
ON THE EQUATION A!B! = C!
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Abstract. We consider the equation in the title in positive inte-
gers A,B,C. We give an explicit upper bound for C in terms of
the difference k := B − A. Further, we show that for k ≤ 106 this
equation has only one (long known) non-trivial solution, given by
6!7! = 10!.

1. Introduction and the main result

The question of finding all products of factorials yielding a factorial
is a long standing problem, studied by many authors. Here we only
mention a few related results; for a survey of the topic see e.g. Guy [8],
section B23. Consider the equation

(1) n! =
r∏

i=1

ai!

with r ≥ 2 in positive integers n, a1, . . . , ar, with a1 ≥ · · · ≥ ar > 1.
Observe that this equation has infinitely many solutions given by

n = a2! . . . ar!, a1 = n− 1, with a2, . . . , ar arbitrary.

For example, we have 6! = 5!3! or 12! = 11!3!2!. Such solutions are
called trivial. Obviously, equation (1) has infinitely many trivial so-
lutions. On the other hand, according to a conjecture of Surányi, the
only non-trivial solution to (1) with r = 2 is 10! = 7!6!, while a conjec-
ture of Hickerson predicts that the only non-trivial solutions to (1) are
given by 9! = 7!3!3!2!, 10! = 7!6! = 7!5!3!, 16! = 14!5!2! (see e.g. Erdős
[4], pp. 27-28). These conjectures have been checked for n ≤ 106 by
Caldwell [3]. Erdős [4] (see Theorem 2) proved that writing P (m) for
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the largest prime factor of the positive integer m (with the convention
P (1) = 1), the assertion

(2) P (n(n+ 1)) > 4 log n

would imply that equation (1) has only finitely many non-trivial solu-
tions - however, (2) is far from being established. (See also [7], p. 70.)
Luca [10] proved that assuming the abc-conjecture, (1) has only finitely
may solutions. This result (beside obtaining other related theorems)
has been made more explicit by Luca, Saradha and Shorey [11].

We also mention that after multiplying both sides of (1) by n!, we
get an equation of the form

n!
r∏

i=1

ai! = y2.

This equation also attracted a lot of attention. For related results,
here we only mention a classical paper of Erdős and Graham [6] to-
gether with the recent paper of Luca, Saradha and Shorey [11], and
the references there.

In this paper we consider the case r = 2, and rewrite equation (1) as

(3) A!B! = C!

with positive integers A,B,C satisfying C ≥ B ≥ A > 1.
As we noted already, the problem of finding all solutions to equation

(3) is still open. Beside the results mentioned so far, we recall a theorem
of Erdős [5] saying that in all solutions of (3) with C large enough, we
have C − B ≤ 5 log logC. This result has been recently sharpened by
Bath and Ramachandra [1] to C − B ≤ ((1 + ε)/ log 2) log logC for
C > Cε, with arbitrary ε > 0. Recalling the result of Luca, under
the abc-conjecture we have C − B = 1 for C large enough. Note that,
however, if we would assume that say C − B = 2, equation (3) would
still remain very hard to solve. In this direction, we only refer to a
paper of Luca [9] and the references there.

In this paper, our purpose is to show the finiteness of the solutions
to (3) with k := B −A bounded. Our main result provides an explicit
upper bound for C in terms of k. Certainly, this immediately implies
that for any fixed k, (3) has only finitely many solutions. Further,
we show that the only non-trivial solution to (3) with k ≤ 106 is the
well-known one mentioned earlier.

Theorem 1.1. Writing k = B − A, for all non-trivial solutions of
equation (3) different from (A,B,C) = (6, 7, 10) we have C < 5k.
Further, if k ≤ 106, then the only non-trivial solution to (3) is given
by (A,B,C) = (6, 7, 10).
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2. Proof

To prove the theorem, we need some lemmas. The first one provides
explicit lower and upper bounds for the prime counting function π(x).

Lemma 2.1. We have

(i) x
log x

(
1 + 1

2 log x

)
< π(x) for x ≥ 59,

(ii) π(x) < x
log x

(
1 + 3

2 log x

)
for x ≥ 1.

Proof. Parts (i) and (ii) are formulas (3.1) and (3.2) in Rosser and
Schoenfeld [14], respectively. �

We shall also need an explicit estimate for the number of primes in
an interval.

Lemma 2.2. Let M > 0 and N > 1. Then we have

π(M +N)− π(M) ≤ 2π(N).

Proof. The statement is formula (1.12) in Montgomery and Vaughan
[12]. �

We shall also need bounds for the n-th prime pn.

Lemma 2.3. We have

(i) n(log n+ log log n− 3/2) < pn for n ≥ 2,
(ii) pn < n(log n+ log log n− 1/2) for n ≥ 20.

Proof. Parts (i) and (ii) are formulas (3.10) and (3.11) in [14], respec-
tively. �

We need a simple variant of the Stirling-formula, too.

Lemma 2.4. For all n ≥ 1 we have
√
2π · nn+1/2 · e−n ≤ n! ≤ e · nn+1/2 · e−n.

Proof. For n = 1 the assertion can be readily checked. For n ≥ 2 the
statement immediately follows from the more refined bounds

√
2π · nn+1/2 · e−n+1/(12n+1) < n! <

√
2π · nn+1/2 · e−n+1/12n

given by Robbins [13]. �
Now, we have all the tools to prove our theorem.

Proof of Theorem 1.1. In view of C > B, the equation A!B! = C! can
be rewritten as

(4) A! = (B + 1) · · ·C.
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Observe that no prime p with C/2 < p ≤ C can appear on either side
of the above equation. That is, all such primes must belong to the
interval (A,B]. So for all solutions A,B,C we have

π(C)− π(C/2) ≤ π(B)− π(A).

Note that this inequality is the main observation behind our results.
Using parts (i) and (ii) of Lemma 2.1 to bound the left hand side
and Lemma 2.2 to bound the right hand side of the above inequality,
recalling the notation k = B − A we obtain

(5)
C

logC

(
1 +

1

2 logC

)
− C/2

logC/2

(
1 +

3

2 logC/2

)
<

2k

log k
.

(Note that here we tacitly assumed that C ≥ 59, whence k ≥ 2. How-
ever, C < 59 would be a much better bound for C than the one we
get by the general argument.) If contrary to what we want to prove,
C ≥ 5k would hold, then (5) would imply

C

logC

(
1 +

1

2 logC

)
− C/2

logC/2

(
1 +

3

2 logC/2

)
<

2C/5

log 2C/5
.

It is obvious that for large C, the above inequality cannot hold. A
simple calculation with Magma [2] shows that this is the case whenever
C > 106. However, by Caldwell’s result [3] mentioned earlier, we know
that the only solution to (3) with C ≤ 106 is given by (A,B,C) =
(6, 7, 10). Hence we get that apart from this solution we always have
C < 5k, and the first part of the theorem follows.

Now we consider the second statement. Assume first that k ≤
850000. Observe that in (4), none of B + 1, B + 2, . . . , C can be a
prime. Let pn+1 be the first prime greater than C. By Bertrand’s pos-
tulate we have that pn > C/2. This shows that A < pn ≤ B must be
valid. Thus, by (3), we obtain that

(6) (pn + 1) · · · (pn+1 − 1) ≥ (B + 1)(B + 2) · · ·C = A! ≥ (pn − k)! .

Now using Lemmas 2.3, 2.4 and k ≤ 850000, a simple Magma calcula-
tion gives n+1 ≤ 78200, whence C ≤ 106. So in this case the theorem
follows from the result of Caldwell [3].

Assume now that 850000 < k ≤ 106. Then by what we have proved
already, we get C < 5k ≤ 5 · 106. By Caldwell’s result we may also
assume that 106 < C. By a simple Magma program we get that the
length of the longest prime-free interval inside (106, 5 · 106) is 153. If
C > 1000507 (which is a prime), then A ≥ 507. However, then

101153 < 507! ≤ A! = (B + 1)(B + 2) · · ·C < (5 · 106)153 < 101071
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yields a contradiction. So we are left with the cases 1000000 < C <
1000507. Writing pn < C < pn+1, based upon (6) we must have

(pn + 1) · · · (pn+1 − 1) ≥ (pn − 106)! .

Checking the few possibilities corresponding to the remaining values of
C by Magma, we obtain that C must belong to one of the intervals

(999983, 1000003), (1000003, 1000033), (1000039, 1000081),

with the endpoints being consecutive primes. Note that though in fact
C > 106, we shall also need to consider all elements of the first inter-
val later. To exclude these cases, one can do the following. (We used
Magma to perform the necessary calculations.) Consider all possibili-
ties for a putative solution C in one of the above intervals, and check
that for any possible value of B+1 with B+1 ≤ C in the same interval,
writing p for the largest prime divisor of (B + 1)(B + 2) · · ·C, we can
find a prime q with q < p such that q - (B + 1)(B + 2) · · ·C. In view
of (4) this yields a contradiction. Since for any choice of C and B + 1
one can always find such a q, the theorem follows. �
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