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Y. Bugeaud and L. Hajdu∗

Abstract. In this work we give totally explicit lower bounds for |axn − bym| de-
pending only on a, b, n, m and a, b, n, x, respectively.

1. Introduction

Let a, b, x, y, n and m be non-zero integers such that

(1) n ≥ 2,m ≥ 2, |y| ≥ 2 and axn 6= bym.

The first explicit lower bound independent of x and y for |axn − bym| was proved
by Turk [10] when a = b = 1. A result of similar strength valid for arbitrary
a and b, however not completely explicit, can also be deduced from the work of
Shorey [9]. Recently, using a new approach of Brindza, Evertse and Győry [3] for
bounding solutions of exponential diophantine equations, Bugeaud [4] was able to
considerably sharpen Turk’s estimate in the case a = b = 1. The purpose of the
present work is to extend Bugeaud’s result to arbitrary a and b, and thanks to some
refined arguments, also to improve his lower bound.

2. The main results

Throughout the paper, for every positive real number s we put log∗ s = max{1, log s}.

Theorem 1. If a, b, x, y, n and m are integers satisfying (1), then we have

(2) |axn − bym| ≥ m2/5n(20n)−2−11/n
(
|a| log

1
n
∗ |b|

)−1

.

Remark. Our Theorem 1 extends Théorème 1 of [4] and sharpens it in the par-
ticular case when a = b = 1. The improvement occurs essentially in the factor
n−2, which replaces n−5. This is the consequence of three refinements. First, we
use the fact that the unit rank of the field in which we work is at most equal to
half of its degree. Secondly, we work with an independent system of units, rather
than a fundamental one: there are almost no changes in the proof, but a slight
gain. Finally, to bound our linear forms in logarithms we use the estimate of Baker
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and Wüstholz [1], which is more convenient for our purposes, instead of the one of
Waldschmidt [11].

As in [10] and [4], by combining Theorem 1 with an estimate for the size of
the solutions of superelliptic equations, we derive a lower bound for |axn − bym| in
terms of axn.

Theorem 2. If a, b, x, y, n and m are integers satisfying m ≥ 3 and (1), then we
have

|axn − bym| > c1n
−2 |a|−1 log−

10
9n

∗ |b|(log∗ log∗ |a xn|) 1
3n ,

where c1 denotes an absolute, effectively computable constant.

Remark. Let F (X) ∈ Z[X] be a polynomial of degree n ≥ 2, and let b, x, y and
m be integers with m ≥ 2 and |y| ≥ 2. Suppose that F (x) − bym 6= 0, and if
F is of the special form t1(X − t2)

n + t3 with t1, t2, t3 ∈ Z then also assume that
F (x) − bym 6= t3. In the terms of n, m, b and the height of F (or in the terms of
n, x, b and the height of F , respectively) one can give lower bounds for |F (x)−bym|
of similar types as our Theorems 1 and 2. We do not work out the details here.

3. Auxiliary results

For a non-zero algebraic number α, we denote by h(α) the logarithmic height of
α. Let K be a number field with degree dK, unit rank rK and regulator RK. In the
course of our proof, we use an independent system of units in K with small height,
provided by the following lemma.

Lemma. There exists an independent system {ε1, . . . , εrK} of units in K satisfying

(3)
rK∏

i=1

h(εi) ≤ d−rK
K rK! RK

and

(4) h(εi) ≤ rK! d−1
K (9 (log 3dK)3/8)

rK−1
RK, i = 1, . . . , rK.

Moreover, for all non-zero algebraic integer α ∈ K, there exists a unit ε in the
multiplicative subgroup generated by ε1, . . . , εrK such that

(5) h(ε α) ≤ (log NK/Q(α))/(2dK) + (rK + 1)rK+1 log3rK+3(3dK) RK.

Proof. This is implied by Lemme 1 and Lemme 2 of [5]. �

Our proof ultimately depends on Baker’s theory of linear forms in logarithms,
and for our purpose the sharpest estimate is due to Baker and Wüstholz [1].

Theorem BW. Let α1, . . . , αn be algebraic numbers different from 0 and 1. Let
d ≥ [Q(α1, . . . , αn) : Q] and define the modified height h′ by

h′(α) = max
{

h(α),
| log α|

d
,
1
d

}
,
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for every non-zero α in Q(α1, . . . , αn). Let b1, . . . , bn be rational integers not all 0,
and with absolute values less than B ≥ 3. Setting

Λ = b1 log α1 + · · ·+ bn log αn,

we have
log |Λ| > −C(n, d) h′(α1) . . . h′(αn) log B,

with
C(n, d) = 18 (n + 1)! nn+1 (32 d)n+2 log(2nd).

Proof. This is the Theorem of Baker and Wüstholz [1]. �

We deduce Theorem 2 from Theorem 1 by using an explicit upper bound for the
size of the solutions of superelliptic equations.

Theorem B. Let f be a monic polynomial of degree n ≥ 2 with non-zero discrimi-
nant ∆f , and denote by H its height, i.e. the maximum of the absolute values of its
coefficients. Let b and m be non-zero integers with m ≥ 3. Then all the solutions
(x, y) ∈ Z2 of the diophantine equation

f(x) = b ym

satisfy

|x| ≤ Hm+1 exp
{

(c2 n m)c3 n2 m |∆f |5 n m |b|n
2 m (log∗ |b ∆f |)2 n2 m

}
,

where c2 and c3 are effectively computable numerical constants.

Proof. This easily follows from the Proposition of Bugeaud [6]. �

4. Proofs

Let a and k be non-zero integers and put f(x) = axn − k. Denote by ∆f the
discriminant of f . The following Proposition is a variant of a result of Brindza,
Evertse and Győry, cf. [3], who delt with the case where b = 1 and f is an arbitrary
monic, irreducible polynomial with rational integer coefficients. Other versions can
also be found in [4] and [2]. Here we formulate this result in the form which is the
most suitable for our application.

Proposition. Let b denote a non-zero integer and m a positive integer. Using the
previous notation, the equation

(6) f(x) = bym

in integers x, y with |y| ≥ 2 implies

m ≤ 205n+17n5n+27|ak|
5n
2 (log∗ |b|)

7
3 .

Proof of the Proposition. We will more or less follow the proof of the similar results
given in [3], [4] and [2]. Put g(t) = tn − an−1k, and let ∆g denote the discriminant
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of g. It is easy to verify that |∆f | = |ak|n−1
nn and |∆g| = |a|n

2−3n+2|∆f |. By the
definitions of f and g, putting t = ax, equation (6) is clearly equivalent to

(7) g(t) = an−1bym.

First suppose that either deg(g) > 2 or an−1k is not a perfect square, and let β1

be a non-rational root of g. Set K = Q(β1), and denote by dK, DK, RK, hK and rK
the degree, discriminant, regulator, class number and unit rank of K, respectively.
Further, we denote by βi, i = 1, . . . , dK the conjugates of β1. Combining the
inequality

dK ≤ 2
log 3

log |DK|,

due to Győry [7], with a result of Lenstra [8], we have

(8) hKRK ≤ 1
(dK − 1)!

|DK|
1
2 logdK−1 |DK|.

Further, we clearly have

(9) rK ≤ dK/2 ≤ n/2.

Let (t, y) be a fixed solution to (7). The g.c.d. of the principal ideals 〈t − β1〉 and
〈g(t)/(t− β1)〉 divides ∆g, hence there are integral ideals A,B, C in K with

(10) A〈t− β1〉 = BCm

and
max{NK/Q(A), NK/Q(B)} ≤ |an−1 · b ·∆g|.

Hence, using (8), the Lemma, and the fact that the discrminant of K divides |∆f |,
we obtain by a simple calculation that the ideals AhK and BhK have generators α
and β, respectively, with

(11) max{h(α), h(β)} ≤ c4 log∗ |a| log∗ |b||∆f |
1
2 logdK

∗ |∆f |,

where c4 = 4(n−1)2 (rK+1)rK+1(log(3dK))3rK+3

(dK−1)! . Thus, equation (10) can be written as

(12) α(t− β1)hK = εβγm,

where γ is a generator of ChK and ε is a unit.
We may assume that K is not an imaginary quadratic field, otherwise the fol-

lowing argument would be much simpler. To obtain a better estimate than in
[4], we work with an independent system of units in K, instead of a fundamen-
tal one. Let ε1, . . . , εrK be an independent system of units for K provided by the
Lemma. Using (5), we can express ε as ε = ε′εl1

1 . . . ε
lrK
rK , where ε′ is a unit with

h(ε′) ≤ (rK + 1)rK+1(log(3dK))3rK+3
RK, and, modifying γ if necessary, we may as-

sume that max
1≤i≤rK

|li| < m.
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We can suppose that |t| > |an−1k|
1
n +1, for otherwise we obtain m ≤ 2n log(2ak),

and the Proposition is proved. Hence, |t−βi| > 1 for i = 1, . . . , dK, and (12) implies

|an−1bym|hK ≥ max
1≤i≤dK

|t− βi|hK ≥ ε′
−dK+1

ε1
−m

. . . εrK

−m
α
−1

β
−dK+1

γ
m

,

where x denotes the house of the algebraic number x, i.e. the maximum of the
absolute values of its conjugates.

Using (4) together with (8), we obtain

rK∏
i=1

εi ≤ exp
(
c5 |∆f |

1
2 logdK−1

∗ |∆f |
)

and ε′ ≤ exp
(
c5dK |∆g|

1
2 logdK−1

∗ |∆g|
)

,

with c5 = c4/(4(n− 1)2). Supposing m ≥ n−1 (otherwise the Proposition follows),
the last two inequalities and (11) yield

h(γ) ≤ 6c4dK log∗ |a| log∗ |b||∆f |
1
2 logdK

∗ |∆f | log∗ |y|.

We may assume that |t| ≥ 1
2 |y|

m
n , or else we obtain m ≤ 2n log(2ak), and the

Proposition is proved. Hence we get |t − βi| ≥ 1
4 |y|

m
n for i = 1, . . . , dK. We can

suppose that for all 1 ≤ i 6= j ≤ dK, β1 and β2 satisfy the inequality

|βi − βj |
|t− βi|

≥ |β2 − β1|
|t− β2|

.

Thus we have ∏
1≤i,j≤dK

i 6=j

|βi − βj |
|t− βi|

≤ 4d(d−1) · |∆g|
|y|

md(d−1)
n

.

Hence, provided that |y|m/2n ≥ 2|∆g|hK (otherwise we would obtain a much better
estimate for m), we get

log

∣∣∣∣∣
(

t− β1

t− β2

)hK

− 1

∣∣∣∣∣ ≤ log∗

(
hK

∣∣∣∣ t− β1

t− β2
− 1
∣∣∣∣) ≤ − m

2n
log∗ |y|.

In the trivial case
(

t−β1
t−β2

)hK
= 1 one can easily obtain a very good bound for m,

as well as in the case
∣∣∣∣( t−β1

t−β2

)hK
− 1
∣∣∣∣ > 1

3 . Otherwise, using Theorem BW, (3), (8)

and (9), we get

0 6=

∣∣∣∣∣
(

t− β1

t− β2

)hK

− 1

∣∣∣∣∣ =
∣∣∣∣∣∣
(

ε1

ε
(2)
1

)l1hK

. . .

(
εrK

ε
(2)
rK

)lrK hK
β/α

β(2)/α(2)

(
γ

γ(2)

)mhK

− 1

∣∣∣∣∣∣ ≥
≥ 1

2

∣∣∣∣b0 log(−1) + l1hK log

(
ε1

ε
(2)
1

)
+ . . . + lrKhK log

(
εrK

ε
(2)
rK

)

+ log

(
ε′β/α

ε′(2)β(2)/α(2)

)
+ mhK log

(
γ

γ(2)

) ∣∣∣∣
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≥ exp
(
−c6(n) log2

∗ |a| log2
∗ |b|∆

3
2
f log3n−1

∗ |∆f | log∗ |y| log∗(m)
)

,

where b0 is an integer with |b0| ≤ mhK(r + 1), and c6(n) = 1.35 · 1019 · 333n · n25.
Here the superscript (2) denotes the image by the isomorphism Q(β1) → Q(β2).
The comparision of the upper and lower bounds, using the explicit form of ∆f ,
completes the proof of the Proposition in this case.

If deg(g) = 2 and an−1k is a perfect square, then g(t) is of the form t2−s2. Now
we can repeat the whole process for the factors t + s and t− s, and we get a much
better bound for m than stated. Hence, the Proposition is proved. �

Proof of Theorem 1. Put k = axn − bym. Using the Lemma we have

m ≤ 205n+17n5n+27|ak|
5n
2 log

7
3
∗ |b|,

which leads to (2), and Theorem 1 is proved. �

Proof of Theorem 2. Set k = axn − bym. By Theorem B we obtain a bound for |x|,
hence for |a xn|, in terms of a, b, n, k and m. Namely, we get

log∗ log∗ |axn| ≤ c7n
3m log(m) log∗ |a| log∗ |b| log∗ |k|,

where c7 is an effectively computable absolute constant. Further, we can derive an
upper estimate for m in terms of a, b, n and k. Indeed, by the Proposition we have

m ≤ 205n+17n5n+27|ak|
5n
2 (log∗ |b|)

7
3 .

Combining these estimates, Theorem 2 easily follows. �
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[2] A. Bérczes, B. Brindza and L. Hajdu, On power values of polynomials, Publ. Math. Debrecen

(to appear).
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