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ON POWER VALUES OF POLYNOMIALS

A. Bérczes∗, B. Brindza∗∗and L. Hajdu∗∗∗

Abstract. In this paper we give a new, generalized version of a result of Brindza,

Evertse and Győry, concerning superelliptic equations.

Let f(x) ∈ Z[x] be a polynomial of degree n and b be a nonzero integer. For
effective upper bounds obtained by Baker’s method for the exponent z in the equa-
tion

(1) f(x) = byz, x, y, z ∈ Z with |y| > 1, z > 1

we refer to [T], [ST], [Tu1], [Tu2], [ShT], [B1], [BEGy], [Bu].
For a polynomial P let M(P ) denote the Mahler height of it (cf. [M]). The

purpose of this paper, which is related to a recent observation of Brindza on the
number of solutions of generalized Ramanujan - Nagell equations [B3], is to derive
a bound for z which is polynomial in M(f). For brevity write M = M(f).

Theorem. If f has at least two distinct zeros, then

z < cM3n log3 |2b|,

where c is an effectively computable constant depending only on n.

Remarks. If f is an irreducible monic and b = 1 then this inequality was
proved by Brindza, Győry and Evertse with different constants (see [BEGy], Th.
4). Moreover, if n > 2 and f is irreducible then a profound result of Győry (cf. [Gy1]
or [Gy2]) makes it possible to substitute cM3n by an effective constant depending
only on the discriminant of f .
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Auxiliary results

To prove our Theorem, we need two lemmas. In what follows, for any non-zero
algebraic number α, h(α) and H(α) denotes the logarithmic height and the classical
(ordinary) height of α, respectively.

Lemma 1. Let K be an algebraic number field of degree n and denote by R and
r the regulator and the unit rank of K, respectively. There exists a fundamental
sytem of units ε1, . . . , εr for K so that

h(εi) ≤ c∗R , i = 1, . . . , r

where c∗ is an effectively computable constant depending only on n.

Proof. This statement is a consequence of Lemma 1 in [BGy]. For other versions
of this result cf. [B2] or [H]. �

Lemma 2. Let α1, . . . , αn be nonzero algebraic numbers and let A1, . . . , An be
positive real numbers with Ai ≥ max{H(αi), e} for i = 1, . . . , n. Furthermore, let
b1, . . . , bn be rational integers with αb1

1 . . . αbn
n 6= 1 and suppose that B is a positive

real number satisfying B ≥ max
i=1,...,n

|bi| and B ≥ e. Now we have

|αb1
1 . . . αbn

n − 1| ≥ B−c′ log A1... log An ,

where c′ is an effectively computable constant depending only on n and on the degree
of Q(α1, . . . , αn) over Q.

Proof. This is Theorem 1.2 in [PW]. �

Proof of the Theorem

We have two cases to distinguish.
First we assume that f has an irreducible factor P ∈ Z[x] of degree t ≥ 2.

Let α be a zero of P , moreover, let R, h,D and r be the regulator, class number,
discriminant and unit rank of the field K = Q(α), respectively. In the sequel
c1, c2, . . . will denote effectively computable positive constants depending only on
n. The well-known inequalities

hR ≤
√
|D|(log |D|)n−1, (cf. e.g. [L])

and
|D| ≤ nnM(P )2n−2 ≤ nnM2n−2 (cf. [M])

imply

(2) hR < c1M
n.

Let a denote the leading coefficient of f and β1, . . . , βn be the zeros of g(x) =
an−1f(x

a ). Set

∆(g) =
∏

βi 6=βj

(βi − βj)2 ,
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and write g in the form g(x) = P k1
1 (x)P2(x) where P1 and P2 are relatively prime

polynomials in Z[x] and P1 is an irreducible monic of degree t; (actually P1(x) =
atP (x

a )). Let β1, . . . , βt be the zeros of P1 and (x, y) be an arbitrary, however, fixed
solution to (1). The g.c.d. of the principal ideals 〈ax−β1〉 and 〈g(ax)(ax−β1)−k1〉
divides ∆n(g), therefore, there are integral ideals A,B,C in K so that

(3) A〈ax − β1〉 = BCw where w =
z

(z, k1)
,

furthermore,
max{NK/Q(A), NK/Q(B)} ≤ |a · b · ∆(g)|n

2
.

Hence, by a well-known inequality (cf. for example [Gy3], Lemma 3) and by (2),
the ideals Ah and Bh have generators α and β, respectively, with

max{ α , β } ≤ exp(c2M
n−1(log M)n log |2b|).

The relation (3) can be written as

α(ax − β1)h = εβγw

where γ is a generator of Ch and ε is a unit. Let ε1, . . . , εr be a fundamental system
of units for K satisfying Lemma 1. Then we can express ε as ε = ρεl1

1 . . . εlr
r where

ρ is a root of unity and we may assume that max
1≤i≤r

|li| < w (the remaining factors,

if any, are incorporated in γ).
If |ax| ≤ M(g) + 1 then

2z ≤ |y|z ≤ (2M(g) + 1)n

and the Theorem is proved. Otherwise, |ax| > M(g) + 1 and |ax − βi| > 1,
i = 1, . . . , n implies

|ax − βi| ≤ |an−1byz|, i = 1, . . . , n,

|an−1byz|h ≥ max
1≤i≤t

|ax − βi|h ≥ ε1
−nw

. . . εr
−nw

α
−n

β
−n

γ
w

and

γ ≤ |an−1b| h
w |y|nh

α
n
w β

n
w

r∏
i=1

εi
n
.

If w < nh then by 0.056 < R (cf. [Z]) we obtain w < 20nhR and

z < c3M
n−1(log(2M))n−1.

In case of w ≥ nh

γ ≤ M |b| 1
n |y|nh

α β

r∏
i=1

εi
n
,

and we get

log H

(
γ

γ(2)

)
≤ c4 log |2b|Mn−1(log(2M))n log |y| .
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We may assume that |ax| ≥ 1
2 |y|

z
n . Indeed, otherwise max

1≤i≤n
|ax − βi| ≥ |y| z

n yields

|ax| ≥ |y| z
n − M(g)

and the Theorem is proved. Supposing

|βi − βj |
|ax − βi|

≥ |β2 − β1|
|ax − β2|

, 1 ≤ i, j ≤ t, i 6= j

we have ∏
1≤i,j≤t

βi 6=βj

|βi − βj |
|ax − βi|

≤ |∆(g)| · 2n

|y|z
.

Then
|β2 − β1|
|ax − β2|

≤ |y|− z
4 ,

or else we can derive a bound for z better than stated in the Theorem. Avoiding

the trivial case
(

ax−β1
ax−β2

)h

= 1, whenever 1
2 |y|

z
n ≤ |∆(g)|n2

we obtain

log

∣∣∣∣∣
(

ax − β1

ax − β2

)h

− 1

∣∣∣∣∣ ≤ log
(

h

∣∣∣∣ax − β1

ax − β2
− 1
∣∣∣∣) ≤ −z

8
log |y|.

Finally, Lemma 2 yields

0 6=

∣∣∣∣∣
(

ax − β1

ax − β2

)h

− 1

∣∣∣∣∣ =
∣∣∣∣∣∣
(

ε1

ε
(2)
1

)l1h

. . .

(
εr

ε
(2)
r

)lrh
β/α

β(2)/α(2)

(
γ

γ(2)

)wh

− 1

∣∣∣∣∣∣ ≥
≥ exp

(
−c5 log |2b|M3n−3(log |2M |)3n−1 log |y| log w

)
and the comparision of the upper and lower bounds completes the proof (in the
first case).

In the easier second case all the zeros of g are integral. Let ki denote the
multiplicities of βi, i = 1, 2.

Repeating the argument one can have

ui(ax − βi) = viy
w
i

where w = z
(a,k1k2)

and ui, vi, yi ∈ Z, |yi| > 1, i = 1, 2.
To derive a bound for w from the equation

Ayw
1 − Byw

2 = C

(A = u2v1, B = u1v2, C = u1u2(β2 − β1)) one can apply Lemma 2 again, and we
have

z

log z
≤ c6 log M log |2b| ,

and the Theorem is proved. �



ON POWER VALUES OF POLYNOMIALS 5

References

[B1] B. Brindza, On S-integral solutions of the equation ym = f(x), Acta Math. Hung. 44

(1984), 133–139.
[B2] B. Brindza, On the generators of S-unit groups in algebraic number fields, Bull. Aus-

tral Math. Soc. 43 (1991), 325–329.

[B3] B. Brindza, On the generalized Ramanujan-Nagell equation (submitted).
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Colloq. Math. Soc. János Bólyai 13, North-Holland, Amsterdam, pp. 399–416.
[Tu1] J. Turk, Polynomial values and almost powers, Michigan Math. J. 29 (1982), 213–220.

[Tu2] J. Turk, On the difference between perfect powers, Acta Arith. 45 (1986), 289–307.

[Z] R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, In-
vent. Math. 62 (1981), 367–380.


