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Abstract. We provide an asymptotic expression for the probability
that a randomly chosen polynomial with given degree, having integral
coefficients bounded by some B, has a prescribed signature. We also
give certain related formulas and numerical results along this line. Our
theorems are closely related to earlier results of Akiyama and Pethő,
and also yield extensions of recent results of Dubickas and Sha.

1. Introduction

Let d be a positive integer, B ≥ 1 a real number. Denote by Hd(B) the
set of (d + 1)-dimensional vectors (p0, . . . , pd) satisfying |pi| ≤ B (0 ≤ i ≤
d), pd 6= 0. In the case B = 1 we write simply Hd instead of Hd(1).

Given a polynomial P ∈ R[X], the non-real roots of P appear in complex
conjugate pairs. Thus d = r + 2s, where r denotes the number of real
roots and s the number of non-real pairs of roots of P . As we shall work
with arbitrary but fixed d and then r is uniquely determined by s, we call
s the signature of P . Identifying the vector (p0, . . . , pd) ∈ Rd+1 and the
polynomial pdX

d + pd−1X
d−1 + · · ·+ p0 the set Hd(B) splits naturally into

bd/2c+ 1 disjoint subsets according to the signature. In the sequel Hd(s,B)
denotes the subset of Hd(B) whose elements have signature s. If B = 1,
in place of Hd(s, 1) we shall simply write Hd(s). Plainly, Hd(s,B) is a
bounded set in Rd+1 for any B > 0, and we will prove that it is Lebesgue
measurable. For the Lebesgue measure (which we shall often simply call
volume) of A ⊂ Rn we write λn(A) or λ(A), if the dimension n is obvious.

Following Dubickas and Sha [4] denote by D∗d(s,B)1 the set of polynomials

f(X) = pdX
d + pd−1X

d−1 + · · · + p0 ∈ Z[X] with pd 6= 0, |pi| ≤ B (i =
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1In fact Dubickas and Sha [4] called (r, s) the signature of P and used the notation

D∗
d(r, s, B) instead of D∗

d(s,B). As we frequently cite the papers of Akiyama and Pethő
[1] and [2], where only s was used for the signature and sets of polynomials were denoted
according to this convention, we follow their notation.
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0, . . . , d) and such that f has signature s. That is, D∗d(s,B) = Hd(s,B) ∩
Zd+1. Denote by D∗d(s,B) the number of elements of D∗d(s,B). They proved

(1) Bd+1 � D∗d(s,B)� Bd+1

by using a lower bound for the number of integer polynomials approximating
appropriately a real polynomial of degree d and signature s. They wrote:
”It would be of interest to obtain an asymptotic formula as (1.1) in our
setting as well.” That is, they ask for an asymptotic formula for D∗d(s,B).

In this paper we improve considerably (1) by providing an asymptotic
formula for D∗d(s,B), thus we fulfill their request. It is important to mention
that Akiyama and Pethő [1, 2] considered a similar problem, when instead of
the absolute values of the coefficients of the polynomials, the absolute values
of the roots of the polynomials are assumed to be bounded. Our method
works for other height functions, too. For its application it is sufficient to
prove that the boundary of the set of polynomials of height at most B is
a smooth function. Moreover, one needs that the volume of the sets of
polynomials with given signature of degree d and of height B is � Bd, see
an example in the last section.

Beside this, we prove asymptotic upper and lower estimates for the num-
ber Dd(s,B) of elements of Dd(s,B), where Dd(s,B) is the subset of ele-
ments of D∗d(s,B) with pd = 1. It turns out that as one would expect, the

magnitude of Dd(s,B) is Bd. However, in this case we are unable to provide
a more precise statement.

We also give a formula for λ(Hd(s,B)) for any d, s and B, involving
integrals. Our formulas are similar to those obtained by Akiyama and Pethő
[1, 2]. Akiyama and Pethő could handle the integrals occurring there by
Selberg integrals, and gave the precise volumes of the corresponding sets for
small values of d. In our case, unfortunately we cannot handle the integrals
theoretically, except certain ’small’ cases. To get some numerical results we
apply the Monte Carlo method to approximate the occurring integrals for
d ≤ 15.

The structure of the paper is the following. In the next section we give
our theoretical results. Then we prove our theorems. In the fourth section
our numerical results are given for d ≤ 15. Finally, we indicate some open
problems.

2. New results

Our main result is the following.

Theorem 2.1. We have

D∗d(s,B) = λd+1(Hd(s))Bd+1 +O(Bd).

Moreover, λd+1(Hd(s)) > 0 for all d and s.

In our proof we follow closely the ideas of Akiyama and Pethő [2]. However
instead of using a classical result of Davenport [3], we prove our result by
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arguing that the box counting dimension of the boundary of Hd(s,B) is one
less then that of the set itself.

Our next theorem concerns Dd(s,B). However, in this case, similarly to
the result of Dubickas and Sha [4] for D∗d(s,B), we can only describe the
magnitude of Dd(s,B), without achieving an asymptotic formula.

Theorem 2.2. We have

Bd � Dd(s,B)� Bd,

where the implied constants depend only on d.

We note that following the proof of Theorem 2.2, one can see that in fact
the implied constants can be given in a refined way, depending also on s.
Since we have s ≤ d, we chose to give the above simpler formulation.

Our further aim is to derive a formula for the volume of Hd(s,B). For this
purpose we need some preparation. Denote by Sj(x1, . . . , xd) (j = 1, . . . , d)
the j-th elementary symmetric polynomial of x1, . . . , xd, that is

Sj(x1, . . . , xd) =
∑

1≤i1<···<ij≤d
xi1 · · ·xij .

For later use we define S0(x1, . . . , xd) = 1. For B > 0 let Hd(s,B) denote
the set of such d-dimensional real vectors (x1, . . . , xr, y1, . . . , ys, z1, . . . , zs)
which satisfy the inequalities

−B ≤ Sj(x1, . . . , xr, y1 + iz1, y1− iz1, . . . , ys + izs, ys− izs) ≤ B (1 ≤ j ≤ d)

and zj 6= 0 (j = 1, . . . , s), where i =
√
−1. If B = 1, we simply write Hd(s)

for this set.
Obviously, we have (p0, . . . , pd) ∈ Hd(s,B) if and only if |pd| ≤ B with

pd 6= 0, and the vector (x1, . . . , xr, y1, . . . , ys, z1, . . . , zs) belongs toHd(s,B/|pd|),
where x1, . . . , xr, y1 ± z1i, ys ± zsi are the roots of pdX

d + · · ·+ p0.
Denote by Res(P (X), Q(X)) the resultant of P (X), Q(X) ∈ R[X]. For

any possible s and positive real number B put

H∗d(s,B) := {(p0, . . . , pd−1) ∈ Rd : (p0, . . . , pd−1, 1) ∈ Hd(s,B)},

and

H+
d (s,B) := {(p0, . . . , pd) ∈ Hd(s,B) : pd > 0}.

When B = 1, the above sets are simply denoted by H∗d(s) and H+
d (s),

respectively.
By the above notion, we have the following theorem.

Theorem 2.3. Let Rj(X) = X2 − 2yjX + y2
j + z2

j (j = 1, . . . , s). Then

λd(H∗d(s,B)) =
2s

r!s!

∫
Hd(s,B)

|∆r|∆s∆r,s

s∏
j=1

|zj | dx1 . . . dxrdy1dz1 . . . dysdzs,
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where

∆r =
∏

1≤j<k≤r
(xj − xk),

∆s =
∏

1≤j<k≤s
Res(Rj(X), Rk(X)),

∆r,s =

r∏
j=1

s∏
k=1

Rk(xj).

Furthermore, we have

λd+1(H+
d (s,B)) = Bd+1

1∫
0

udλ

(
H∗d
(
s,

1

u

))
du.

We note that by Theorem 2.1 we know that λd+1(Hd(s,B)) exists for
any B > 0. Further, in view of λd+1(Hd(s,B)) = 2λd+1(H+

d (s,B)) (see
Corollary 3.1 below), the above theorem gives a formula (though implicit)
for λd+1(Hd(s,B)), for any B > 0.

3. Proofs

In this section we prove our theorems. First we investigate H+
d (s,B) for

B > 0. Later we also need to consider the set H−d (s,B), which is the set of

vectors v, such that −v ∈ H+
d (s,B).

Lemma 3.1. The set H+
d (s) has positive Jordan measure and its boundary

is the union of finitely many algebraic surfaces.

Proof. Following Akiyama and Pethő [2], denote by E(s)
d (B) (s = 0, . . . , bd/2c)

the set of vectors (p0, . . . , pd−1) ∈ Rd such that the corresponding polyno-
mial Xd + pd−1X

d−1 + · · ·+ p0 has signature s, and all of its roots lie in the
disc of radius B.

Denote by A(s)
d the set of points of Hd(s) with pd > 0. Let ψ : A(s)

d 7→ Rd

be the continuous mapping

ψ(p0, . . . , pd) = (p0p
d−1
d , . . . , pd−2pd, pd−1).

The polynomial P (X) = pdX
d +pd−1X

d−1 + · · ·+p0 has signature s and its
coefficients satisfy the inequalities 0 < pd ≤ 1, |pj | ≤ 1, (j = 0, . . . , d − 1).
Plainly, with the substitution pdX = Y we have

pd−1
d P (X) = Q(Y ) = Y d + pd−1Y

d−1 + pd−2pdY
d−2 + · · ·+ p0p

d−1
d

and Q(Y ) has the same signature as P (X). Moreover, by Proposition 2.5.9.

of [7], all roots of Q(Y ) lie in the disc of radius 2. Hence ψ(A(s)
d ) = F (s)

d (pd),
where

F (s)
d (pd) := E(s)

d (2) ∩ ([−pd−1
d , pd−1

d ]× · · · × [−pd, pd]× [−1, 1]).
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By Lemma 2.1 of [2], E(s)
d (B) is Jordan measurable for any B > 0, thus

F (s)
d (pd) is Jordan measurable, as well. Denote by F

(s)
d (pd) its d-dimensional

Jordan measure. The function F
(s)
d (pd) is continuous for pd > 0, because

E(s)
d (2) is independent of pd, and its boundary is by Theorem 7.1. of [1] the

union of finitely many algebraic surfaces. Also, the box [−pd−1
d , pd−1

d ]×· · ·×
[−pd, pd]× [−1, 1] depends continuously on pd. The Jacobian of the mapping

ψ is p
d(d−1)/2
d , hence λd(A(s)

d ) = p
d(d−1)/2
d F

(s)
d (pd). Thus we get

λd+1(H+
d (s)) = lim

t→0

1∫
t

λd(A(s)
d )dpd

= lim
t→0

1∫
t

p
d(d−1)/2
d F

(s)
d (pd)dpd.

As H+
d (s) is bounded and F

(s)
d (pd) is continuous for pd > 0, this integral

exists.
Now we prove that λd+1(H+

d (s)) is positive. For this purpose, assume
1/2 ≤ pd ≤ 1 in the rest of this proof. (The argument works with any
positive lower bound for pd, but to prove our claim the choice 1/2 is suf-
ficient.) Assume that q0, . . . , qd−1 are so small that all roots of Q(Y ) =
Y d + qd−1Y

d−1 + · · ·+ q0 lie in the disc with radius 4−d. Then it is an easy

exercise to show, that |qj | ≤ 2−d+j+1 ≤ p−d+j+1
d (j = 0, . . . , d − 1). Hence

ψ−1(E(s)
d (4−d)) ⊆ H+

d (s) and we get F
(s)
d (pd) ≥ λd(E(s)

d (4−d)) > 0 for all
pd ≥ 1/2. Thus

λd+1(H+
d (s)) ≥ 1

2

(
1

2

)d(d−1)/2

λd(E(s)
d (4−d)),

which is certainly a positive number.
Let pdX

d+pd−1X
d−1 + · · ·+p0 be a polynomial with indeterminate coeffi-

cients lying in a commutative ring. Then its discriminant D = D(p0, . . . , pd)
is a homogenous polynomial in p0, . . . , pd of degree d(d − 1). Specializing
the coefficient domain to C it is well-known that D = 0 if and only if either
pd = 0, or pd 6= 0 and the polynomial has multiple roots. Using the latter
fact Akiyama and Pethő [1] proved, see Theorem 7.1., that the inner bound-

ary points of E(s)
d (1) lie on the hypersurface SD defined by the equation

D = 0. Repeating that proof to H+
d (s), one can see that its boundary is the

union of finitely many pieces of SD and the intersection of the hyperplane
pd = 0 with the hypercube [−1, 1]d+1. �

Corollary 3.1. Let B > 0. Then H+
d (s,B) and H−d (s,B) have positive Jor-

dan measure and their boundaries are the unions of finitely many algebraic
surfaces. Moreover

λd+1(H+
d (s,B)) = λd+1(H−d (s,B)) = λd+1(H+

d (s))Bd+1.
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Proof. The assertion follows directly from Lemma 3.1 together with the fact
that (x0, . . . , xd) ∈ H+

d (s) if and only if (Bx0, . . . , Bxd) ∈ H+
d (s,B). �

Now we are in the position to give the proof of our main result.

Proof of Theorem 2.1. For any B > 0 we have

Hd(s,B) = H+
d (s,B) ∪H−d (s,B).

Thus, by Lemma 3.1 we get

λ(Hd(s,B)) = 2λ(H+
d (s,B)) = 2λ(H+

d (s))Bd+1.

The boundary of H+
d (s,B) is the union of finitely many algebraic sur-

faces. These are piecewise smooth up to a null set, i.e. their box counting
dimension is at most d. This implies

|D∗d(s,B)− 2λ(H+
d (s,B))| =

|D∗d(s,B)− 2Bd+1λ(Hd(s))| = O(Bd),

and our theorem is proved. �

Remark 3.1. In an earlier version we used a Theorem of Davenport [3]
to estimate D∗d(s,B) by λ(H+

d (s,B)). The anonymous referee suggested the
here presented proof. The application of Davenport’s or similar estimates is
only justified if one has more detailed description of the boundary.

To prove our second theorem, we need the following result of Akiyama
and Pethő [2].

Lemma 3.2. For d and s as above, write C(s)
d (b) for the set of polynomials

with integer coefficients of degree d and signature s, having all roots outside
the unit circle, and having constant term b > 0. Then we have

|C(s)
d (b)| � bd−1,

where the implied constant depends only on d.

Proof. In view of s ≤ d, the statement is an immediate consequence of
Theorem 5.1 of [2]. �

Now we can give the proof of our second theorem.

Proof of Theorem 2.2. The upper estimate trivially follows from the inequal-
ity Dd(s,B) ≤ (2B + 1)d. To prove the lower inequality, we shall apply
Lemma 3.2. For this, observe that if a polynomial P (x) = xd + pd−1x

d−1 +

· · · + p1x + b ∈ Z[x] belongs to C(s)
d (b), then since all the roots of P (x) are

larger than one in absolute value, we have |pi| ≤ 2db (i = 1, . . . , d − 1).

This immediately yields that C(s)
d (b) ⊆ Dd(s,B) for any integer B > 0 and
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0 < b < bB/2dc. Hence, observing that the sets C(s)
d (b) (b = 1, . . . , bB/2dc)

are pairwise distinct, using Lemma 3.2 we obtain

Dd(s,B) ≥
bB/2dc∑
b=1

|C(s)
d (b)| �

bB/2dc∑
b=1

bd−1 � Bd,

and the theorem follows. �

Finally, we give the proof of our third theorem.

Proof of Theorem 2.3. The first statement concerning the formula given for
λ(H∗d(s,B)) follows by a simple calculation from Theorem 2.1. of [1].

To prove the formula for λ(H+
d (s,B)) we start from

λ(H+
d (s,B)) =

∫
H+

d (s,B)

1 dp0 . . . dpd.

We apply the substitution

pd = Bqd, pi = Bqdqi (i = 0, . . . , d− 1).

Observe that the determinant of its Jacobian is Bd+1qdd. Thus we have

λ(H+
d (s,B)) = Bd+1

∫
A

qdd dq0 . . . dqd,

where

A = {(q0, . . . , qd−1, qd) ∈ Rd+1 : Xd + qd−1X
d−1 + · · ·+ q1X + q0

has signature s and 0 < qd ≤ 1, − 1

qd
≤ qi ≤

1

qd
(i = 0, . . . , d− 1)}.

Here we used the trivial fact that the signatures of the polynomials

Xd + qd−1X
d−1 + · · ·+ q1X + q0

and

BqdX
d +Bqdqd−1X

d−1 + · · ·+Bqdq1X +Bqdq0

are the same. Putting everything together, we have

λd+1(H+
d (s,B)) = Bd+1

1∫
0

qddλd

(
H∗d
(
s,

1

qd

))
dqd

which proves the theorem. �
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4. Numerical results

In this section we give some numerical data regarding λ(H∗d(s)) and

λ(H+
d (s)). We can calculate the precise values of λ(H∗d(s)) only for d = 2, 3,

and of λ(H+
d (s)) only for d = 2. Evaluating the integrals appearing in

Theorem 2.3 we obtain

λ(H∗2(0)) =
13

6
= 2.1667, λ(H∗2(1)) =

11

6
= 1.8333,

λ(H∗3(0)) =
766

1215
+

log(3)

6
= 0.8136, λ(H∗3(1)) =

8954

1215
− log(3)

6
= 7.1865,

and

λ(H+
2 (1)) =

31

18
− 1

3
log(2) = 1.4912, λ(H+

2 (0)) =
41

18
+

1

3
log(2) = 2.5088.

Here and later on, to perform our calculations we used the program pack-
age Mathematica, and the values are always given with four digit precision.

Observe that λ(H∗2(s)) (s = 0, 1) are rational, but λ(H+
2 (s)) and λ(H∗3(s))

(s = 0, 1) are transcendental. We think that λ(H+
d (s)) and λ(H∗d(s)) (s =

0, . . . , bd/2c) are all transcendental for d ≥ 2 and d ≥ 3, respectively. In
contrast, Akiyama and Pethő [1], Theorem 5.1., proved that the analogous

values v
(s)
d are rational for all d, s.

For larger values of d we were unable to evaluate the integrals appearing
in Theorem 2.3. The reason is that when we split up the original domain
into subdomains according to the signature, the boundary (coming from
the discriminant surface) is so complicated that Mathematica is not able to
handle the situation. So to get some numerical data, we needed another ap-
proach. We used the Monte Carlo method to get approximate results both
for λ(H∗d(s)) and λ(H+

d (s)) for 2 ≤ d ≤ 15. The main principle behind the
method is that we choose a ’large’ number of randomly generated polynomi-
als inside the basic region, and check their signatures. Then, heuristically,
the frequency of polynomials having a prescribed signature s gives an ap-
proximation of the volume. Certainly, this approach is not capable to give a
theoretical bound for the error terms, but it still provides some information
about the studied volumes. More precisely, we do the following.

(1) For approximating λ(H∗d(s)), we randomly choose (using uniform

distribution) a vector from [−1, 1]d, say (p0, . . . , pd−1). For approxi-
mating λ(H+

d (s, 1)) we do the same, but now the vector is in [0, 1]×
[−1, 1]d.

(2) We construct the polynomial P (X) = Xd+pd−1X
d−1+· · ·+p1X+p0

or P (X) = pdX
d + pd−1X

d−1 + · · ·+ p1X + p0, respectively.
(3) We determine the signature of P (X).
(4) After a ’large’ number of iterations (in our case we used 200, 000

loops for each d) we calculate the ratio of the number of polynomials
with a given signature and the total number of polynomials, which
approximate the value of λ(H∗d(s)) or λ(H+

d (s)), respectively.
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In the following tables we give the results of the above method for 2 ≤ d ≤
15, that is, the approximate values of λ(H∗d(s)) and λ(H+

d (s)), respectively
(for all possible values of s). We note that comparing the approximate values
with the precise values given above for d = 2, 3 and d = 2, respectively, we
see that in those cases the errors are around 1%. Thus we expect that the
other approximate values are rather close to the actual data, as well.

Table 1. The approximated values of λ(H∗d(s)) for 2 ≤ d ≤ 15

d/s 0 1 2 3 4 5 6 7
2 2.1652 1.8348 − − − − − −
3 0.8192 7.1808 − − − − − −
4 0.0880 10.2833 5.6286 − − − − −
5 0.0021 6.3378 25.6602 − − − − −
6 0.0003 1.6330 43.9437 18.4230 − − − −
7 0.0000 0.1542 34.128 93.7178 − − − −
8 0.0000 0.0051 12.4442 179.8340 63.7171 − − −
9 0.0000 0.0000 2.0838 163.8780 346.0380 − − −
10 0.0000 0.0000 0.1434 72.8678 728.5040 222.4840 − −
11 0.0000 0.0000 0.0102 16.0154 744.4378 1287.5366 − −
12 0.0000 0.0000 0.0000 1.6589 382.8122 2909.0406 802.4883 −
13 0.0000 0.0000 0.0000 0.0410 98.0173 3227.6070 4866.3347 −
14 0.0000 0.0000 0.0000 0.0000 10.6496 1847.4598 11599.2986 2926.5920
15 0.0000 0.0000 0.0000 0.0000 0.8192 574.4230 13800.5709 18392.1869



10 CSANÁD BERTÓK, LAJOS HAJDU AND ATTILA PETHŐ

Table 2. The approximated values of λ(H+
d (s)) for 2 ≤ d ≤ 15

d/s 0 1 2 3 4 5 6 7
2 2.5054 1.4946 − − − − − −
3 1.7540 6.2460 − − − − − −
4 0.6301 11.3332 4.0361 − − − − −
5 0.1061 10.7558 21.1381 − − − − −
6 0.0128 5.5776 45.8112 12.5984 − − − −
7 0.0013 1.6326 52.2074 74.1587 − − − −
8 0.0000 0.2163 33.6922 180.6090 41.4822 − − −
9 0.0000 0.0154 12.4595 232.6550 266.8700 − − −
10 0.0000 0.0051 2.6317 171.8940 706.3810 143.0890 − −
11 0.0000 0.0000 0.3174 74.3629 998.0621 975.2576 − −
12 0.0000 0.0000 0.0000 18.2886 814.0595 2754.4576 509.1942 −
13 0.0000 0.0000 0.0000 2.6214 400.1792 4165.5501 3263.5493 −
14 0.0000 0.0000 0.0000 0.4096 123.2896 3719.1680 10721.5258 1819.6070
15 0.0000 0.0000 0.0000 0.0000 22.1184 1965.7523 17215.8157 13564.3136

The graphs of the functions λ(H∗d(s)), λ(H+
d (s)) and of v

(s)
d from [1] seem

to have similar fashion. For small s their values tend rapidly to zero. This

was proved for v
(0)
d in [1] Theorem 6.1. and for v

(1)
d by Kirschenhofer and

Weitzer [6].
In the following figures we illustrate our results in a more comprehensive

way. On the top of the bars we indicate the values of s.

Figure 1. Approximate values of λ(H∗d(s)) for even d < 15
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Figure 2. Approximate values of λ(H∗d(s)) for odd d ≤ 15

Figure 3. Approximate values of λ(H+
d (s)) for even d < 15
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Figure 4. Approximate values of λ(H+
d (s)) for odd d ≤ 15

5. Open problems

Similarly as in case of D∗d(s,B) Dubickas and Sha [4], we propose the
following questions concerning Dd(s,B).

Does the limit

lim
B→∞

Dd(s,B)

Bd

exist for any d and s? If yes, what is its value?
Based upon our (rather restricted) calculations, we also ask the following

questions. Is it true that λ(H+
d (s)) and λ(H∗d(s)) (s = 0, . . . , bd/2c) are

transcendental, for all d ≥ 2 and d ≥ 3, respectively? Are they linear
combinations of 1 and log(d) with some rational coefficients?
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