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Abstract.

In this paper we present some new results about unlike powers in arithmetic
progression. We prove among other things that for given k ≥ 4 and L ≥ 3 there

are only finitely many arithmetic progressions of the form (xl0
0

, x
l1
1

, . . . , x
lk−1

k−1
) with

xi ∈ Z, gcd(x0, x1) = 1 and 2 ≤ li ≤ L for i = 0, 1, . . . , k − 1. Furthermore, we show
that, for L = 3, the progression (1, 1, . . . , 1) is the only such progression up to sign.
Our proofs involve some well-known theorems of Faltings [F], Darmon and Granville
[DG] as well as Chabauty’s method applied to superelliptic curves.

1. Introduction

By a classical result of Euler, which apparently was already known to Fermat
(see [D] pp. 440 and 635), four distinct squares cannot form an arithmetic progres-
sion. Darmon and Merel [DM] proved that, apart from trivial cases, there do not
exist 3-term arithmetic progressions consisting of l-th powers, provided l ≥ 3. More
generally, perfect powers from products of consecutive terms in arithmetic progres-
sion have been extensively studied in a great number of papers; see e.g. [T], [Sh]
and [BBGyH] and the references there. In our article we deal with the following
problem.

Question. For all k ≥ 3 characterize the non-constant arithmetic progressions

(h0, h1, . . . , hk−1)

with gcd(h0, h1) = 1 such that each hi = xli
i for some xi ∈ Z and li ≥ 2.

Note that we impose the seemingly artificial primitivity condition gcd(h0, h1) =
1. In case the hi are all like powers, the homogeneity of the conditions ensures that
up to scaling, we can assume gcd(h0, h1) = 1 without loss of generality. If we do
not take all li equal, however, there are infinite families that are not quite trivial,
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but are characterized by the fact they have a fairly large common factor in their
terms; see the examples below Theorem 3.

By a recent result of Hajdu [H] the ABC conjecture implies that if

(xl0
0 , xl1

1 , . . . , x
lk−1

k−1 )

is an arithmetic progression with gcd(x0, x1) = 1 and li ≥ 2 for each i, then k and
the li are bounded. Furthermore, he shows unconditionally that k can be bounded
above in terms of maxi{li}. In fact Hajdu proves these results for more general
arithmetic progressions which satisfy the assumptions (i), (ii) of our Theorem 2
below.

As is known (see e.g. [M],[DG],[PT],[T1],[T2] and the references given there),
there exist integers l0, l1, l2 ≥ 2 for which there are infinitely many primitive arith-
metic progressions of the form (xl0

0 , xl1
1 , xl2

2 ). In these progressions the exponents in
question always satisfy the condition

1

l0
+

1

l1
+

1

l2
≥ 1.

One would, however, expect only very few primitive arithmetic progressions of
length at least four and consisting entirely from powers at least two. A definitive
answer to the above question seems beyond present techniques. As in [H], we
restrict the size of the exponents li and prove the following finiteness result:

Theorem 1. Let k ≥ 4 and L ≥ 2. There are only finitely many k-term integral

arithmetic progressions (h0, h1, . . . , hk−1) such that gcd(h0, h1) = 1 and hi = xli
i

with some xi ∈ Z and 2 ≤ li ≤ L for i = 0, 1, . . . , k − 1.

The proof of this theorem uses that for each of the finitely many possible ex-
ponent vectors (l0, . . . , lk−1), the primitive arithmetic progressions of the form

(xl0
0 , . . . , x

lk−1

k−1 ) correspond to the rational points on finitely many algebraic curves.
In most cases, these curves are of genus larger than 1 and thus, by Faltings’ theorem
[F], give rise to only finitely many solutions.

In fact, our Theorem 1 above is a direct consequence of the following more general
result and a theorem by Euler on squares in arithmetic progression. For a finite
set of primes S, we write Z∗

S for the set of rational integers not divisible by primes
outside S.

Theorem 2. Let L, k and D be positive integers with L ≥ 2, k ≥ 3, and let S be a

finite set of primes. Then there are at most finitely many arithmetic progressions

(h0, h1, . . . , hk−1) satisfying the following conditions:

(i) For i = 0, . . . , k − 1, there exist xi ∈ Z, 2 ≤ li ≤ L and ηi ∈ Z∗
S such that

hi = ηi xli
i ,

(ii) gcd(h0, h1) ≤ D,
(iii) either k ≥ 5, or k = 4 and li ≥ 3 for some i, or k = 3 and 1

l0
+ 1

l1
+ 1

l2
< 1.

Remark. In (iii) the assumptions concerning the exponents li are necessary. For
k = 3 this was seen above. In case of k = 4 the condition li ≥ 3 for some i
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cannot be omitted as is shown by e.g. the arithmetic progression x2
0, x

2
1, x

2
2, 73x2

3

with S = {73}. We have the homogeneous system of equations

x2
0 + x2

2 = 2x2
1

x2
1 + 73x2

3 = 2x2
2.

A non-singular intersection of two quadrics in P3 is a genus 1 curve. If there is
a rational point on it, it is isomorphic to its Jacobian - an elliptic curve. In this
example the elliptic curve has infinitely many rational points. Therefore we also
have infinitely many rational solutions (x0 : x1 : x2 : x3). After rescaling, those all
give primitive integral solutions as well.

For small li we can explicitly find the parametrizing algebraic curves and, using
Chabauty’s method, the rational points on them. This allows us to prove:

Theorem 3. Let k ≥ 4, and suppose that (h0, h1, . . . , hk−1) = (xl0
0 , xl1

1 , . . . , x
lk−1

k−1 )
is a primitive integral arithmetic progression with xi ∈ Z and 2 ≤ li ≤ 3 for

i = 0, 1, . . . , k − 1. Then

(h0, h1, . . . , hk−1) = ±(1, 1, . . . , 1).

The proof is rather computational in nature and uses p-adic methods to derive
sharp bounds on the number of rational points on specific curves. The methods
are by now well-established. Of particular interest to the connoisseur would be
the argument for the curve C4 in Section 3, where we derive that an elliptic curve
has rank 0 and a non-trivial Tate-Shafarevich group by doing a full 2-descent on an
isogenous curve and the determination of the solutions to equation (7). The novelty
for the latter case lies in the fact that, rather than considering a hyperelliptic curve,
we consider a superelliptic curve of the form

f(x) = y3, with deg(f) = 6.

We then proceed similarly to [B]. We determine an extension K over which f(x) =
g(x) · h(x), with g, h both cubic. We then determine that Q-rational solutions to
f(x) = y3 by determining, for finitely many values δ, the K-rational points on the
genus 1 curve g(x) = δy3

1 , with x ∈ Q.

Remark. The condition gcd(h0, h1) = 1 in Theorems 1 and 3 is necessary. This
can be illustrated by the following examples with k = 4. Note that the progressions
below can be “reversed” to get examples for the opposite orders of the exponents
l0, l1, l2, l3.

• In case of (l0, l1, l2, l3) = (2, 2, 2, 3)

((u2 − 2uv − v2)f(u, v))2, ((u2 + v2)f(u, v))2, ((u2 + 2uv − v2)f(u, v))2, (f(u, v))3

is an arithmetic progression for any u, v ∈ Z, where f(u, v) = u4 + 8u3v + 2u2v2 −
8uv3 + v4.

• In case of (l0, l1, l2, l3) = (2, 2, 3, 2)

((u2 − 2uv− 2v2)g(u, v))2, ((u2 +2v2)g(u, v))2, (g(u, v))3, ((u2 +4uv− 2v2)g(u, v))2

is an arithmetic progression for any u, v ∈ Z, where g(u, v) = u4 + 4u3v + 8u2v2 −
8uv3 + 4v4.
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2. Auxiliary results

The proof of Theorem 2 depends on the following well-known result by Darmon
and Granville [DG].

Theorem A. Let A, B, C and r, s, t be non-zero integers with r, s, t ≥ 2, and let S
be a finite set of primes. Then there exists a number field K such that all solutions

x, y, z ∈ Z with gcd(x, y, z) ∈ Z∗
S to the equation

Axr + Bys = Czt

correspond, up to weighted projective equivalence, to K-rational points on some

algebraic curve Xr,s,t defined over K. Putting u = −Axr/Czt, the curve X is a

Galois-cover of the u-line of degree d, unramified outside u ∈ {0, 1,∞} and with

ramification indices e0 = r, e1 = s, e2 = t. Writing χ(r, s, t) = 1/r + 1/s + 1/t and

g for the genus of X, we find

• if χ(r, s, t) > 1 then g = 0 and d = 2/χ(r, s, t),
• if χ(r, s, t) = 1 then g = 1,
• if χ(r, s, t) < 1 then g > 1.

The two results below will be useful for handling special progressions, containing
powers with small exponents. The first one deals with the quadratic case.

Theorem B. Four distinct squares cannot form an arithmetic progression.

Proof. The statement is a simple consequence of a classical result of Euler (cf. [M],
p. 21), which was already known by Fermat (see [D] pp. 440 and 635). �

We also need a classical result on a cubic equation.

Theorem C. The equation x3 + y3 = 2z3 has the only solutions (x, y, z) =
±(1, 1, 1) in non-zero integers x, y, z with gcd(x, y, z) = 1.

Proof. See Theorem 3 in [M] on p. 126. �

The next lemma provides the parametrization of the solutions of certain ternary
Diophantine equations.

Lemma. All solutions of the equations

i) 2b2 − a2 = c3, ii) a2 + b2 = 2c3, iii) a2 + 2b2 = 3c3, iv) 3b2 − a2 = 2c3,

v) 3b2 − 2a2 = c3, vi) a2 + b2 = 2c2, vii) 2a2 + b2 = 3c2, viii) a2 + 3b2 = c2

in integers a, b and c with gcd(a, b, c) = 1 are given by the following parametriza-

tions:

i) a = ±(x3 + 6xy2) or a = ±(x3 + 6x2y + 6xy2 + 4y3)
b = ±(3x2y + 2y3) b = ±(x3 + 3x2y + 6xy2 + 2y3)

ii) a = ±(x3 − 3x2y − 3xy2 + y3)
b = ±(x3 + 3x2y − 3xy2 − y3)

iii) a = ±(x3 − 6x2y − 6xy2 + 4y3)
b = ±(x3 + 3x2y − 6xy2 − 2y3)
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iv) a = ±(x3 + 9x2y + 9xy2 + 9y3) or a = ±(5x3 + 27x2y + 45xy2 + 27y3)
b = ±(x3 + 3x2y + 9xy2 + 3y3) b = ±(3x3 + 15x2y + 27xy2 + 15y3)

v) a = ±(x3 + 9x2y + 18xy2 + 18y3) or a = ±(11x3 + 81x2y + 198xy2 + 162y3)
b = ±(x3 + 6x2y + 18xy2 + 12y3) b = ±(9x3 + 66x2y + 162xy2 + 132y3)

vi) a = ±(x2 − 2xy − y2)
b = ±(x2 + 2xy − y2)

vii) a = ±(x2 + 2xy − 2y2)
b = ±(x2 − 4xy − 2y2)

viii) a = ±(x2 − 3y2)/2
b = ±xy

Here x and y are coprime integers and the ± signs can be chosen independently.

Proof. The statement can be proved via factorizing the expressions in the appro-
priate number fields. More precisely, we have to work in the rings of integers of the
following fields: Q(

√
−2), Q(i), Q(

√
2), Q(

√
3), Q(

√
6). Note that the class number

is one in all of these fields. As the method of the proof of the separate cases are
rather similar, we give it only in two characteristic instances, namely for the cases
i) and vii).

i) In Z[
√

2] we have

(a +
√

2b)(a −
√

2b) = (−c)
3
.

Using gcd(a, b) = 1, a simple calculation gives that

gcd(a +
√

2b, a −
√

2b) | 2
√

2

in Z[
√

2]. Moreover, 1 +
√

2 is a fundamental unit of Z[
√

2], and the only roots of
unity are ±1, which are perfect cubes. Hence we have

(1) a +
√

2b = (1 +
√

2)
α
(
√

2)
β
(x +

√
2y)

3
,

where α ∈ {−1, 0, 1}, β ∈ {0, 1, 2} and x, y are some rational integers. By taking
norms, we immediately obtain that β = 0. If α = 0, then expanding the right hand
side of (1) we get

a = x3 + 6xy2, b = 3x2y + 2y3.

Otherwise, when α = ±1 then (1) yields

a = x3 ± 6x2y + 6xy2 ± 4y3, b = ±x3 + 3x2y ± 6xy2 + 2y3.

In both cases, substituting −x and −y for x and y, respectively, we obtain the
parametrizations given in the statement. Furthermore, observe that the coprimality
of a and b implies gcd(x, y) = 1.

vii) By factorizing in Z[
√
−2] we obtain

(b +
√
−2a)(b −

√
−2a) = 3c2.

Again, gcd(a, b) = 1 implies that

gcd(b +
√
−2a, b −

√
−2a) | 2

√
−2
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in Z[
√
−2]. Note that Z[

√
−2] has no other units than ±1. Since 2 = −(

√
−2)2, we

can write

(2) b +
√
−2a = (−1)α(1 +

√
−2)

β
(1 −

√
−2)

γ
(
√
−2)

δ
(x +

√
−2y)

2
,

where α, β, γ, δ ∈ {0, 1} and x, y are some rational integers. By taking norms, we
immediately get that δ = 0 and β + γ = 1. In these cases, by expanding the right
hand side of (2) we obtain (choosing the ± signs appropriately) that

a = ±(±x2 + 2xy ∓ y2), b = ±(x2 ∓ 4xy − 2y2).

Substituting −x and −y in places of x and y, respectively, we get the parametriza-
tions indicated in the statement. Again, gcd(a, b) = 1 gives gcd(x, y) = 1. �

3. Proofs of the Theorems

Note that Theorem 1 directly follows from Theorem B and Theorem 2. Hence
we begin with the proof of the latter statement.

Proof of Theorem 2. Since an arithmetic progression of length k > 5 contains an
arithmetic progression of length 5, we only have to consider the cases k = 5, 4 and
3. The condition that 2 ≤ li ≤ L leaves only finitely many possibilities for the
exponent vector l = (l0, . . . , lk−1). Therefore, it suffices to prove the finiteness for
a given exponent vector l.

Note that if hi = ηix
li
i for some ηi ∈ Z∗

S , then without loss of generality, ηi

can be taken to be li-th power free. This means that, given l, we only need to
consider finitely many vectors η = (η0, . . . , ηk−1). Hence, we only need to prove

the theorem for k = 3, 4, 5, and l and η fixed. Note that if gcd(h0, h1) ≤ D, then
certainly gcd(xi, xj) ≤ D. We enlarge S with all primes up to D.

We write n = h1 − h0 for the increment of the arithmetic progression. With
k, l, η fixed, the theorem will be proved if we show that the following system of
equations has only finitely many solutions:

(a) ηix
li
i − ηjx

lj
j = (i − j)n for all 0 ≤ i < j ≤ k − 1.

(b) (x0, . . . , xk−1) ∈ Zk with gcd(x0, x1) ≤ D.

Hence, we need to solve

(j − m)ηix
li
i + (m − i)ηjx

lj
j + (i − j)ηmxlm

m = 0 for all 0 ≤ m, i, j ≤ k − 1.

For m = 0, i = 1, we obtain that each of our solutions would give rise to a solution
to

(3) jη1x
l1
1 − ηjx

lj
j + (1 − j)η0x

l0
0 = 0.

By applying Theorem A we see that such solutions give rise to Kj-rational points
on some algebraic curve Cj over some number field Kj. Furthermore, putting

u =
η1x

l1
1

η0x
l0
0

,

we obtain that Cj is a Galois-cover of the u-line, with ramification indices l0, l1, lj
over u = ∞, 0, j/(j − 1) respectively and unramified elsewhere.
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If k = 3, we recover the approach of Darmon and Granville. Theorem A im-
mediately implies that if 1/l0 + 1/l1 + 1/l2 < 1 then C2 has genus larger than 1
and thus (by Faltings) has only finitely many rational points. This establishes the
desired finiteness result.

If k = 4, we are interested in solutions to (3) for j = 2, 3 simultaneously. Let M
be a number field containing both K2 and K3. Then the solutions we are interested
in, correspond to M -rational points on C2 and C3 that give rise to the same value of
u, i.e., we want the rational points on the fibre product C2×uC3. This fibre product
is again Galois and has ramification indices at least l0, l1, l2, l3 over u = ∞, 0, 2, 3

2 ,
respectively. Since C2 ×u C3 is Galois over the u-line, all its connected components
have the same genus and degree, say, d. Writing g for the genus of this component,
the Riemann-Hurwitz formula gives us

2g − 2 ≥ d

(

2 − 1

l0
− 1

l1
− 1

l2
− 1

l3

)

.

Hence, we see that g ≤ 1 only if l0 = l1 = l2 = l3 = 2. For other situations, we have
g ≥ 2, so C2 ×u C3 has only finitely many M -rational points.

If k = 5, we argue similarly, but now we consider C2 ×u C3 ×u C4, with ramifi-
cation indices at least l0, l1, l2, l3, l4 over u = 0,∞, 1, 3

2 , 4
3 , respectively. Hence, we

obtain

2g − 2 ≥ d

(

3 − 1

l0
− 1

l1
− 1

l2
− 1

l3
− 1

l4

)

,

so that g ≥ 2 in all cases.
�

Proof of Theorem 3. The proof involves some explicit computations that are too
involved to do either by hand or reproduce here on paper. Since the computations
are by now completely standard, we choose not to bore the reader with excessive
details and only give a conceptual outline of the proof. For full details, we refer the
reader to the electronic resource [notes], where a full transcript of a session using
the computer algebra system MAGMA [magma] can be found. We are greatly
indebted to all contributors to this system. Without their work, the computations
sketched here would not at all have been trivial to complete.

It suffices to prove the assertion for k = 4. We divide the proof into several
parts, according to the exponents of the powers in the arithmetic progression. If
(l0, l1, l2, l3) = (2, 2, 2, 2), (3, 3, 3, 3), (2, 3, 3, 3) or (3, 3, 3, 2), then our statement
follows from Theorems B and C. We handle the remaining cases by Chabauty’s
method. We start with those cases where the classical variant works. After that
we consider the cases where we have to resort to considering some covers of elliptic
curves.

The cases (l0, l1, l2, l3) = (2, 2, 2, 3) and (3, 2, 2, 2).

From the method of our proof it will be clear that by symmetry we may suppose
(l0, l1, l2, l3) = (2, 2, 2, 3). That is, the progression is of the form x2

0, x
2
1, x

2
2, x

3
3.

Applying part i) of our Lemma to the last three terms of the progression, we get
that either

x1 = ±(x3 + 6xy2), x2 = ±(3x2y + 2y3)



8 N. BRUIN, K. GYŐRY, L. HAJDU AND SZ. TENGELY

or

x1 = ±(x3 + 6x2y + 6xy2 + 4y3), x2 = ±(x3 + 3x2y + 6xy2 + 2y3)

where x, y are some coprime integers in both cases.
In the first case by x2

0 = 2x2
1 − x2

2 we get

x2
0 = 2x6 + 15x4y2 + 60x2y4 − 4y6.

Observe that x 6= 0. By putting Y = x0/x3 and X = y2/x2 we obtain the elliptic
equation

Y 2 = −4X3 + 60X2 + 15X + 2.

A straightforward calculation with MAGMA gives that the elliptic curve described
by this equation has no affine rational points.

In the second case by the same assertion we obtain

x2
0 = x6 + 18x5y + 75x4y2 + 120x3y3 + 120x2y4 + 72xy5 + 28y6.

If y = 0, then the coprimality of x and y yields x = ±1, and we get the trivial
progression 1, 1, 1, 1. So assume that y 6= 0 and let Y = x0/y3, X = x/y. By these
substitutions we are led to the hyperelliptic (genus two) equation

C1 : Y 2 = X6 + 18X5 + 75X4 + 120X3 + 120X2 + 72X + 28.

We show that C1(Q) consists only of the two points on C1 above X = ∞, denoted
by ∞+ and ∞−.

The order of Jtors(Q) (the torsion subgroup of the Mordell-Weil group J (Q)
of the Jacobian of C1) is a divisor of gcd(#J (F5), #J (F7)) = gcd(21, 52) = 1.
Therefore the torsion subgroup is trivial. Moreover, using the algorithm of M. Stoll
[St] implemented in MAGMA we get that the rank of J (Q) is at most one. As the
divisor D = [∞+ −∞−] has infinite order, the rank is exactly one. Since the rank
of J (Q) is less than the genus of C1, we can apply Chabauty’s method [C] to obtain
a bound for the number of rational points on C1. For applications of the method
on related problems, we refer to [CF], [Fl], [FPS], [P].

As the rank of J (Q) is one and the torsion is trivial, we have J (Q) = 〈D0〉 for
some D0 ∈ J (Q) of infinite order. A simple computation (mod 13) shows that
D /∈ 5J (Q), and a similar computation (mod 139) yields that D /∈ 29J (Q). Hence
D = kD0 with 5 ∤ k, 29 ∤ k. The reduction of C1 modulo p is a curve of genus two
for any prime p 6= 2, 3. We take p = 29. Using Chabauty’s method as implemented
in MAGMA by Stoll, we find that there are at most two rational points on C1.
Therefore we conclude that C1(Q) = {∞+,∞−}, which proves the theorem in this
case.

The cases (l0, l1, l2, l3) = (2, 2, 3, 2) and (2, 3, 2, 2).

Again, by symmetry we may suppose that (l0, l1, l2, l3) = (2, 2, 3, 2). Then the
progression is given by x2

0, x
2
1, x

3
2, x

2
3. Now from part iii) of our Lemma, applied to

the terms with indices 0, 2, 3 of the progression, we get

x0 = ±(x3 − 6x2y − 6xy2 + 4y3), x3 = ±(x3 + 3x2y − 6xy2 − 2y3)
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where x, y are some coprime integers. Using x2
1 = (2x2

0 + x2
3)/3 we obtain

x2
1 = x6 − 6x5y + 15x4y2 + 40x3y3 − 24xy5 + 12y6.

If y = 0, then in the same way as before we deduce that the only possibility is given
by the progression 1, 1, 1, 1. Otherwise, if y 6= 0, then write Y = x1/y3, X = x/y
to get the hyperelliptic (genus two) curve

C2 : Y 2 = X6 − 6X5 + 15X4 + 40X3 − 24X + 12.

By a calculation similar to that applied in the previous case (but now with p = 11
in place of p = 29) we get that C2(Q) consists only of the points ∞+ and ∞−.
Hence the statement is proved also in this case.

The cases (l0, l1, l2, l3) = (3, 2, 3, 2) and (2, 3, 2, 3).

As before, without loss of generality we may assume (l0, l1, l2, l3) = (3, 2, 3, 2).
Then the progression is given by x3

0, x
2
1, x

3
2, x

2
3. We have

(4) x2
1 =

x3
0 + x3

2

2
, x2

3 =
−x3

0 + 3x3
2

2
.

We note that x2 = 0 implies x2
1 = −x2

3, hence x1 = x3 = 0. So we may assume that
x2 6= 0, whence we obtain from (4) that

(

2x1x3

x3
2

)2

= −
(

x0

x2

)6

+ 2

(

x0

x2

)3

+ 3.

Thus putting Y = 2x1x3/x3
2 and X = x0/x2, it is sufficient to find all rational

points on the hyperelliptic curve

C3 : Y 2 = −X6 + 2X3 + 3.

We show that C3(Q) = {(−1, 0), (1,±2)}.
Using MAGMA we obtain that the rank of the Jacobian J (Q) of C3(Q) is at

most one, and the torsion subgroup Jtors(Q) of J (Q) consists of the elements O
and [(1−

√
3i

2 , 0) + (1+
√

3i
2 , 0) −∞+ −∞−]. As the divisor D = [(−1, 0) + (1,−2)−

∞+−∞−] has infinite order, the rank of J (Q) is exactly one. The only Weierstrass
point on C3 is (−1, 0). We proceed as before, using the primes 7 and 11 in this case.
We conclude that (1,±2) are the only non-Weierstrass points on C3. It is easy to
check that these points give rise only to the trivial arithmetic progression, so our
theorem is proved also in this case.

The case (l0, l1, l2, l3) = (3, 2, 2, 3).

Now the arithmetic progression is given by x3
0, x

2
1, x

2
2, x

3
3. A possible approach

would be to follow a similar argument as in the previous case. That is, multiplying
the formulas

x2
1 =

2x3
0 + x3

3

3
, x2

2 =
x3

0 + 2x3
3

3

we get
(3x1x2)

2 = 2x6
0 + 5x3

0x
3
3 + 2x6

3.
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If x3 = 0 then gcd(x2, x3) = 1 yields x2
1 = ±2, a contradiction. So we may suppose

that x3 6= 0, and we obtain

Y 2 = 2X6 + 5X3 + 2

with X = x0/x3 and Y = 3x1x2/x3
3. However, a calculation with MAGMA gives

that the rank of the Jacobian of the above hyperelliptic curve is two, hence we
cannot apply the classical Chabauty argument in this case. So we follow a different
method, which also makes it possible to exhibit an elliptic curve (over some number
field) having non-trivial Tate-Shafarevich group.

For this purpose, observe that we have

(−x0x3)
3 = 2d2 − (x1x2)

2,

where d denotes the increment of the progression. Using part i) of our Lemma we
get that there are two possible parametrizations given by

x1x2 = ±(x3+6x2y+6xy2+4y3), d = ±(x3+3x2y+6xy2+2y3), x0x3 = −x2+2y2

or
x1x2 = ±(x3 + 6xy2), d = ±(3x2y + 2y3), x0x3 = x2 − 2y2.

Therefore from x2
1 + d = x2

2 either

(5) x4
1 + dx2

1 − (x3 + 6x2y + 6xy2 + 4y3)2 = 0

or

(6) x4
1 + dx2

1 − (x3 + 6xy2)2 = 0

follows, respectively. In the first case, the left hand side of (5) can be considered as
a polynomial of degree two in x2

1. Hence its discriminant must be a perfect square
in Z, and we get the equation

5x6 + 54x5y + 213x4y2 + 360x3y3 + 384x2y4 + 216xy5 + 68y6 = z2

in integers x, y, z. A simple calculation with MAGMA shows that the Jacobian of
the corresponding hyperelliptic curve

Y 2 = 5X6 + 54X5 + 213X4 + 360X3 + 384X2 + 216X + 68

is of rank zero (anyway it has three torsion points), and there is no rational point on
the curve at all. Hence in this case we are done. It is interesting to note, however,
that this curve does have points everywhere locally. We really do need this global
information on the rank of its Jacobian in order to decide it does not have any
rational points.

In case of (6) by a similar argument we obtain that d2 + 4(x3 + 6xy2)2 = z2,
whence

4x6 + 57x4y2 + 156x2y4 + 4y6 = z2
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with certain integers x, y, z. Observe that y = 0 yields a non-primitive solution.
Hence after putting Y = z/2y3 and X = x/y, we get that to solve the above
equation it is sufficient to find all rational points on the curve

C4 : Y 2 = f(X) = X6 + (57/4)X4 + 39X2 + 1.

We show that the rational points on C4 all have X ∈ {0,∞}.
A straightforward computation shows that the rank of the Jacobian J (Q) of C4

is two, so we cannot apply Chabauty’s method as before (cf. also [CF]). We use
part of the 2-coverings of C4 following [B]. For details, see [notes]. Let

K = Q(α) = Q[X ]/(X3 + (57/4)X2 + 39X + 1).

Over this field, we have

f(X) = Q(X)R(X) = (X2 − α)(X4 + (α + 57/4)X2 + α2 + (57/4)α + 39).

One easily gets that Res(Q, R) is a unit outside S = {places p of K dividing 6 or ∞}.
Therefore, if (X, Y ) ∈ C4(Q) then we have

Dδ : (Y1)
2 = δR(X)

Lδ : (Y2)
2 = δQ(X)

for some Y1, Y2 ∈ K and δ ∈ K∗ representing some element of the finite group

K(S, 2) := {[d] ∈ K∗/K∗2 : 2 | ordp(d) for all places p /∈ S}.

Furthermore, since NK[X]/Q[X](Q) = f , we see that NK/Q(δ) ∈ Q∗2. Running
through these finitely many candidates, we see that the only class for which Dδ has
points locally at the places of K above 2 and ∞ is represented by δ = 1. Over K,
the curve D1 is isomorphic to

E : v2 = u3 − 4α + 57

2
u2 − 48α2 + 456α− 753

16
u,

where X = v/(2u). This curve has full 2-torsion over K and a full 2-descent or
any 2-isogeny descent gives a rank bound of two for E(K). However, one of the
isogenous curves,

E′ : Y 2 = X3 + (4α + 57)X2 + (16α2 + 228α + 624)X

has S(2)(E′/K) ≃ Z/2Z, which shows that E′(K) is of rank zero, since E′ has 4-
torsion over K. This shows that E has non-trivial 2-torsion in its Tate-Shafarevich
group and that E(K) consists entirely of torsion. In fact,

E(K) = {∞, (0, 0), ((12α2 + 195α + 858)/32, 0), ((−12α2 − 131α + 54)/32, 0)}.

It follows that
X(C4(Q)) ⊂ X(D1(K)) = {0,∞},
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where X(.) denotes the set of the X-coordinates of the appropriate points on the
corresponding curve. This proves that for all the rational points on C4 we have
X ∈ {0,∞}, which implies the theorem also in this case.

The cases (l0, l1, l2, l3) = (2, 2, 3, 3) and (3, 3, 2, 2).

Again by symmetry, we may assume that (l0, l1, l2, l3) = (2, 2, 3, 3). Then the
progression is x2

0, x
2
1, x

3
2, x

3
3, whence

x2
1 = 2x3

2 − x3
3 and x2

0 = 3x3
2 − 2x3

3.

If x3 = 0 then the coprimality of x2 and x3 gives x2
1 = ±2, which is a contradiction.

Hence we may assume that x3 6= 0, and we get the equation

y2 = F (x) = 6x6 − 7x3 + 2

with x = x2/x3, y = x0x1/x3
3. Put K = Q(α) with α = 3

√
2 and observe that we

have the factorization F (x) = G(x)H(x) over K where

G(x) = 3αx4 − 3x3 − 2αx + 2 and H(x) = α2x2 + αx + 1.

A simple calculation by MAGMA gives that Res(G, H) is a unit outside the set
S = {places p of K dividing 6 or ∞}. Hence we can write

3αx4 − 3x3 − 2αx + 2 = δz2

with some z from K and δ from the integers of K dividing 6. Moreover, observe
that the norm of δ is a square in Z. Using that α − 1 is a fundamental unit of K,
2 = α3 and 3 = (α − 1)(α + 1)3, local considerations show that we can only have
solutions with x ∈ Q with both G(x) and H(x) ∈ K∗2 if, up to squares, δ = α − 1.
We consider

3αx4 − 3x3 − 2αx + 2 = (α − 1)z2

with x ∈ Q and z ∈ K. Now by the help of the point (1, 1), we can transform this
curve to Weierstrass form

E : X3 + (−72α2 − 90α − 108)X + (504α2 + 630α + 798) = Y 2.

We have E(K) ≃ Z as an Abelian group and the point (X, Y ) = (−α2 − 1, 12α2 +
15α + 19) is a non-trivial point on this curve. Again applying elliptic Chabauty
with p = 5, we get that the only solutions of our original equation is (x, z) = (1, 1).
Hence the theorem follows also in this case.

The case (l0, l1, l2, l3) = (2, 3, 3, 2).

Now we have a progression x2
0, x

3
1, x

3
2, x

2
3, and we can write

x2
0 = 2x3

1 − x3
2 and x2

3 = −x3
1 + 2x3

2.

If x2 = 0 then the coprimality of x1 and x2 gives x2
0 = ±2, which is a contradiction.

Hence we may assume that x2 6= 0, and we are led to the equation

y2 = F (x) = −2x6 + 5x3 − 2
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with x = x1/x2, y = x0x3/x3
2. Now we have the factorization F (x) = G(x)H(x)

over K = Q(α) with α = 3
√

2, where

G(x) = α2x4 + (α + 2)x3 + (α2 + 2α + 1)x2 + (α + 2)x + α2

and
H(x) = −αx2 + (α2 + 1)x − α.

One can easily verify that Res(G, H) = 1. Thus we obtain

α2x4 + (α + 2)x3 + (α2 + 2α + 1)x2 + (α + 2)x + α2 = δz2

where z ∈ K and δ is a unit of K. Moreover, as the norm of δ is a square in Z, we
get that, up to squares, δ = 1 or α − 1. The case when δ = 1 yields the equation

α2x4 + (α + 2)x3 + (α2 + 2α + 1)x2 + (α + 2)x + α2 = z2

in x ∈ Q and z ∈ K. We can transform this equation to an elliptic one by the
help of its point (1, α2 + α + 1). Then applying elliptic Chabauty, the procedure
“Chabauty” of MAGMA with p = 5 in this case gives that this equation has four
solutions with x ∈ Q, namely (x, z) = (0, 1), (1, 0), (±1, 1). Lifting these solutions
to the original problem, our theorem follows also in this case.

When δ = α − 1, using x = x1/x2 we get the equation

α2x4
1 + (α + 2)x3

1x2 + (α2 + 2α + 1)x2
1x

2
2 + (α + 2)x1x

3
2 + α2x4

2 = (α − 1)γ2

with some integer γ of K. Writing now γ in the form γ = u + αv + α2w with some
u, v, w ∈ Z and comparing the coefficients of 1 and α in the above equation, a simple
calculation shows that x3

1x2+x2
1x

2
2+x1x

3
2 must be even. However, then 2 | x1x2, and

considering the progression x2
0, x

3
1, x

3
2, x

2
3 modulo 4 we get a contradiction. Hence

the theorem follows also in this case.

The case (l0, l1, l2, l3) = (3, 3, 2, 3) and (3, 2, 3, 3).

As previously, without loss of generality we may assume that (l0, l1, l2, l3) =
(3, 3, 2, 3). Then the progression is of the form x3

0, x
3
1, x

2
2, x

3
3. We note that using

the cubes one would find 3x3
1 = x3

3 +2x3
0 which leads to an elliptic curve. However,

this elliptic curve has positive rank, hence this approach does not work.
So we use some other argument. We have x3

1 + x3
3 = 2x2

2, whence

x1 + x3 = 2su2, x2
1 − x1x3 + x2

3 = sv2,

where u, v, s ∈ Z with s | 3. By considerations modulo 3 we obtain that only s = 1
is possible. Hence (2x1 − x3)

2 + 3x2
3 = (2v)2 and from part viii) of our Lemma we

get that

(7) f(x, y) := 3x6+18x5y+9x4y2−148x3y3−27x2y4+162xy5−81y6 = 2(±4x0)
3

in coprime integers x, y.
Note that the equation f(x, y) = 2z3 is invariant under the transformation

(x, y, z) 7→ (−3y, x,−3z). The two obvious solutions (x, y, z) = (1,−1,−4) and
(x, y, z) = (3, 1, 12) are interchanged by this involution.
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We have the factorization f(x, y) = g(x, y)h(x, y) with

g(x, y) = (α2 + 2α + 1)x3 + (−2α3 − α2 + 2α + 1)x2y+

(3α2 − 26α − 13)xy2 + (−6α3 − 3α2 + 6α + 3)y3

and

h(x, y) = (2α3 + 3α2 − 2α + 9)x3 + (12α3 + 17α2 − 10α + 53)x2y+

(6α3 + 9α2 − 6α + 27)xy2 + (−92α3 − 141α2 + 66α − 401)y3

over the number field Q(α) defined by a root α of the polynomial X4+2X3+4X+2.
Using the same reasoning as before, we have that a rational solution to f(x, y) =

2z3 with x, y, z not all 0, yields a solution to the system of equations

g(x, y) =δ(u0 + u1α + u2α
2 + u3α

3)3

h(x, y) =2/δ(v0 + v1α + v2α
2 + v3α

3)3

with x, y, u0, . . . , v3 ∈ Q and where δ is a representative of an element of the finite
group K(S, 3), with S = {places p of K dividing 6 or ∞}. For each δ, the equations
above can be expressed as eight homogeneous equations of degree 3, describing some
non-singular curve in P8 over Q. The only values of δ for which this curve is locally
solvable at 3 are

δ1 = (α3 + 2α2 − 2α − 2)/2 and δ2 = (α3 + 4α2 + 6α + 2)/2.

These values correspond to the obvious solutions with (x, y) = (1,−1) and (x, y) =
(3, 1) respectively.

We now determine the K-rational points on the curve

g(x, y) = δ1z
3
1

with x/y ∈ Q. Using the K-rational point (x : y : z) = (1 : −1 : −2α), we can see
that this curve is isomorphic to the elliptic curve

E : Y 2 = X3 − 48α3 + 33α2 + 480α + 210.

Using a 2-descent we can verify that E(K) has rank at most 3 and some further
computations show that E(K) ≃ Z3, where the points with X-coordinates

(−2α3 + 13α2 − 28α + 44)/9,

(16α3 + 52α2 + 14α − 1)/9,

(2α3 + 3α2 − 14α − 6)/3

generate a finite index subgroup with index prime to 6. The function x/y on the
curve g(x, y) = δ1z

3
1 yields a degree 3 function on E as well.

Using the Chabauty-method described in [B] and implemented in MAGMA 2.11
as Chabauty, using p = 101, we determine that the given point is in fact the only
one with x/y ∈ Q. For details, see [notes].

For δ2 we simply observe that using the involution (x, y) 7→ (−3y, x), we can
reduce this case to the computations we have already done for δ1.

We conclude that (x, y) = (1,−1) and (x, y) = (3, 1) give the only solutions to
f(x, y) = 2z3. These solutions correspond to the arithmetic progressions (0, 1, 2, 3)
(which up to powers of 2, 3 indeed consists of second and third powers), (1, 1, 1, 1)
and their Z∗

{2,3}-equivalent counterparts. �
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[BBGyH] M. A. Bennett, N. Bruin, K. Győry and L. Hajdu, Powers from products of consecutive

terms in arithmetic progression, Bull. London Math. Soc. (to appear).

[B] N. Bruin, Chabauty methods and covering techniques applied to generalized Fermat

equations, CWI Tract, vol. 133, Stichting Mathematisch Centrum, Centrum voor
Wiskunde en Informatica, Amsterdam, 2002.

[CF] J. W. S. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves

of genus 2, vol. 230, Cambridge University Press, Cambridge, 1996, pp. xiv+219.

[C] C. Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à
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