, with the
elements not divisible by pi. Altogether, the number of new
conflicts can be at most

d+ |ZS\{pi}(n)| = O((log n)k−1).

That is, if P is an optimal correlation clustering and if n is
large enough, then all multiples of pi must belong to the same
class. Since pi has been chosen arbitrarily, thus all elements
must belong to the same class, and the theorem follows.

Remark 2. Theorem 5 describes completely the optimal
correlation clustering of ZS(n) only if n is large enough.
Choosing S as the set of the first k primes, ZS(n) = An if
n < pk+1, thus the optimal correlation clusterings of ZS(n)
and An are identical. By the results of Section III the number
of clusters and their sizes of the optimal correlation clustering
of ZS(n) are growing for small n-s. After a certain point this
tendency changes, all but one clusters become smaller until
only one cluster survives, like a black hole. Our experiments
show that this happens already for relatively small values of
n, as you can see in Fig. 1 for the Hamming numbers.

This means that locally optimal algorithms, like Algorithm
1, cannot give globally optimal solution for the correlation
clustering problem.

V. CONCLUSION

In this paper we have considered the problem of correlation
clustering, introduced in [4], from three different but closely
related aspects. First we have derived new results for the
graph model of the problem, considering an increasing family
of graphs. We have obtained results concerning the optimal
clustering in the general case. Then we have investigated
particular sets with a specific relation. The reason for doing so
is that clearly, the choice of the underlying relation strongly
influences the structure of the optimal clustering. First we
have considered positive integers and a relation based upon
coprimality. Our main result here (recalled from [1]) has been
that a natural greedy algorithm provides a "locally" optimal
clustering up to a certain positive integer n0, however, at some

point the structure of such a clustering is deemed to change.
Finally, we have considered the set of so-called S-units, under
the same relation as for positive integers. Here we have proved
that interestingly, in contrast with the case of positive integers,
after some point the optimal clustering is always given by the
trivial clustering (consisting of a single class).
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