
POLYNOMIAL VALUES OF SUMS OF HYPERBOLIC
BINOMIAL COEFFICIENTS

A. BAZSÓ AND L. HAJDU

Abstract. Diophantine problems related to binomial coefficients
have a vast literature. In this paper we investigate power and poly-
nomial values of row sums of hyperbolic Pascal triangles, which are
recently introduced generalizations of Pascal’s classical triangle.
We prove various effective and ineffective finiteness results.

1. Introduction

There is an extensive literature on Diophantine problems concerning
Pascal’s classical triangle and binomial coefficients. These problems
often lead to Diophantine equations of the form

(1)

(
x

n

)
= g(y),

i.e., to the study of the polynomial values of binomial coefficients. In
1951 Erdős [16] proved that the equation(

x

n

)
= y`

has no solutions in integers x, n, y, ` with y > 1, ` > 1, n ≥ 4 and
x ≥ 2n. Győry [17] extended this result by showing that apart from
the case n = ` = 2 the above equation has the only integer solution
y = 140, ` = 2, x = 50, n = 2. Yuan [38] showed that apart from an
obvious exception, the equation

a

(
x

n

)
= byr + c

has only finitely many solutions and all these can be effectively deter-
mined. Stoll and Tichy [35] proved effective and ineffective finiteness
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results on the Diophantine equation

a

(
x

m

)
+ b

(
y

n

)
= c.

Kulkarni and Sury [21] used the ineffective finiteness criterion of Bilu
and Tichy [9] to prove that, for irreducible g ∈ Q[x] with deg g ≥ 3,
equation (1) has only finitely many integer solutions. (In fact, they
formulated their result for polynomial values of products of consecutive
integers, however, the two problems are equivalent.) For further results
related to equation (1) we refer to [6, 7, 31, 8, 18] and the references
therein. Diophantine properties of sums of binomial coefficients (or, as
a strongly related problem, sums of products of blocks of consecutive
integers) have also been intensively studied; see e.g. the works [23, 30,
20, 15, 19, 2, 36] and the references given there.

Let p and q be positive integers with p ≥ 3, q ≥ 3. It is well-known
that, in the hyperbolic plane there are an infinite number of types
of regular mosaics (see e.g. [12]), and they are assigned by Schläfli’s
symbol {p, q} such that (p − 2)(q − 2) > 4. Pascal’s classical triangle
has several generalizations in the literature (see, e.g., [4, 10]). Following
and generalizing the connection between Pascal’s classical triangle and
the Euclidean regular square mosaic {4, 4} to the case of a regular
mosaic {p, q} on the hyperbolic plane, Belbachir, Németh and Szalay
[3] introduced hyperbolic Pascal triangles. See [3] for details, figures
and explanations. As a hyperbolic analogue of the binomial coefficients
they used the notation )nk( for the k-th element in the n-th row of such
a hyperbolic Pascal triangle. Let us fix {4, q} with q ≥ 5. (Note that
for q = 4 we get back the original Pascal triangle.) In contrast to the
classical Pascal triangle, in the hyperbolic case there are three types of
elements )nk(. Elements having two ascendants and q − 2 descendants
(called elements of type A), elements having one ascendant and q − 1
descendant (called elements of type B), and the winger elements. Thus,
)nk( is either the sum of the values of its two ascendants or the value of
its unique ascendant.

The authors of [3] showed that the numbers an, bn of elements of type
A and B, respectively, the total number sn = an+bn+2 of elements, the
sum of elements of type A and B, respectively, as well as the sum of all
elements in a row of the hyperbolic Pascal triangle linked to {4, q} can
be described by ternary homogeneous recurrence relations and explicit
expressions. They also proved that in the special case q = 5, given any
pair u, v of positive integers there exist i, j ∈ N such that u =)ij( and

v =) i
j+1(. For further related results we refer to [25, 26, 29] and the

references given there.
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In this paper we are interested in the hyperbolic analogues of the
Diophantine problems above. As we mentioned, by results from [3], )ij(
can take any value infinitely often - so investigating say power values of
these hyperbolic binomial coefficients seems to be pointless. (At least,
no analogue of the mentioned results of Erdős and Győry exists.) So
we shall focus on the sums of hyperbolic binomial coefficients in the
rows of the hyperbolic Pascal triangles. As we noted above, related
problems for sums of binomial coefficients have also been investigated
earlier. In the hyperbolic case one can get various finiteness results as
well, which can be considered to be the analogues of the corresponding
theorems obtained in the classical case. For this purpose, write ŝn(q)
for the sum of all elements in the n-th row of the hyperbolic Pascal
triangle linked to {4, q} (with q ≥ 5), that is

ŝn(q) =
sn−1∑
k=0

)nk(.

Note that in [3] the notation ŝqn was used. However, since ŝn(q) is a
polynomial in q, this notation will be more appropriate for our pur-
poses. Recalling the well-known identity

(2)

(
n

0

)
+

(
n

1

)
+ . . .+

(
n

n

)
= 2n,

it is natural to study those row sums in the hyperbolic Pascal triangle,
i.e., those values of ŝn(q) which are powers of 2. More generally, our
purpose is to study the power values and the polynomial values of ŝn(q).

In Section 2 we formulate three new theorems. Theorem 2.1 states
that ŝn(q) takes only finitely many perfect power values if the base
of the power and q are fixed and all these values can be effectively
determined. Theorem 2.2 provides an effectively computable upper
bound on the solutions of the equation ŝn(q) = ax` + b for n ≥ 5 fixed.
Our third result (Theorem 2.3) provides finiteness for the polynomial
values of ŝn(q) with n ≥ 5 fixed, which is effective in the case when the
polynomial has degree 2. To prove our theorems, we need to combine
powerful methods (such as Baker’s method or the Bilu-Tichy theorem)
with new arguments. For example, on our way we shall prove a strong
connection between ŝn(q) and the Chebyshev polynomials of the second
kind, and based upon this we derive several important properties of the
quantities ŝn(q).

We mention that proving finiteness results for the polynomial values
of ŝn(q) where both n and q are free seems to be very hard - we leave
this problem as an open issue.
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2. New results

First, we formulate the result of Belbachir, Németh and Szalay [3]
showing that the row sum ŝn(q) satisfies a certain recurrence relation.
For our present purposes, we may use this assertion as the defining
property of ŝn(q).

Theorem A. Let ŝn(q) denote the sum of all elements in the n-th
row of the hyperbolic Pascal triangle linked to {4, q}, q ≥ 5. Then
the sequence {ŝn(q)}n∈N satisfies the ternary homogeneous recurrence
relation

ŝn(q) = qŝn−1(q)− (q + 1)ŝn−2(q) + 2ŝn−3(q) (n ≥ 4)

with initial values

ŝ1(q) = 2, ŝ2(q) = 4, ŝ3(q) = 2q.

Moreover,

(3) ŝn(q) =
q − 1−

√
D

2
√
D

α̂nq −
q − 1 +

√
D

2
√
D

β̂nq + 2

holds, where

(4) D = q2 − 2q − 7, α̂q =
q − 1 +

√
D

2
, β̂q =

q − 1−
√
D

2
.

Proof. The statement is a reformulation of a part of Theorem 2 of
[3]. �

In this section we present some finiteness results concerning the
power values and polynomial values of ŝn(q), when one of n, q is fixed.
Our starting point, motivated by the identity (2), is the Diophantine
equation

(5) ŝn(q) = 2`

in positive integers n, q, `.
First let q ≥ 5 be a fixed integer. Then, by Theorem A, ŝn(q) is a

ternary homogeneous recurrence sequence. Our first result deals with
a generalization of (5), namely with the equation

(6) ŝn(q) = w`

in positive integers n and ` where w is a fixed integer.

Theorem 2.1. For any q ≥ 5 and w ∈ Z, equation (6) has only finitely
many solutions in positive integers n, `. Further, we have max {n, `} <
C1(q, w), where C1(q, w) is an effectively computable constant depend-
ing only on q and w.
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We note that our Theorem 2.1 implies that for any q ≥ 5, there are
only finitely many rows of the hyperbolic Pascal triangle corresponding
to {4, q} for which the sum of all elements is a power of 2, or more
generally, a power of any fixed integer w.

Now let q be a variable, and let n ≥ 3 be a fixed positive integer. In
this case ŝn(q) is a polynomial in q with integer coefficients of degree
n − 2. In this case we can get more general results, concerning the
polynomial values of ŝn(q). Consider first the Diophantine equation

(7) ŝn(q) = ax` + b

in integers q, x, ` with q ≥ 5 and ` ≥ 2, where a, b are fixed rationals.
Concerning the above equation, we prove the following effective state-

ment.

Theorem 2.2. Let n ≥ 5, n 6= 6, a, b ∈ Q, a 6= 0. Assuming that
` ≤ 3 if x ∈ {−1, 0, 1}, for the solutions q, x, ` ∈ Z of (7) with q ≥ 5
and ` ≥ 2 we have

max (q, |x|, `) < C2(n, a, b).

Here C2(n, a, b) is an effectively computable constant depending only on
n, a and b.

Remark. For n ≤ 3 equation (7) is trivial. In case of n = 4 one could
easily find a, b ∈ Q such that (7) has infinitely many integer solutions
q, x with ` = 2. If n = 6, then one can find appropriate a, b again such
that equation (7) has infinitely many integer solutions q, x with ` = 2.
Namely, as

ŝ6(q) + 8 = 2(q2 − 2q − 2)2,

e.g. the equation
ŝ6(q) = 2x2 − 8

has infinitely many integer solutions, given by q ≥ 5 arbitrary and
x = q2 − 2q − 2.

Still with fixed n, let now g ∈ Q[x] be an arbitrary polynomial, and
consider the equation

(8) ŝn(q) = g(x)

in q, x ∈ Z with q ≥ 5. Observe that for fixed `, this equation is a
generalization of (7). For n even, put Tn(x) = ŝn(

√
x + 1). (Note

that in Section 4 we shall show that for n even ŝn(x + 1) is an even
polynomial (see Corollary 4.3), thus Tn ∈ Q[x].)

Concerning equation (8), we prove the following result.

Theorem 2.3. Let g(x) ∈ Q[x].



6 A. BAZSÓ AND L. HAJDU

(i) If deg g = 2 and n ≥ 5, n 6= 6, then there exists an effectively
computable constant C3(n, g) depending only on n and g such
that max(q, |x|) < C3(n, g) for each integer solutions q, x with
q ≥ 5 of equation (8).

(ii) If deg g ≥ 3 and n ≥ 7, then equation (8) has only finitely many
integer solutions q, x with q ≥ 5, apart from the following cases:
(a) g(x) = ŝn(h(x)), where h ∈ Q[x] with deg h ≥ 1,
(b) n is even and g(x) = Tn(g̃(x)), where g̃ is a polynomial

over Q whose square-free part has at most two zeroes.
Moreover, in both cases, there are infinitely many choices of n
and g such that equation (8) has infinitely many solutions in
integers q, x with q ≥ 5.

Note that we need to exclude the cases n ≤ 4 and n = 6 in part (i) of
the statement, see the remark after Theorem 2.2. Also, the assumption
n ≥ 7 in part (ii) is necessary. (See the Remark after the proof of this
statement.)

In the proofs of Theorems 2.1 and 2.2, as well as of part (i) of The-
orem 2.3 we shall use effective tools, so these results are effective. On
the other hand, in the proof of part (ii) of Theorem 2.3 we apply the
ineffective finiteness criterion of Bilu and Tichy [9], that is why this
statement is ineffective. We mention that as a key ingredient of our
proofs, we shall establish a strong connection between the polynomials
ŝn(q) ∈ Q[q] (for n ∈ N fixed) and the Chebyshev polynomials of the
second kind (cf. Theorem 4.2 and Corollary 4.3).

3. Proof of Theorem 2.1

First we recall a deep result of Shorey and Stewart [33] on non-
degenerate recurrence sequences. Let r1, r2, . . . , rk and u0, u1, . . . , uk−1
be integers with rk 6= 0. Put

un = r1un−1 + . . .+ rkun−k, for n = k, k + 1, . . . .

Let α1, . . . , αt be the distinct roots of the characteristic polynomial
F (x) = xk − r1xk−1 − . . .− rk of the recurrence sequence un. If α1 has
multiplicity one, then for n ≥ 0 we have

(9) un = a1α
n
1 + P2(n)αn2 + . . .+ Pt(n)αnt ,

where Pi(n) is a polynomial with degree less than the multiplicity
of αi in F (x) (i = 1, . . . , t), and where a1 and the coefficients of
P2(n), . . . , Pt(n) are elements of the field Q(α1, . . . , αn).
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Theorem B. Let d be a non-zero integer and let un satisfy (9). If
|α1| > |αj| for j = 2, . . . , t, a1 and un − a1αn1 are non-zero and

un = dx`

for some integers x, ` with x, ` > 1, then ` < C, where C is an effec-
tively computable number depending only on d, α1, . . . , αk, a1 and the
coefficients and degrees of P2, . . . , Pt.

Proof. This is Theorem 3 in [33]. �

Proof of Theorem 2.1. A simple argument (by induction) shows that
for every n ≥ 1 we have ŝn(q) ≥ 2n. Hence without loss of generality
we may assume that w > 1.

Let q ≥ 5 be a fixed integer. Then, by Theorem A, the characteristic
polynomial of ŝn(q) is

F (x) = x3 − qx2 + (q + 1)x− 2,

which has the roots

1, α̂q =
q − 1 +

√
q2 − 2q − 7

2
, β̂q =

q − 1−
√
q2 − 2q − 7

2

from (4). Clearly, these roots are simple, and we have α̂q > 1 > β̂q > 0.
Note that now relation (9) is given by (3) (writing 2 as 2 ·1n). An easy
calculation gives that, for q ≥ 5, neither of

a1 =
q − 1−

√
q2 − 2q − 7

2
√
q2 − 2q − 7

and ŝn(q) − a1α̂nq is equal to zero. Thus Theorem B implies that ` <
C(q) in (6), with an effectively computable constant C(q) depending
only on q. In view of equation (6), we then have

ŝn(q) < wC(q),

whence our statement immediately follows. �

4. Proofs of Theorem 2.2 and Theorem 2.3 (i)

As we will see, the proofs of our effective theorems are based on
knowledge about the root structure of the polynomials ŝn(q) and on
the observation that these polynomials are ”almost” Chebyshev poly-
nomials of the second kind.

We recall that the Chebyshev polynomial Un(x) of the second kind
are defined by

(10) Un(x) =

[n/2]∑
m=0

(−1)m
(n−m)!

m!(n− 2m)!
(2x)n−2m (n ≥ 0).
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In the next lemma we summarize some well-known properties of
Chebyshev polynomials of the second kind.

Lemma 4.1. Let n be a nonnegative integer.
(i) The polynomials Un(x) satisfy the binary recurrence relation

(11) Un(x) = 2xUn−1(x)− Un−2(x), n = 2, 3, . . .

with initial terms U0(x) = 1 and U1(x) = 2x.
(ii) The zeros of the polynomial Un(x) occur at

x = cos
(n− k + 1)π

n+ 1
(k = 1, 2, . . . , n).

(iii) The extreme values of the polynomial Un(x) have magnitudes
which increase monotonically as |x| increases away from 0.

(iv) Un(−x) = (−1)nUn(x), i.e., Un(x) is an odd function if n is odd,
and even if n is even.

Proof. See, e.g., Section 1.2.2. of [24] and Chapter 22. in [1]. �

Observe that by Theorem A, the sequence {ŝn(q)− 2}n∈N is a binary
homogeneous recurrence sequence with characteristic polynomial

Fq(x) = x2 + (1− q)x+ 2

(since α̂q + β̂q = q − 1 and α̂qβ̂q = 2).

Let t := q − 1 and put Sn(t) :=
ŝn+1(t+ 1)− 2

2
. Then clearly

{Sn(t)}n∈Z≥0
has characteristic polynomial Ft(x) = x2− tx+ 2, and we

have

(12) Sn+2(t) = tSn+1(t)− 2Sn(t),

and

Sn(t) =
1√
t2 − 8

α̂nt −
1√
t2 − 8

β̂nt ,

where

α̂t =
t+
√
t2 − 8

2
and β̂t =

t−
√
t2 − 8

2
.

The first few elements of the sequence {Sn(t)}n∈Z≥0
are

0; 1; t; t2 − 2; t3 − 4t; t4 − 6t2 + 4; t5 − 8t3 + 12t;

t6−10t4+24t2−8; t7−12t5+40t3−32t; t8−14t6+60t4−80t2+16; . . . .

In Theorem 4.2 below we show that there is a correspondence be-
tween the polynomials Sn(t) and the Chebyshev polynomials of the
second kind.
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Theorem 4.2. For every non-negative integer n, we have

(13) Sn+1(t) =
√

2
n
· Un

(
t

2
√

2

)
,

where Un is the n-th Chebyshev polynomial of the second kind.

Proof. We prove by induction on n. Obviously, (13) holds for n = 0, 1
since

S1(t) = 1 =
√

2
0
· U0

(
t

2
√

2

)
and

S2(t) = t =
√

2 · U1

(
t

2
√

2

)
,

respectively. We assume that (13) holds for some n = k with k ≥ 1.
Then, by the recurrence relations (12) and (11), for n = k+ 1 we have

Sk+2(t) = tSk+1(t)− 2Sk(t) =

= t

(√
2
k
· Uk

(
t

2
√

2

))
− 2

(√
2
k−1
· Uk−1

(
t

2
√

2

))
=

=
√

2
k+1
(

2
t

2
√

2
Uk

(
t

2
√

2

)
− Uk−1

(
t

2
√

2

))
=

=
√

2
k+1
· Uk+1

(
t

2
√

2

)
,

which completes the proof. �

As an immediate consequence of the above theorem, we obtain

Corollary 4.3. For n ≥ 2 we have

(14) ŝn(q) =
√

2
n
Un−2

(
q − 1

2
√

2

)
+ 2,

where Un−2 is the (n− 2)-th Chebyshev polynomial of the second kind.
In particular, for n even, ŝn(q + 1) is an even polynomial.

In the following lemma we describe the root structure of the deriva-
tive ŝ′n(q) of the polynomial ŝn(q). Note that for n ≤ 3 the polynomials
ŝ′n(q) have no roots.

Lemma 4.4. For n ≥ 4, all the roots of the polynomial ŝ′n(q) are real
and simple.

Proof. Let n ≥ 4. Then by Corollary 4.3 we have

(15) ŝn(q)− 2 =
√

2
n
Un−2

(
q − 1

2
√

2

)
.
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Clearly, the number of roots as well as the multiplicities of the roots
of a polynomial remain unchanged if we replace its variable by a linear
polynomial of that. Thus we infer from part (ii) of Lemma 4.1 and
(15) that all the roots of the polynomial ŝn(q)− 2 are real and simple.
Hence, our statement follows from Rolle’s theorem. �

The next lemma will be crucial in the proof of part (i) of Theorem
2.3.

Lemma 4.5. For n ≥ 1, the polynomial ŝn(q) has at most two equal
extrema.

Proof. The statement can be easily checked for n ≤ 6. Let n ≥ 7.
Then, by Corollary 4.3 and part (iv) of Lemma 4.1, it follows that
the graph of |ŝn(q)| is symmetric about the straight line q = 1. Let
α1 < α2 < · · · < αn−3 denote the roots of ŝ′n(q). Clearly, ŝn(q) has a
local extremum at each αi. By the symmetry observed above, we have

(16) |ŝn(αj)| = |ŝn(αn−2−j)| (j = 1, . . . , n− 3).

Note that α(n−2)/2 = 1 if n is even, while, if n is odd, we have

(17) α1 < · · · < α(n−3)/2 < 1 < α(n−3)/2+1 < · · · < αn−3.

In both cases, there are b(n− 3)/2c pairs of coinciding extreme values
of |ŝn(q)|.

From Corollary 4.3 and part (iii) of Lemma 4.1 we deduce that

(18) |ŝn(αb(n−3)/2c+1)| < |ŝn(αb(n−3)/2c+2)| < · · · < |ŝn(αn−3)|,
whence our statement follows. �

Let f(x) ∈ Z[x] be a nonzero polynomial of degree d. Write H for
the height (i.e. the maximum of the absolute values of the coefficients)
of f . Further, let a be a nonzero integer. Consider the Diophantine
equation

(19) f(x) = ay`.

The next lemma is a special case of a result of Bérczes, Brindza and
Hajdu [5]. For the first results of this type, we refer to [32] and [37].

Lemma 4.6. If f(x) has at least two distinct roots and |y| > 1, then,
in (19), we have ` < C4(d,H, a), where C4(d,H, a) is an effectively
computable constant depending only on d,H and a.

For a finite set of rational primes S, let ZS denote the set of rational
numbers whose denominator (in reduced form) has no prime divisor
outside S. By the height h(a) of a rational number a = u/v with
u, v ∈ Z, gcd(u, v) = 1, we mean h(a) = max {|u|, |v|}.
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The following result is a special case of a theorem of Brindza [11].

Lemma 4.7. Let S be a finite set of primes. If, in (19), either ` = 2
and f(x) has at least three roots of odd multiplicities, or ` ≥ 3 and
f(x) has at least two roots of multiplicities coprime to n, then for each
solutions x, y ∈ ZS of (19) we have max(h(x), h(y)) < C5(d,H, a, `),
where C5(d,H, a, `) is an effectively computable constant depending only
on d,H, a and `.

Now we are ready to prove our effective results.

Proof of Theorem 2.3 (i). Let n ≥ 5 be an integer, and let g(x) ∈ Q[x]
be a polynomial with deg g = 2. Assume that equation (8) holds. Then
there exist rational numbers a, b, c with a 6= 0 such that

(20) ŝn(q) = ax2 + bx+ c.

Obviously, we can rewrite (20) as

(21) ŝn(q) + v = a(x+ u)2,

where u = b
2a

and v = b2−4ac
4a

. Thus, in view of Lemma 4.7, it is
sufficient to show that the polynomial ŝn(q)+v has at least three roots
of odd multiplicity. Assuming the contrary, we can write

(22) ŝn(q) + v = (Aq2 +Bq + C)(w(q))2,

with some A,B,C ∈ Q, w(q) ∈ Q[q]. Taking derivatives in relation
(22), we obtain

(23) ŝ′n(q) = w(q)
(
(2Aq +B)w(q) + 2(Aq2 +Bq + C)w′(q)

)
.

Hence, every root of w(q) is also a root of ŝ′n(q). Denote the roots of
w(q) by qi. For each root qi, by (22), we have

(24) ŝn(qi) = −v.
Moreover, the numbers qi are stationary points of the polynomial ŝn(q).
Thus, by Lemma 4.4, we get that ŝn(q) has degw equal extrema, or
equivalently, ŝn(q) − 2 has degw equal extrema. Note that degw de-
pends on the choice of A,B,C and on the parity of n.

If n is odd (i.e., deg ŝn(q) = n−2 is also odd), then (22) implies that
A = 0, B 6= 0 and degw = n−3

2
. Thus, in view of Lemma 4.5, we get a

contradiction if n ≥ 9.
If n is even, then, again by (22), we have either degw = n−4

2
(when

A 6= 0) or degw = n−2
2

(when A = B = 0). Again, we get a contradic-
tion with Lemma 4.5 if n ≥ 10.

For n = 5, 7, 8, an easy computation in e.g. Maple gives the discrimi-
nant of ŝn(q)+v, as a polynomial in v. (Recall that n = 6 is excluded.)
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If n = 5, 7, this polynomial has no rational roots and thus in these
cases ŝn(q)+v cannot be of the form shown in (22). For n = 8, the dis-
criminant of ŝ8(q) + v has one rational root, namely, v = 14. However,
the polynomial

(25) ŝ8(q) + 14 = 2(q − 3)(q + 1)(q2 − 2q − 5)(q − 1)2

has four simple roots which, by Lemma 4.7, implies our statement in
this case. This completes the proof. �

Proof of Theorem 2.2. To prove that ` is bounded, by Lemma 4.6 it is
sufficient to show that ŝn(q)− b has two distinct roots for every b ∈ Q.
Assume to the contrary that it is not the case. Then for some b ∈ Q
we have

ŝn(q)− b = r(uq + v)n−2

with some r, u, v ∈ Q. However, as n ≥ 5, this implies that ŝ′n(q) has
a multiple root, which contradicts Lemma 4.4. Hence ` is bounded as
required.

Now we show that q and |x| can also be bounded. For this, by what
we have proved already, we may assume that ` is fixed. Further, in
view of part (i) of Theorem 2.3, we may suppose that ` is odd. Clearly,
without loss of generality we may assume that in fact ` is an odd prime.
Rewrite (7) as

(26) ŝn(q)− b = ax`.

By Lemma 4.7, it suffices to show that the polynomial on the left
hand side of (26) has at least two roots of multiplicities coprime to `.
Suppose to the contrary that we have

(27) ŝn(q)− b = (Aq +B)(w(q))`,

with some A,B ∈ Q, w(q) ∈ Q[q]. Taking derivatives in (27), we obtain

ŝ′n(q) = w(q)`−1 (Aw(q) + `(Aq +B)w′(q)) .

Thus, every root of w(q) is a root of ŝ′n(q) of multiplicity at least `− 1,
which contradicts Lemma 4.4. Hence q and |x| are also bounded as
required, and the theorem follows. �

5. Proof of Theorem 2.3 (ii)

In what follows we recall the finiteness criterion of Bilu and Tichy
[9]. To do this, we need to define five kinds of so-called standard pairs
of polynomials.
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kind standard pair parameter restrictions
first (xd, αxrv(x)d) 0 ≤ r < d, (r, d) = 1,

r + deg v > 0
second (x2, (αx2 + β)v(x)2) -
third (Dµ(x, αν), Dν(x, α

µ)) (µ, ν) = 1

fourth (α
−µ
2 Dµ(x, α),−β −ν

2 Dν(x, β)) (µ, ν) = 2
fifth ((αx2 − 1)3, 3x4 − 4x3) -

Table 1. Standard pairs

Let α, β, δ be nonzero rational numbers, µ, ν, d > 0 and r ≥ 0 be
integers, and let v(x) ∈ Q[x] be a nonzero polynomial (which may be
constant). Denote by Dµ(x, δ) the µ-th Dickson polynomial, given by

(28) Dµ(x, δ) =

bµ/2c∑
i=0

dµ,ix
µ−2i with dµ,i =

µ

µ− i

(
µ− i
i

)
(−δ)i.

For properties of Dickson polynomials, we refer to [22].
Two polynomials F (x) and G(x) are said to form a standard pair

over Q if one of the ordered pairs (F (x), G(x)) or (G(x), F (x)) belongs
to the list in Table 1.

Now we state the main result of [9], which will be a key ingredient
in the proof of part (ii) of Theorem 2.3.

Theorem C. Let f(x), g(x) ∈ Q[x] be nonconstant polynomials. Then
the following two assertions are equivalent.

(i) The equation f(x) = g(y) has infinitely many rational solutions
x, y with a bounded denominator.

(ii) We have f = ϕ◦F ◦λ and g = ϕ◦G◦κ, where λ(x), κ(x) ∈ Q[x]
are linear polynomials, ϕ(x) ∈ Q[x], and F (x), G(x) form a
standard pair over Q such that the equation F (x) = G(y) has
infinitely many rational solutions x, y with a bounded denomi-
nator.

In [34], Stoll introduced Dickson-type polynomials in the following
way. Polynomials fn ∈ R[x] (resp. Q[x]) with

(29) f0(x) = B, f1(x) = x, fn+1(x) = xfn(x)− Afn−1(x), n ≥ 1,

where A,B ∈ R (resp. Q) are called Dickson-type recursive polynomials
over R (resp. Q). By means of the ineffective finiteness criterion of Bilu
and Tichy [9], he proved for Dickson-type recursive polynomials fn over
Q with A 6= 0, B 6= 2, n ≥ 3 and for g ∈ Q[x] with deg g ≥ 3, that apart
from eight special cases the Diophantine equation fn(x) = g(y) has
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only finitely many solutions x, y in rational numbers with a bounded
denominator.

One can easily see from (11) that the polynomials Un(x/2) satisfy
(29) with A = 1 and B = 1. Although by Corollary 4.3 the polynomial
family {ŝn(q)− 2} is very similar to {Un(q/2)}, it is easy to check that
it does not satisfy (29) over Q. Hence we cannot apply the above
mentioned finiteness result of Stoll [34] in the proof of part (ii) of our
Theorem 2.3.

By a decomposition of a polynomial F (x) over a field K we mean
writing F (x) as

F (x) = G1(G2(x)) (G1(x), G2(x) ∈ K[x]),

which is nontrivial if

degG1 > 1 and degG2 > 1.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are
said to be equivalent if there exists a linear polynomial `(x) ∈ K[x]
such that G1(x) = H1(`(x)) and H2(x) = `(G2(x)). The polynomial
F (x) is called decomposable over K if it has at least one nontrivial
decomposition over K; otherwise it is said to be indecomposable.

The decomposability of polynomial families satisfying (29) and re-
lated Diophantine equations were considered by Dujella and Tichy [14]
for B = 1 and A ∈ Z. Dujella and Gusić [13] described the decom-
posability of Dickson-type recursive polynomials over Q in the general
case. Stoll [34] proved the following refinement of their result.

Lemma 5.1. The Dickson-type polynomials fn over R defined in (29)
with A 6= 0, B 6= 2 are decomposable over C if and only if n = 2k with
k ≥ 2. In that case,

(30) fn(x) = hk(x
2) with hk(x) = f2k(

√
x) ∈ Q[x],

and hk is decomposable over C if and only if B = −2, n = 8 when

(31) f8(x) = h4(x
2) with h4(x) = (x2−2Ax)2−4A2(x2−2Ax)−2A4.

Moreover, all nontrivial decompositions of fn are equivalent to (30) and
(31).

Proof. This is Theorem 5 of [34]. �

Proof of Theorem 2.3 (ii). Let n ≥ 7 and g(x) ∈ Q[x] be a polyno-
mial with deg g ≥ 3. Suppose that equation (8) has infinitely many
solutions in integers q, x. Then Theorem C implies that there exist
λ(x), κ(x), ϕ(x) ∈ Q[x] with deg λ = deg κ = 1 such that

(32) ŝn(x) = ϕ(F (λ(x))) and g(x) = ϕ(G(κ(x))),
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where F (x), G(x) form a standard pair over Q.
As it was mentioned above, the transformed second kind Chebyshev

polynomial Un(x/2) is a Dickson-type recursive polynomial, i.e., satis-
fies the recurrence (29). By Corollary 4.3, we infer that every nontrivial
decomposition of Un(x/2) is equivalent to a nontrivial decomposition
of ŝn(q). Thus, Lemma 5.1 implies that, in (32), we have

degϕ ∈
{

1,
n− 2

2
, n− 2

}
.

First, suppose that degϕ = n − 2. Then, by (32), we observe that
degF = 1. Thus ŝn(x) = ϕ(t(x)), where t(x) = F (λ(x)) ∈ Q[x] is a
linear polynomial. Clearly, t−1(x) ∈ Q[x] is also linear. By (32), we
obtain ŝn(t−1(x)) = ϕ(t(t−1(x))) = ϕ(x). Hence,

g(x) = ϕ(G(κ(x))) = ŝn(t−1(G(κ(x)))) = ŝn(h(x)),

where h(x) = t−1(G(κ(x))). So, if in this case equation (8) has infinitely
many solutions, then g(x) is of the form ŝn(h(x)), where h ∈ Q[x] with
deg h ≥ 1. It is obvious that by these choices, equation (8) has infinitely
many solutions in integers q, x with q ≥ 5 for any n.

Next, suppose that degϕ =
n− 2

2
. Then n is even, and we obtain

from Lemma 5.1 and Corollary 4.3 that ŝn(x) = Tn((x − 1)2), and
up to equivalence, this is the only decomposition of ŝn(x). Thus we
get that ϕ(x) = Tn(σ(x)), where σ(x) is a linear polynomial. Hence
g(x) is of the form g(x) = Tn(g̃(x)) with some g̃(x) ∈ Q[x]. Further,
theorem C implies that the equation (x−1)2 = g̃(y) has infinitely many
rational solutions with a bounded denominator. Then, by Lemma 4.7
the polynomial g̃(x) can have at most two roots of odd multiplicities.
Thus we get case (b) of our statement. Moreover, it is clear that for
any even n, there are infinitely many choices for g such that equation
(8) has infinitely many solutions in integers q, x with q ≥ 5.

Finally, suppose that degϕ = 1. Then there exist ϕ1, ϕ0 ∈ Q with
ϕ1 6= 0 such that ϕ(x) = ϕ1x + ϕ0. We study now the five kinds of
standard pairs. In view of our assumptions on n and deg g, it follows
that F (x), G(x) cannot form a standard pair of the second or fifth
kind.

Suppose that F (x), G(x) form a standard pair of the first kind over
Q. Then we have either

(a) ŝn(x) = ϕ1λ(x)d + ϕ0, or
(b) ŝn(x) = ϕ1αλ(x)rv(λ(x))d + ϕ0, where 0 ≤ r < d, (r, d) = 1

and r + deg v(x) > 0.



16 A. BAZSÓ AND L. HAJDU

In case (a), we have q = n−2. Taking derivatives we obtain ŝ′n(x) =
dϕ1λ(x)d−1. Since, by Lemma 4.4, all the roots of ŝ′n(x) are simple, we
get d ≤ 2, i.e., n ≤ 4 which contradicts our assumption n ≥ 7.

In the second case (b), we have g(x) = ϕ1κ(x)d+ϕ0. Since deg g ≥ 3,
we have d ≥ 3. Put λ(x) = λ1x + λ0. Taking derivatives in relation
(b), we obtain

ŝ′n(x) =

ϕ1αλ1(λ1x+λ0)
r−1v(λ1x+λ0)

d−1(rv(λ1x+λ0)+d(λ1x+λ0)v
′(λ1x+λ0)),

which implies that the polynomial ŝ′n(x) has a root of multiplicity at
least d− 1 ≥ 2. This is impossible by Lemma 4.4.

Finally, consider the case when, in (32), F (x), G(x) form a standard
pair of the third or fourth kind over Q. Then, putting again λ(x) =
λ1x+λ0 (λ1 6= 0), whence λ−1(x) = c1x+c0 with c1 = 1

λ1
and c0 = −λ0

λ1
,

we have

(33) ŝn(c1x+ c0) = e1Dν(x, δ) + e0

with some e0 ∈ Q, e1, δ ∈ Q \ {0}, where Dν(x, δ) is the ν-th Dickson
polynomial. Clearly, we have ν = n− 2 ≥ 5.

Moreover, by Corollary 4.3 and relation (10) we get that the coeffi-
cients of xn−3 in ŝn(c1x+ c0) is given by

2(n− 2)cn−31 (c0 − 1),

while by (28) the coefficient of xn−3 in e1Dν(x, δ) + e0 is zero. This
gives

(34) c0 = 1.

Thus using Corollary 4.3 and relation (10) again, we obtain
(35)
ŝn(c1x+c0) = 2cn−21 xn−2−4(n−3)cn−41 xn−4+4(n−4)(n−5)cn−61 xn−6+. . . .

Thus in view of (28) and (35), we infer, by comparing the leading
coefficients on both sides of (33), that

(36) 2cn−21 = e1.

Comparing now the coefficients of xn−4 in (33), we obtain, by (28) and
(35), that

(37) − 4(n− 3)cn−41 = −e1νδ,
which, by substituting (36) together with ν = n− 2 into (37), implies
that

(38) c21 =
2(n− 3)

(n− 2)δ
.
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Recall that n ≥ 7. Then, again by (28) and (35), the equality the
coefficients of xn−6 on both sides of (33) gives

4(n− 4)(n− 5)cn−61 =
e1(ν − 3)νδ2

2
,

whence, in view of (36) and ν = n− 2, it follows that

(39) c41 =
4(n− 4)

(n− 2)δ2
.

After substituting (38) into (39), we obtain (n− 3)2 = (n− 2)(n− 4),
which is a contradiction. Hence our theorem follows. �

Remark. We note that the assumption n ≥ 7 in part (ii) of Theorem
2.3 is necessary. As deg(ŝn(q)) = n − 2, it is obvious for n = 3. (The
cases n = 1, 2 are trivial.) When n = 4, we have

ŝ4(q) + 2 = 2(q − 1)2.

Thus obviously, equation (8) has infinitely many solution for n = 4
with g(y) = 2y` − 2, for any ` ≥ 2. In the case n = 5, using the
notation of the above proof it is clear that in (32), F (x) and G(x) can
only be a standard pair of the third or fourth kind. From (33) we infer
that ν = 3 thus the standard pair F (x), G(x) cannot be of the fourth
kind. We further infer from (33) that

λ1 =
1

c1
, λ0 = − 1

c1
, e1 = ϕ1 = 2c31, e0 = ϕ0 = 2 and δ = αµ =

4

3c21

with an arbitrary nonzero rational number c1. Clearly, there are infin-
itely many choices for c1 such that g(x) = ϕ(G(κ(x))) where G(x) =
Dµ(x, α3) with (µ, 3) = 1 whence, by Theorem C, equation (8) has in-
finitely many rational solutions with a bounded denominator. Finally,
when n = 6, as we already mentioned, we have

ŝ6(q) + 8 = 2(q2 − 2q − 2)2.

Thus, as one can easily check, for n = 6 equation (8) has infinitely
many solutions e.g. with g(y) = 8y4 − 8.
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16. P. Erdős, On a Diophantine equation, J. London Math. Soc. 26 (1951) 176–
178.
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