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Abstract. We prove various finiteness theorems for integers hav-
ing only few non-zero digits in different multi-base representations
simultaneously.

1. Introduction

It is an old problem to study integers having only a ‘few’ non-zero
digits in some classical base b representation, see e.g. papers by Erdős,
Mauduit, Pomerance, Sárközy [6, 7, 15, 16, 17] and the references there.
On the other hand, if a number n has to hold certain other arithmetical
property, it may happen that it must have ‘many’ digits. This is the
case when n belongs to some recurrence sequence; see e.g. Bugeaud,
Cipu and Mignotte [4], Luca [13] and Stewart [21] for effective results
in this direction.

The number of non-zero digits of integers, and integers with fixed
number of non-zero digits is also investigated with respect to other
types of bases, e.g. with respect to linear recurrence number systems,
cf. [19, 22]. Another generalization of the classical number systems
is given by the so-called multi-base representations, when instead of
linear combinations of powers of a fixed number b, one can combine
products of powers of fixed primes. For related problems and results
see e.g. the papers [1, 2, 5, 10, 11, 12, 18] and the references therein.

It is an interesting question to study integers having only ‘few’ non-
zero digits in different bases simultaneously. Here we mention two
results. Senge and Straus [20] proved that the number of those integers,
whose number of non-zero digits in two different bases b1 and b2 with
log b1/ log b2 /∈ Q remains under some fixed bound, is finite. Later,
Stewart [21] gave a more precise, effective version of this result.
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In this paper, as a generalization of the problem mentioned in the
previous paragraph, we study integers having only ‘few’ non-zero dig-
its in different multi-base representations simultaneously. To set the
problem precisely, we need to introduce some notation.

Let S be a finite set of primes, and write ZS (resp. Z+
S ) for the set of

integers (resp. positive integers) having no prime divisors outside S. A
multi-base representation of an integer n is an expression of the form

(1) n = u1 + · · ·+ ut

with u1, . . . , ut ∈ ZS. If S = {p} and we require that u1, . . . , ut ∈ Z+
S ,

we get several expansions of n as sums of powers of p, with the shortest
one (namely, the one with fewest terms) being the usual expansion of
n in base p. For an integer n, we write wS(n) for the minimal t for
which (1) holds with some u1, . . . , ut ∈ ZS. If n > 0 and we also require
that u1, . . . , ut ∈ Z+

S , we then write w+
S (n) instead.

In what follows, we prove various finiteness theorems for integers n
with ‘small’ values of w+

S (n) with respect to different sets S simultane-
ously. To prove our results, we use Baker’s method for linear forms in
logarithms, a deep theorem of Evertse [8] bounding the number of non-
degenerate solutions of S-unit equations and a local method of Bertók
and Hajdu [3] developed for the resolution of exponential equations
over Z.

2. New results

Our first theorem concerns the general case.

Theorem 2.1. Let k be a positive integer, S1, . . . , Sk be finite sets of
primes such that S1 ∩ · · · ∩ Sk = ∅. Then for any T the inequality

w+
S1

(n) + · · ·+ w+
Sk

(n) ≤ T

is valid only for finitely many integers n. Further, the number of such
integers n is at most c1 = c1(T, k, s), where c1 is an effectively com-
putable constant depending only on T, k and s := |S1 ∪ · · · ∪ Sk|.

Remark 1. Note that the condition S1 ∩ · · · ∩ Sk = ∅ in the above
theorem is necessary. Indeed, if p ∈ S1∩ · · ·∩Sk would hold with some
prime p, then for T := k ≥ 1 we would have

w+
S1

(n) + · · ·+ w+
Sk

(n) ≤ T

for all n = pα (α ≥ 0).

Our second result gives an effective bound in a special case.



THE NUMBER OF DIGITS IN MULTI-BASE REPRESENTATIONS 3

Theorem 2.2. Let ` be a positive integer, S1 = {p1, . . . , p`} and
S2 = {q}, where p1, . . . , p`, q are distinct primes. If n is a positive
integer with n > ee

e
such that w+

S1
(n) = 1, then we have

w+
S2

(n) >
c2 log log n

log log log n
,

where c2 = c2(`, p1, . . . , p`, q) is an effectively computable positive con-
stant depending only on `, p1, . . . , p`, q.

Remark 2. The condition q /∈ S1 is necessary. This can be easily
checked by a similar example as in Remark 1. Further, we note that
if Si are not sets of primes, but sets of multiplicatively independent
integers instead, then after the necessary modifications our theorems
still hold.

Finally, we give a complete list of integers n having only a ‘few’ non-
zero digits for some fixed choices of sets S1, S2. Note that in the cases
considered, though the number of solutions can be bounded e.g. by
results of Evertse [8], there are no tools available which would effectively
bound the solutions themselves. To find the solutions explicitly, we
apply a method of Bertók and Hajdu [3].

Theorem 2.3. Let S1, S2 be disjoint non-empty sets of primes with
S1 ∪ S2 = {2, 3, 5}. Then

w+
S1

(n) + w+
S2

(n) ≤ 4

implies that if

(1) S1 = {2} and S2 = {3, 5} then n ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 12,
16, 18, 20, 24, 25, 32, 34, 36, 40, 48, 72, 80, 81, 96, 128, 130, 136,
144, 160, 258, 260, 288, 384, 640, 1152, 2050, 2052, 4104, 32832};

(2) S1 = {3} and S2 = {2, 5} then n ∈ {1, 2, 3, 4, 5, 6, 9, 10, 12, 18,
27, 28, 30, 36, 54, 81, 82, 84, 90, 108, 162, 252, 270, 324, 729, 756,
810, 6561, 6570};

(3) S1 = {5} and S2 = {2, 3} then n ∈ {1, 2, 3, 5, 6, 10, 25, 26, 27,
30, 50, 125, 126, 130, 150, 625, 630, 650, 3125, 3126, 15625, 78750}.

3. Proof of Theorem 2.1

To prove Theorem 2.1, we need to introduce some notions and no-
tation.

Let a1, . . . , a` ∈ Q∗. Consider the equation

(2) a1x1 + · · ·+ a`x` = 0
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in x1, . . . , x` ∈ ZS. A solution (x1, . . . , x`) of the above equation is said
to be non-degenerate if∑

i∈I

aixi 6= 0 for each non-empty I ⊂ {1, . . . , `}

and degenerate otherwise. Further, two solutions (x1, . . . , x`) and (y1, . . . , y`)
of (2) are called proportional if for some z ∈ Q∗, we have

xi = zyi for i = 1, . . . , `.

Lemma 3.1. Let s = |S|. Then equation (2) has at most

(235(`− 1)2)(`−1)
3s

non-degenerate solutions (x1, . . . , x`) ∈ ZS × · · · ×ZS, no two of which
are proportional.

Proof. The statement is a simple consequence of [8, Theorem 3]. �

Theorem 2.1 can be immediately deduced from the following result.

Proposition 3.1. Let k ≥ 2 and let t1, . . . , tk ∈ N. For i = 1, . . . , k,
let

Ai = {ai,1, . . . , ai,ti}
be a set of ti positive integers. Then the number of positive integers n
such that for each i, there exist ui,1, . . . , ui,ti ∈ Z+

Si
such that

n = ai,1ui,1 + · · ·+ ai,tiui,ti ,

is at most
(235(t− 1)2)(k−1)(t−1)

4s,

where t = t1 + · · ·+ tk and s = |S1 ∪ S2 ∪ · · · ∪ Sk|.
Proof. We prove the proposition by induction on k.
Let S = S1∪S2∪ · · · ∪Sk. Suppose that k = 2. We will prove that the
result holds in this case using induction on t = t1 + t2. Suppose that
t = 2. Then t1 = t2 = 1. We now show that the equation

(3) a1,1u1,1 = a2,1u2,1

in (u1,1, u2,1) ∈ Z+
S1
×Z+

S2
has at most one solution. Indeed, the equation

(3) implies that
u1,1
u2,1

=
a2,1
a1,1

.

The claim follows by the coprimality of u1,1 and u2,1. Therefore, the
result holds when k = t = 2. Let t ≥ 3 and assume that the result
holds whenever t1 + t2 ≤ t − 1. We now consider the case t1 + t2 = t.
We have to count the number of solutions of the S-unit equation

(4) a1,1u1,1 + · · ·+ a1,t1u1,t1 = a2,1u2,1 + · · ·+ a2,t2u2,t2 ,
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where u1,j ∈ Z+
S1

and u2,j ∈ Z+
S2

. By Lemma 3.1, this equation has at
most

(235(t− 1)2)(t−1)
3s

non-degenerate solutions. Next, we count the number of degenerate
solutions. (Observe that if t = 3, then (t1, t2) = (1, 2) or (2, 1) and
hence all the solutions are non-degenerate. Therefore, while counting
degenerate solutions, it is understood that t ≥ 4.) For a degenerate
solution, there exists a non-empty subset I of {1, . . . , t1} and a non-
empty subset J of {1, . . . , t2} such that

(5)
∑
i∈I

a1,iu1,i −
∑
j∈J

a2,ju2,j = 0,

but no proper subsum in this equation vanishes. Fix I, J . We count
the number of solutions of (4) satisfying (5). Since |I|+ |J | ≤ t− 2, it
follows from Lemma 3.1 that the S-unit equation (5) has at most

(235(t− 3)2)(t−3)
3s

non-degenerate solutions. Further, by the induction hypothesis, the
equation ∑

i/∈I

a1,iu1,i −
∑
j /∈J

a2,ju2,j = 0

has at most

(235(t− 3)2)(t−3)
4s

solutions. Hence, given I, J , we obtain that there are at most

(235(t− 3)2)s(t−3)
3(t−2)

solutions. Varying I and J , we obtain that the total number of degen-
erate solutions is at most

2t(235(t− 3)2)s(t−3)
3(t−2) ≤ 1

2
(235(t− 1)2)(t−1)

4s.

Thus, (4) has at most

(235(t− 1)2)(t−1)
3s +

1

2
(235(t− 1)2)(t−1)

4s ≤ (235(t− 1)2)(t−1)
4s

solutions. This completes the induction on t. Hence, the result holds
for k = 2.

Now let k ≥ 3. Suppose that the result holds for every k′ with
2 ≤ k′ < k. That is, given k′ in the above range, we assume that the
result is valid for all t and for all choices of the sets Ai and Si. Note



6 CS. BERTÓK, L. HAJDU, F. LUCA, AND D. SHARMA

that t = t1 + · · · + tk ≥ k ≥ 3. We have to bound the number of
solutions of the following system of S-unit equations:

a1,1u1,1 + · · ·+ a1,t1u1,t1 = a2,1u2,1 + · · ·+ a2,t2u2,t2(6)

...

= ak,1uk,1 + · · ·+ ak,tkuk,tk ,

where ui,j ∈ Z+
Si

. We mention that similar systems of S-unit equations
have been studied by Evertse and Győry [9]. However, their theorems
cannot be used directly here, so we apply some other results. Namely,
by Lemma 3.1, the first equation in (6) has at most

(7) (235(t− 2)2)(t−2)
3s

non-degenerate solutions. For a degenerate solution, there exists a
positive integer l ≤ t − 2 and distinct non-empty subsets I1, . . . , Il ⊆
{1, . . . , t1}, J1, . . . , Jl ⊆ {1, . . . , t2} such that for m = 1, . . . , l,

(8)
∑
i∈Im

a1,iu1,i =
∑
i∈Jm

a2,iu2,i,

but no proper subsum vanishes. Fix I1, . . . , Il, J1, . . . , Jl. We count
the number of solutions of system (6) satisfying the additional equa-
tions (8). By Lemma 3.1, for each m = 1, . . . , l, (8) has, up to a factor
of proportionality, at most

(235(t− 3)2)(t−3)
3s

non-degenerate solutions. Let ((u1,i)i∈Im , (u2,i)i∈Jm) be a solution of (8)
with gcd((u1,i)i∈Im , (u2,i)i∈Jm) = 1. Set

a′m =
∑
i∈Im

a1,iu1,i
(

=
∑
i∈Jm

a2,iu2,i
)
.

Then

{((Umu1,i)i∈Im , (Umu2,i)i∈Jm) : Um ∈ Z+
S1∩S2

}
is precisely the set of solutions of (8) which are proportional to
((u1,i)i∈Im , (u2,i)i∈Jm). The problem is thus reduced to considering the
following system of equations in the variables U1, . . . , Ul, u3,1 . . . , uk,tk :

a′1U1 + · · ·+ a′lUl = a3,1u3,1 + · · ·+ a3,t3u3,t3
...

= ak,1uk,1 + · · ·+ ak,tkuk,tk .
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Since (S1 ∩ S2) ∩ S3 ∩ · · · ∩ Sk = ∅, we apply the induction hypothesis
for k′ = k − 1 to conclude that the above system of equations has at
most

(235(t− 2)2)(k−2)(t−2)
4s

solutions. Hence, given I1, . . . , Il, J1, . . . , Jl, we get at most

(235(t− 3)2)(t−3)
3s(t−2) · (235(t− 2)2)(k−2)(t−2)

4s

solutions. Therefore the number of degenerate solutions is bounded by

(9) tt(235(t− 2)2)(k−1)(t−2)
4s ≤ 1

2
(235(t− 1)2)(k−1)(t−1)

4s.

Combining the above bound (9) with (7), we obtain that the total
number of solutions is at most

(235(t− 1)2)(k−1)(t−1)
4s.

This completes the induction and the proof of the proposition. �

Proof of Theorem 2.1. Taking ti = w+
Si

(n) and Ai = {1} for all i =
1, . . . , k in Proposition 3.1, the statement immediately follows. �

4. Proof of Theorem 2.2

To prove Theorem 2.2, we use a Baker type estimate due to Matveev [14].
For its formulation we need to introduce some notation.

For an algebraic number α of degree D over Q, the absolute loga-
rithmic height of α is defined by

h(α) =
1

D

(
log a0 +

D∑
i=1

log max(1, |α(i)|)

)
,

where a0 > 0 is the leading coefficient of the minimal polynomial of α
over Z and the α(i)’s are the conjugates of α. Note that in the special
case when α = p/q is a non-zero rational number with gcd(p, q) = 1,
then h(α) = h(1/α) = log max{|p|, |q|}.

The following result is due to Matveev [14].

Lemma 4.1. Assume that α1, . . . , αr are positive real algebraic num-
bers in a real algebraic number field of degree D, d1, . . . , dr are rational
integers, and

Λ := αd11 . . . αdrr − 1

is not zero. Set
B ≥ max{|d1|, . . . , |dr|},

and
Ai ≥ max{Dh(αi), | logαi|, 0.16}, for all i = 1, . . . , r.
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Then we have

(10) |Λ| > exp(−1.4 · 30r+3r4.5D2(1 + logD)(1 + logB)A1 · · ·Ar).

Now we are ready to give the proof of Theorem 2.2.

Proof of Theorem 2.2. We combine arguments of Luca [13] and
Stewart [21] with some other considerations.

Let n be a positive integer with w+
S1

(n) = 1 and w+
S2

(n) = t, and
write

(11) u1 = n = v1 + · · ·+ vt

with u1 ∈ Z+
S1

and v1, . . . , vt ∈ Z+
S2

. Without loss of generality we may
assume that v1 ≥ · · · ≥ vt.

We write

(12) u1 = pα1
1 . . . pα`

` , vi = qβi (i = 1, . . . , t).

Let B be the maximum of the exponents appearing in (12).
Equation (11) can be rewritten as

(13) u1 − v1 = v2 + · · ·+ vt.

Since u1 6= v1 and v1 6= 1 (otherwise n = 1 or t = n and the statement
is trivial), Lemma 4.1 yields

(14) v1 exp(−c4(1 + logB)) < v1(u1v
−1
1 − 1),

with c4 := c3h(p1) · · ·h(p`)h(q)2, where

c3 = c3(`+ 2) := 1.4 · 30`+5(`+ 2)4.5

is the constant appearing in the conclusion of Matveev’s theorem (10)
when Λ involves r = `+ 2 rational numbers (r = `+ 2 and D = 1).
Now we show that

(15)
v1
vj
< exp(2j log t(c4(1 + logB))j−1) (j = 2, . . . , t).

We prove this claim by induction. Combining the above inequality (14)
with

v1(u1v
−1
1 − 1) = u1 − v1 < tv2

implied by (13), we get

v1
v2
< exp (log t+ c4(1 + logB)) ≤ exp (2(log t)c4(1 + logB)) .

Let now i be arbitrary with 2 ≤ i < t, and assume by induction that

(16)
v1
vj
< exp

(
2j log t(c4(1 + logB)j−1)

)
for all j = 2, . . . , i.
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Rewrite (11) as

(17) u1 − v1 − · · · − vi = vi+1 + · · ·+ vt.

Observe that by (12) and (16) (used with j = i), we have

h

(
1 +

v2
v1

+ · · ·+ vi
v1

)
= h

(
qβ1−βi + · · ·+ qβi−1−βi + 1

qβ1−βi

)
=

= log(qβ1−βi + · · ·+ qβi−1−βi + 1) ≤ log(tqβ1−βi) =

= log t+ log

(
v1
vi

)
< (2i+ 1)(log t)(c4(1 + logB))i−1.

Hence, Lemma 4.1 yields

v1 exp(−(2i+ 1)(c4(1 + logB))i) <

< v1

(
u1v

−1
1

(
1 +

v2
v1

+ · · ·+ vi
v1

)−1
− 1

)
<

< v1

(
1 +

v2
v1

+ · · ·+ vi
v1

)(
u1v

−1
1

(
1 +

v2
v1

+ · · ·+ vi
v1

)−1
− 1

)
.

The above inequality together with

v1

(
1 +

v2
v1

+ · · ·+ vi
v1

)(
u1v

−1
1

(
1 +

v2
v1

+ · · ·+ vi
v1

)−1
− 1

)
=

= u1 − v1 − · · · − vi < tvi+1

obtained from (17), implies the inequality

v1
vi+1

< exp
(
log t+ (2i+ 1)(log t)(c4(1 + logB))i

)
< exp

(
(2i+ 2)(log t)(c4(1 + logB))i

)
,

which completes the induction step. Hence, our claim (15) follows.
Now note that either B = β1 or B ∈ {α1, . . . , α`}. In the latter case
we have 2B ≤ n ≤ tqβ1 , so β1 ≥ c5B − c6 log t, where c5 := log 2/ log q
and c6 := 1/ log q. Since q ≥ 2, it follows that the inequality

β1 ≥ c5B − c6 log t

holds both when B = β1 and when B ∈ {α1, . . . , α`}.
Further, log n/ log(p1 · · · p`) ≤ B ≤ log n/ log 2 showing that

(18) log log n− c7 ≤ logB ≤ log log n+ c8,
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where c7 := log log max{3, p1 . . . p`} and c8 := − log log 2. Note now
that since q 6∈ {p1, . . . , p`}, it follows that vt = 1. Setting j = t in (15)
and taking logarithms we get

(19) c5B − c6 log t ≤ β1 ≤ c9t log t(c4(1 + logB))t−1,

where we can take c9 := max{1, 2(log q)−1}. If the left-hand side of
(19) is smaller than c5B/2, we then get that

log t > c10B,

where c10 := c5/(2c6), therefore

t > ec10B > nc11 ,

where c11 := c10/ log(p1 · · · p`), which for large n is better than the
inequality we are after. If the left-hand side of (19) is at least c5B/2,
then by taking logarithms we get

logB − c12 < (t− 1) log(c4(1 + logB)) + log t+ log log t,

where c12 := − log(c5/2) + log c9. From here, we get right–away that
in fact

t > (1 + o(1))
logB

log logB

as B → ∞. Combining this with (18), we get that for every ε > 0,
taking c13 := 1− ε, the inequality

t > c13
log log n

log log log n

holds for all n > n0(ε), where n0(ε) is effectively computable in terms
of ε and p1, . . . , p`, q. Hence, the statement follows. �

5. Proof of Theorem 2.3

To prove Theorem 2.3 we use the method of Bertók and Hajdu,
described in [3].

Proof of Theorem 2.3. . If w+
S1

(n) + w+
S2

(n) = 2, then it is clear that

the only solution is n = 1, so we suppose that w+
S1

(n) + w+
S2

(n) ≥ 3.
We describe our method in detail only in the case when S1 = {3},
S2 = {2, 5}. The other cases can be handled similarly. In this case we
have five equations to solve, namely:

3a1 = 2b1 · 5c1 + 2b2 · 5c2 ,
3a1 = 2b1 · 5c1 + 2b2 · 5c2 + 2b3 · 5c3 ,

3a1 + 3a2 = 2b1 · 5c1 ,
3a1 + 3a2 = 2b1 · 5c1 + 2b2 · 5c2 ,

3a1 + 3a2 + 3a3 = 2b1 · 5c1 .



THE NUMBER OF DIGITS IN MULTI-BASE REPRESENTATIONS 11

To find all solutions of the above equations we apply the algorithm
introduced in [3]. Here we only sketch the method and concentrate on
how to use it for our present equations. For the detailed description
of the general method, see [3]. First by an exhaustive search we find
all ‘small’ solutions of the equations in non-negative integers ai, bi, ci,
(i = 1, 2, 3). Then after modifying the equations appropriately we try
to find a modulus m such that the modified equation has no solutions
modulo m. We illustrate the method by solving the equation

3a1 = 2b1 · 5c1 + 2b2 · 5c2 .

By an exhaustive search we get that this equation has only five solutions
with a1, b1, b2, c1, c2 ≤ 100, namely

(a1, b1, b2, c1, c2) = (1, 0, 0, 1, 0), (2, 0, 0, 3, 0), (4, 4, 1, 0, 0),

(2, 0, 1, 2, 0), (3, 1, 0, 0, 2),

yielding n = 3, 9, 27, 81. Note that 9 = 32 can be represented in two
ways, since 9 = 1 + 8 = 5 + 4. We suspect that the equation has no
other solutions. First it can be seen that if both b1 and b2 are greater
than zero then this equation has no solutions modulo 2. The same
argument applies for c1, c2 modulo 5, thus we conclude that we have to
solve the following two equations:

3a1 = 1 + 2b2 · 5c2 ,(20)

3a1 = 5c1 + 2b2 .(21)

Since in every ‘small’ solution the exponent of 3 is at most 4, then
instead of the equations above, we consider

35 · 3a′1 = 1 + 2b2 · 5c2 ,(22)

35 · 3a′1 = 5c1 + 2b2 ,(23)

respectively, where every exponent is a non-negative integer. If our
expectation is true, then these equations have no solutions. To prove
this, we show that these equations are already not solvable locally,
modulo an appropriately chosen modulus. About how to find such a
modulus, we refer once again to [3]. Now we only state that if we
choose m to be 35 · 7 · 13 · 17 · 19 · 37 · 73 · 97 · 109 · 163 · 193 · 257 · 433 ·
487 · 577 · 769 · 1153 · 1297 · 2593 · 3457 · 10369, then as one can check,
equation (22) has no solutions modulo m. Thus, in (20), a1 has to be
less than or equal to 4. By checking every possibility we get that this
equation has three solutions, namely

(a1, b1, b2, c1, c2) = (1, 0, 0, 1, 0), (2, 0, 0, 3, 0), (4, 4, 1, 0, 0).
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Similarly, if m = 35 ·7 ·13 ·17 ·19 ·37 ·73 ·97 ·109 ·163 ·193 ·433 ·577 ·769,
then equation (23) has no solutions modulo m, thus we only have to
check (21) with a1 ≤ 4. In this case we get the remaining two ‘small’
solutions. The other equations can be handled similarly. Finally, we
mention that an appropriately chosen divisor of M = 216 · 310 · 58 · 7 ·
13 ·17 ·19 ·163 ·37 ·433 ·193 ·97 ·73 ·257 ·109 ·577 ·769 ·487 ·1153 ·1297 ·
1459 · 2593 · 2917 · 3457 · 3889 · 10369 · 1373 · 3137 · 12289 · 17497 · 18433 ·
39367 · 52489 · 65537 · 50177 · 139969 · 147457 · 209953 · 331777 · 472393 ·
114689 ·268913 ·470597 ·629857 ·746497 ·786433 ·839809 ·995329 ·614657
is sufficient for every equation under investigation. (Certainly, one can
take m = M in each case, however, then the computation time would
be enormous.) �
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