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Abstract. There are many results in the literature concerning
polynomial values and (shifted) power values of polynomials with
consecutive integer roots, or more generally, with roots forming an
arithmetic progression. It is an interesting question that how far
one can ’disturb’ the structure of the roots such that the finiteness
results still remain valid. Also there are many results into this
direction, with adding or removing one or more terms (roots).

In this paper we study a case where (part of) the symmetric
root structure is preserved, however, we allow (possibly large) in-
creasing gaps between the roots. We prove that the finiteness of
the solutions can also be guaranteed under these generalized cir-
cumstances. In our proofs we combine Baker’s method and the
Bilu-Tichy theorem with a new result providing an increasing prop-
erty of the extremal values of polynomials with distinct real roots
satisfying certain symmetry and increasing gap properties.

1. Introduction

There are many results in the literature concerning polynomial val-
ues and (shifted) power values of polynomials with consecutive integer
roots, or more generally, with roots forming an arithmetic progression.
We only mention a classical result of Erdős and Selfridge [5] saying
that the product of consecutive integers can never be a perfect power,
a theorem of Győry, Hajdu and Pintér [6] giving an alike result concern-
ing arithmetic progressions up to 35 terms, and a paper by Kulkarni
and Sury [10] providing finiteness results for the polynomial values of
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products of consecutive integers. It is an interesting question that how
far one can ’disturb’ the structure of the roots such that the finiteness
results still remain valid. Also there are many results into this direc-
tion, with adding or removing one or more terms (roots). Here we only
recall results of Saradha and Shorey [11, 12] concerning power values
of products of consecutive integers with one term missing, Hajdu and
Papp [7] and Hajdu, Papp and Tijdeman [8] about polynomial values
and shifted power values of products of consecutive terms of arithmetic
progressions with one and with several missing terms, respectively, and
Hajdu and Varga [9] with one term added. We suggest the interested
reader to consult the references of the mentioned papers, as well.

In this paper we study a case where (part of) the symmetric root
structure is preserved, however, having increasing (possibly large) gaps
between the roots. We prove that the finiteness of the solutions can
also be guaranteed under these generalized circumstances. Our results
can be considered to be generalizations of the corresponding finiteness
results, e.g. from [10]. (This will be explained in Remark 2.1.) In our
proofs we combine Baker’s method and the Bilu-Tichy theorem with a
new result guaranteeing an increasing property for the extremal values
of polynomials, with distinct real roots satisfying certain symmetry and
increaing gap properties. The structure of the paper is the following.
In the next section we provide our main results. Then we give their
proofs (together with the corresponding lemmas and auxiliary results)
in separate sections. The reason of this is that we need different tools
in the proofs of our results, and we would like to present the necessary
tools close to their actual use (as much as possible). We note that we
give the proofs of our results not in the order of stating the theorems,
but in the ’logical’ order (which in fact is just the opposite order).

2. Main results

We say that a finite sequence b1, . . . , bk in R with b1 < · · · < bk
is symmetric, if there exists a c ∈ R such that bi + bk+1−i = 2c for
i = 1, 2, . . . , k. We say that c is the center of symmetry for the sequence.
A symmetric sequence is called centrally convex, if bℓ, bℓ+1, . . . , bk form
a convex sequence, that is

(1) bi − bi−1 ≤ bi+1 − bi (ℓ < i < k)

holds. For example, −2, 0, 1, 2, 4 is a centrally convex symmetric se-
quence: the center of symmetry is c = 1, and we have

2− 1 ≤ 4− 2.
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To see an example of a centrally convex symmetric sequence with an
even number of elements, consider −10,−2, 1, 4, 6, 9, 12, 20: now the
center of symmetry is c = 5 and we have

6− 4 ≤ 9− 6 ≤ 12− 9 ≤ 20− 12.

Remark 2.1. Our results concern polynomials with simple real roots
forming a centrally convex symmetric sequence. We find it important
to emphasize a few points here. In the first place, any arithmetic pro-
gression h1, . . . , hN forms a centrally convex symmetric sequence. In-
deed, the sequence is symmetric to the point c := (h1 + hN)/2 (i.e.
hi + hN+1−i = 2c for all i = 1, . . . , N), and since the gaps between the
terms after the middle point are non-decreasing (certainly, the gap is
constant), the centrally convex property (1) is also satisfied. So our
Theorem 2.1 below provides an extension of the main result of [10].
However, in fact our results are much more general than that. For
example, as one can easily check, the numbers

−k2,−(k − 1)2, . . . ,−4,−1, 0, 1, 4, . . . , (k − 1)2, k2

also form a centrally convex symmetric sequence, so our results provide
finiteness conditions for the equations appearing in Theorems 2.1 and
2.2 involving the corresponding polynomial

f(x) = x
k∏

j=1

(x− j2)(x+ j2).

First we provide a general, ineffective theorem for the common inte-
ger values of a polynomial f(x) ∈ Q[x] having distinct roots forming a
centrally convex symmetric sequence with any polynomial g(x) ∈ Q[x].

Theorem 2.1. Let f(x) ∈ Q[x] have distinct real roots forming a
centrally convex symmetric sequence, deg(f) > 6 and let g(x) ∈ Q[x]
with deg(g) ≥ 2. If the equation

(2) f(x) = g(y)

has infinitely many solutions in integers x, y then either

g(y) = f(P (y))

with some P (y) ∈ Q[y] of degree ≥ 1, or deg(f) = 2k is even and

g(y) = f̂(Q(y))

with some Q(y) ∈ Q[y] having at most two roots of odd multiplicity,
where

f̂(x) = b0(x− (b1 − c)2) · · · (x− (bk − c)2).
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Here b0 is the leading coefficient of f , bi (i = 1, . . . , 2k) are the roots
of f in increasing order, and c is the center of symmetry for them.

Remark 2.2. It is easy to see that f̂(x) ∈ Q[x]. We shall show this in
the proof of the theorem.

If we have g(x) = Axm + B with some fixed A,B ∈ Q (A ̸= 0)
and m is an integer variable with m ≥ 2, we are able to provide an
effective upper bound for the absolute values of the integer solutions
x, y and also of m in equation (2). By the height of a polynomial in
Q[x] we mean the maximum of the absolute values of the numerators
and denominators of its coefficients.

Theorem 2.2. Let f(x) ∈ Q[x] have distinct real roots forming a
centrally convex symmetric sequence and suppose that deg(f) > 6. Let
A,B be given rationals with A ̸= 0, and consider the equation

(3) f(x) = Aym +B

in integers x, y,m with m ≥ 2, with the convention that m ≤ 3 if |y| ≤
1. Then there exists an effectively computable constant C1(A,B, d,H),
depending only on A,B and the degree d and height H of f such that

max(|x|, |y|,m) ≤ C1(A,B, d,H)

for every integer solution x, y,m of (3).

Remark 2.3. The assumptions of Theorems 2.1 and 2.2 are necessary.
Clearly, we need to exclude the case deg(g) = 1 in Theorem 2.1. To see
an example with deg(f) = 6 such that both (2) and (3) have infinitely
many solutions, put

f(x) = (x+ 8)(x+ 4)(x+ 1)(x− 1)(x− 4)(x− 8)

and
g(y) = Aym +B = 29y2 + 3136.

(Observe that the roots −8,−4,−1, 1, 4, 8 form a centrally convex sym-
metric sequence.) Then both (2) and (3) can be written as

(x2 − 65)(x2 − 8)2 = 29y2.

Since the generalized Pell equation

u2 − 29v2 = 65

has infinitely many integer solutions u, v (the ’smallest’ one is given by
(u, v) = (23, 4)), (2) and (3) admit infinitely many solutions x, y ∈ Z.
However, we mention that the condition deg(f) > 6 is necessary only
for m = 2. When m ≥ 3, in fact the assumption deg(f) > 2 is
sufficient. This can be easily seen from the proof of Theorem 2.2.
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We also note that requiring only distinct real roots for f is certainly
not necessary: see e.g. the identities involving Dickson polynomials in
[3]. That is, some further requirement for the roots is necessary.

To formulate the next theorem we need some more notation. Let K
be a field and T (x) ∈ K[x]. By the decomposition of T (x) over K we
mean a composition of the form T (x) = P1(P2(x)) with P1(x), P2(x) ∈
K[x]. A decomposition is called nontrivial if deg P1 > 1 and degP2 > 1.
Two decompositions T (x) = P1(P2(x)) and T (x) = Q1(Q2(x)) are
called equivalent if there exists a linear polynomial r(x) ∈ K[x] such
that P1(x) = Q1(r(x)) and Q2(x) = r(P2(x)). If T (x) has a nontrivial
decomposition then it is decomposable; otherwise it is indecomposable
over K.

In the proof of Theorem 2.1 the following result plays an important
role. It gives a complete description of the decompositions of polynomi-
als over Q with simple real roots forming a centrally convex symmetric
sequence.

Theorem 2.3. Let f(x) ∈ Q[x] have distinct real roots forming a
centrally convex symmetric sequence. If deg(f) is odd or deg(f) =
2 then f is indecomposable over Q. If deg(f) ≥ 4 is even then f
is decomposable over Q, and all the decompositions of f over Q are
equivalent to

f(x) = b0((x− c)2 − (b1 − c)2) . . . ((x− c)2 − (bk − c)2),

where b0 is the leading coefficient of f , b1, . . . , b2k are the roots of f in
increasing order, and c is their center of symmetry.

Remark 2.4. Using the notation introduced in Theorem 2.1, the above
decomposition can also be written as

f(x) = f̂((x− c)2).

So (for deg(f) ≥ 4 even) this decomposition is over Q, indeed.

Finally, we give a theorem providing information about the extrema
of polynomials having simple real roots forming a centrally convex sym-
metric sequence. As we shall see, this result will play a key role in the
proofs of our theorems given above - however, we find it of possible
independent interest.

Theorem 2.4. Let f(x) ∈ R[x] have distinct real roots, which form
a centrally convex symmetric sequence. Then the extremal values of f
are strictly increasing in absolute value moving away from the center
of symmetry of the roots.
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Remark 2.5. In the statement neither the centrally convex nor the
symmetric properties can be dropped. We illustrate it with two exam-
ples.

Take first

f(x) = (x+ 3)(x+ 2)(x+ 1)(x− 1)(x− 2)(x− 3).

We see that the roots form a symmetric sequence (with center of sym-
metry being 0), and for the gaps only one ’centrally convex inequality’
is violated (namely, 1−(−1) ≤ 2−1 does not hold). However, a simple
calculation with Maple shows that the roots of f ′(x) are given by

−
√
7, −

√
7

3
, 0,

√
7

3
,

√
7,

and the extremal values of f(x) are

−36,
400

27
, −36,

400

27
, −36

at these values, respectively. So we see that the strictly monotone in-
creasing property of the absolute values of the extremal values (moving
away from the center of symmetry) does not hold in this case.

Let now

f(x) = (x+ 9)(x+ 6)(x+ 3)x(x− 1)(x− 2)(x− 3).

We see that the roots satisfy an ’increasing gap property’ starting from
the middle root (which is 0), into both the positive and the negative
direction. (Since we dropped symmetry here, certainly we cannot use
a ’center of symmetry’.) However, a simple calculation with Maple
shows that the extremal value of f between the roots 0 and 1 is larger in
absolute value than that between the roots 1 and 2. (Since the data are
non-rational and cannot be expressed easily, we suppress the details.)
So the strictly increasing extremal value property does not hold in this
case, too.

3. Proof of Theorem 2.4

As we shall see, Theorem 2.4 is a simple consequence of the following
two propositions. They are rather similar, but because of technical
reasons it is worth to formulate them separately.

Proposition 3.1. Let 0 = a0 < a1 < · · · < an be real numbers with

(4) ai − ai−1 ≤ ai+1 − ai (1 ≤ i ≤ n− 1),
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and let

f1(x) = x

n∏
i=1

(x− ai)(x+ ai).

Let αi be the extremum of f1 between ai and ai+1 for i = 0, . . . , n − 1.
Then we have

|f1(α0)| < |f1(α1)| < · · · < |f1(αn−1)|.

Proposition 3.2. Let 0 < a1 < · · · < an be real numbers with

(5) 3a1 ≤ a2 and ai − ai−1 ≤ ai+1 − ai (2 ≤ i ≤ n− 1),

and let

f2(x) =
n∏

i=1

(x− ai)(x+ ai).

Let αi be the extremum of f2 between ai and ai+1 for i = 1, . . . , n − 1.
Then we have

|f2(0)| < |f2(α1)| < · · · < |f2(αn−1)|.

Remark 3.1. Note that by Rolle’s theorem the extrema of f1 and f2 are
situated in the way indicated in Propositons 3.1 and 3.2, respectively -
that is, they are between the roots.

To prove Propositions 3.1 and 3.2 we shall need some lemmas. The
first one concerns certain properties of the Γ function, defined by

Γ(z) =
1

z

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

(z ∈ C \ Z≤0),

where Z≤0 is the set of non-positive integers. Note that there are
many other possibilities to define Γ(z), the above form is called Euler’s
formula.

Lemma 3.1. The following assertions hold.

i) For any z ∈ C \ Z≤0 we have

zΓ(z) = Γ(z + 1).

ii) For any z ∈ C \ Z we have

Γ(z)Γ(1− z) =
π

sin πz
.

iii) For any u1, u2, v1, v2 ∈ C \ Z≤0 with u1 + u2 = v1 + v2 we have

∞∏
k=0

(k + u1)(k + u2)

(k + v1)(k + v2)
=

Γ(v1)Γ(v2)

Γ(u1)Γ(u2)
.
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Proof. The assertions i), ii) and iii) can be found in Sections 12.12,
12.14 and 12.13 of [15], respectively. �

In the proof of Proposition 3.1 we shall need the following assertion.

Lemma 3.2. Let 0 < a1 < · · · < an be real numbers with

ai − ai−1 ≤ ai+1 − ai (2 ≤ i ≤ n− 1).

Then for every i1, i2 with 1 ≤ i1 ≤ i2 ≤ n we have

ai2
ai1

≥ i2
i1
.

Proof. We prove the statement by induction on i2. For i2 = 1 the
assertion is obvious. Assume that the statement holds for some i2 with
1 ≤ i2 < n. Observe that using the assertion concerning the gaps
between the ai, we have

ai2+1

ai2
=

ai2+1 − ai2
ai2

+ 1 ≥ ai2 − ai2−1

ai2
+ 1 =

= 2− ai2−1

ai2
≥ 2− i2 − 1

i2
=

i2 + 1

i2
.

Here, we also used the induction hypothesis. Now take any i1 with 1 ≤
i1 < i2. Then using the above assertion and the induction hypothesis
we have

ai2+1

ai1
=

ai2+1

ai2
· ai2
ai1

≥ i2 + 1

i2
· i2
i1

=
i2 + 1

i1
.

Hence, the lemma follows. �
In the proof of Proposition 3.2 we shall need the following variant of

Lemma 3.2.

Lemma 3.3. Let 0 < a1 < · · · < an be real numbers with

3a1 ≤ a2

and
ai − ai−1 ≤ ai+1 − ai (2 ≤ i ≤ n− 1).

Then for every i1, i2 with 1 ≤ i1 ≤ i2 ≤ n we have

ai2
ai1

≥ 2i2 − 1

2i1 − 1
.

Proof. The proof is similar to that of Lemma 3.2. However, for the
convenience of the reader we summarize the main steps, but we give
less details.

We apply induction on i2. For i2 = 1 the statement is clear. Assume
that the statement holds for some i2 with 1 ≤ i2 < n. Using the
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assumption on the gaps between the ai and the induction hypothesis,
we have

ai2+1

ai2
≥ 2− ai2−1

ai2
≥ 2i2 + 1

2i2 − 1
.

Now for any i1 with 1 ≤ i1 < i2 we obtain

ai2+1

ai1
=

ai2+1

ai2
· ai2
ai1

≥ 2i2 + 1

2i1 − 1
,

and the lemma follows. �
Now we give the proof of Proposition 3.1.

Proof of Proposition 3.1. Let i be fixed with 1 ≤ i ≤ n − 1. First we
show that for any t with 0 < t < 1 we have

(6) f ∗(t) :=

∣∣∣∣f1(ai − t(ai − ai−1))

f1(ai + t(ai − ai−1))

∣∣∣∣ < 1,

from this the assertion will easily follow. Note that by our assumption
on the gaps between the aj, we have

ai−1 < ai − t(ai − ai−1) < ai < ai + t(ai − ai−1) < ai+1 (0 < t < 1).

Putting

d =
ai − ai−1

ai
and sj =

aj
ai

(1 ≤ j ≤ n)

we can write (6) as

(7) f ∗(t) =

(
1− td

1 + td
· 2− td

2 + td

)
×

i−1∏
j=1

(
1− sj − td

1− sj + td
· 1 + sj − td

1 + sj + td

)
×

×
n∏

j=i+1

(
sj − 1 + td

sj − 1− td
· sj + 1− td

sj + 1 + td

)
.

Here, the first block corresponds to the roots a0 = 0 and ±ai of f1.
Further, note that we have 1 − sj > td > 0 for j = 1, . . . , i − 1 and
0 < td < sj − 1 for j = i + 1, . . . , n. (That is why it is worth to split
the product for j ≥ 0, j ̸= i according as j < i or j > i.) Now we deal
with the second and third terms on the right hand side of (7) in turn.
We start with the second term. First observe that

(8)
X − Y

X + Y
is strictly monotone increasing in X > 0, for any Y > 0.

Further, in view of the gap property of the aj we have

1− sj =
ai − aj

ai
=

(ai − ai−1) + · · ·+ (aj+1 − aj)

ai
≤ (i− j)d,
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and by Lemma 3.2 we see that

sj ≤
j

i
for all j with 1 ≤ j < i. Combining the above assertions, we obtain

(9)
i−1∏
j=1

(
1− sj − td

1− sj + td
· 1 + sj − td

1 + sj + td

)
≤

i−1∏
j=1

(
i− j − t

i− j + t
· j + i− itd

j + i+ itd

)
.

Now we estimate the third product in (7). For this, observe that

sj − 1 + td

sj − 1− td
· sj + 1− td

sj + 1 + td
=

s2j − (1− td)2

s2j − (1 + td)2

and that the function
X2 − (1− td)2

X2 − (1 + td)2

is strictly decreasing in X for X > 1 + td. Hence in view of the
inequality

sj = 1 +
aj − ai

ai
= 1 +

(aj − aj−1) + · · ·+ (ai+1 − ai)

ai
≥ 1 + (j − i)d

valid for any j > i obtained by the gap property of the aj, we get

(10)
n∏

j=i+1

(
sj − 1 + td

sj − 1− td
· sj + 1− td

sj + 1 + td

)
≤

≤
n∏

j=i+1

(
j − i+ t

j − i− t
·
j − i+ 2

d
− t

j − i+ 2
d
+ t

)
.

On combining (7), (9) and (10), we obtain

(11) f ∗(t) ≤
(
1− td

1 + td
· 2− td

2 + td

)
×

i−1∏
j=1

(
i− j − t

i− j + t
· j + i− itd

j + i+ itd

)
×

×
n∏

j=i+1

(
j − i+ t

j − i− t
·
j − i+ 2

d
− t

j − i+ 2
d
+ t

)
.

In view of (8),
j − i+ 2

d
− t

j − i+ 2
d
+ t

is monotone increasing in 2/d - so it is monotone decreasing in d. On
the other hand, using (the negative of) (8) again, we see that all the
terms in the first and second terms on the right hand side of (11) (which
depend on d) are strictly monotone decreasing in d. Altogether, we
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obtain that the right hand side of (11) is monotone decreasing in d (for
any fixed t). In view of

d =
ai − ai−1

ai
= 1− ai−1

ai
≥ 1− i− 1

i
=

1

i

obtained by Lemma 3.2, substituting d = 1/i in (11) gives

f ∗(t) ≤ − i− t

i+ t
·

n∏
j=1

(
j − i+ t

j − i− t
· j + i− t

j + i+ t

)
.

(The negative sign comes from the factor t/(−t) in case j = i.) Now
using parts iii), i) and ii) of Lemma 3.1 (in this order), in view of that

j − i+ t

j − i− t
· j + i− t

j + i+ t
> 1 for j > n

we obtain

f ∗(t) < − i− t

i+ t
·

∞∏
j=1

(
j − i+ t

j − i− t
· j + i− t

j + i+ t

)
=

= − i− t

i+ t
· Γ(1− i− t)Γ(1 + i+ t)

Γ(1− i+ t)Γ(1 + i− t)
= −Γ(1− i− t)Γ(i+ t)

Γ(1− i+ t)Γ(i− t)
=

= −sin π(i− t)

sin π(i+ t)
=

sin π(t− i)

sin π(t+ i)
= 1.

Thus

f ∗(t) < 1 for all t ∈ (0, 1),

and our claim (6) follows.
Put now

t0 :=
ai − αi−1

ai − ai−1

.

Observe that 0 < t0 < 1 and that

αi−1 = ai − t0(ai − ai−1) < ai < ai + t0(ai − ai−1) < ai+1.

Thus (6) implies

|f1(αi)| = |f1(ai − t0(ai − ai−1))| < |f1(ai + t0(ai − ai−1))| ≤ |f1(αi+1)|,

and the proposition follows. �

Now we give the proof of Proposition 3.2. It is rather similar to that
of Proposition 3.1, however, with considerable technical differences. So
we indicate all the important steps, but we suppress some details.
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Proof of Proposition 3.2. Fix i with 2 ≤ i ≤ n−1. First we prove that
for any t with 0 < t < 1 we have

(12) f ∗(t) :=

∣∣∣∣f2(ai − t(ai − ai−1))

f2(ai + t(ai − ai−1))

∣∣∣∣ < 1.

Put

d =
ai − ai−1

ai
and sj =

aj
ai

(1 ≤ j ≤ n)

and rewrite (12) as

(13) f ∗(t) =
2− td

2 + td
×

i−1∏
j=1

(
1− sj − td

1− sj + td
· 1 + sj − td

1 + sj + td

)
×

×
n∏

j=i+1

(
sj − 1 + td

sj − 1− td
· sj + 1− td

sj + 1 + td

)
.

The first term corresponds to the root ai of f2. Note that 1−sj > td > 0
for j = 1, . . . , i−1 and 0 < td < sj−1 for j = i+1, . . . , n. To estimate
the second term we follow the arguments in the proof of Proposition
3.1. Applying

1− sj =
ai − aj

ai
=

(ai − ai−1) + · · ·+ (aj+1 − aj)

ai
≤ (i− j)d

again, but now combining it with

sj ≤
2j − 1

2i− 1
(i < j ≤ n)

obtained by Lemma 3.2, we get

(14)
i−1∏
j=1

(
1− sj − td

1− sj + td
· 1 + sj − td

1 + sj + td

)
≤

≤
i−1∏
j=1

(
i− j − t

i− j + t
· 2j − 1 + (2i− 1)(1− td)

2j − 1 + (2i− 1)(1 + td)

)
.

On the other hand, in the same way as in the proof of Proposition 3.1,
for the third term of (13) we obtain

(15)
n∏

j=i+1

(
sj − 1 + td

sj − 1− td
· sj + 1− td

sj + 1 + td

)
≤

≤
n∏

j=i+1

(
j − i+ t

j − i− t
·
j − i+ 2

d
− t

j − i+ 2
d
+ t

)
.
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Combining (13), (14) and (15), we conclude

(16) f ∗(t) ≤ 2− td

2 + td
×

i−1∏
j=1

(
i− j − t

i− j + t
· 2j − 1 + (2i− 1)(1− td)

2j − 1 + (2i− 1)(1 + td)

)
×

×
n∏

j=i+1

(
j − i+ t

j − i− t
·
j − i+ 2

d
− t

j − i+ 2
d
+ t

)
.

Similarly as in the proof of Proposition 3.1, we can check that the right
hand side of (16) is monotone decreasing in d (for any fixed t). Since

d =
ai − ai−1

ai
= 1− ai−1

ai
≥ 1− 2i− 3

2i− 1
=

2

2i− 1

by Lemma 3.3, substituting d = 2/(2i− 1) in (16) we obtain

f ∗(t) ≤ −
n∏

j=1

(
j − i+ t

j − i− t
· j + i− 1− t

j + i− 1 + t

)
.

Now using parts iii), i) and ii) of Lemma 3.1 (in this order) we obtain

f ∗(t) < −
∞∏
j=1

(
j − i+ t

j − i− t
· j + i− 1− t

j + i− 1 + t

)
= −Γ(1− i− t)Γ(i+ t)

Γ(1− i+ t)Γ(i− t)
=

= −sin π(i− t)

sin π(i+ t)
=

sin π(t− i)

sin π(t+ i)
= 1.

Thus,

f ∗(t) < 1 for all t ∈ (0, 1),

and our claim (12) follows. From this, just as in the proof of Proposition
3.1 we get

|f2(αi)| < |f2(αi+1)|,
implying

|f2(α1)| < · · · < |f2(αn−1)|.
Thus, to prove the statement, it remains to show that

|f2(0)| < |f2(α1)|.

For this, first we show that

|f2(0)| < |f2(2a1)|.

Plainly, we have

f2(0) =
n∏

j=1

a2j .
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On the other hand,

|f2(2a1)| =

∣∣∣∣∣
n∏

j=1

(2a1 − aj)(2a1 + aj)

∣∣∣∣∣ = 3a21

n∏
j=2

(a2j − 4a21).

Thus, ∣∣∣∣ f2(0)

f2(2a1)

∣∣∣∣ = 1

3

n∏
j=2

δ2j
δ2j − 4

,

where
δj =

aj
a1

(2 ≤ j ≤ n).

Since the function
X2

X2 − 4
is strictly decreasing in X ≥ 3 and

δj ≥ 2j − 1 (2 ≤ j ≤ n),

we obtain∣∣∣∣ f2(0)

f2(2a1)

∣∣∣∣ < 1

3
·

∞∏
j=2

(2j − 1)2

(2j − 1)2 − 4
=

=
1

3
·

∞∏
j=2

(
j − 1

2

)2(
j − 3

2

) (
j + 1

2

) =
1

3
·
Γ
(
1
2

)
Γ
(
5
2

)
Γ
(
3
2

)
Γ
(
3
2

) = 1.

Here we used part iii) of Lemma 3.1. From this, by a1 < 2a1 < a2, we
get

|f2(0)| < |f2(2a1)| ≤ f2(α1)|
and hence the proposition follows. �
Now we are ready to give the proof of Theorem 2.4.

Proof of Theorem 2.4. Let b0 be the leading coefficient of f(x), write
b1, . . . , bk for the roots of f in increasing order, and let c be the center of
symmetry of them. Observe that then b1 − c, . . . , bk − c can be written
as

−an, . . . ,−a1, (a0 = 0), a1, . . . , an

with k = 2n + 1 or k = 2n, according as k is odd or k is even. Thus,
we have

f(x+ c) =

{
b0f1(x) if n is odd,

b0f2(x) if n is even,

with f1(x) and f2(x) defined in Propositions 3.1 and 3.2, respectively.
Further, by the centrally convex property of b1, . . . , bk, we see that (4)
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in Proposition 3.1 or (5) in Proposition 3.2 is also satisfied, respectively.
(Note that 3a1 ≤ a2 in (5) can be written as a1 − (−a1) ≤ a2 − a1.)
Since f1(x) and f2(x) are symmetric with respect to 0, and f(x+ c) is
just a shift of f(x) along the x axis, the statement immediately follows
from Propositions 3.1 and 3.2. �

4. Proof of Theorem 2.3

As we shall see, Theorem 2.3 follows from Theorem 2.4 after some
simple considerations.

Proof of Theorem 2.3. Suppose that f is decomposable over Q. Then
we can write f(x) = T1(T2(x)) with some polynomials T1, T2 ∈ Q[x]
where deg(T1) > 1 and deg(T2) > 1. As one can easily check (or see
e.g. the proof of Theorem 4.3 in [2]) we have

deg(T2) ≤ max
λ∈C

deg(gcd(f(x)− λ, f ′(x))).

Observe that since f(x) ∈ Q[x] and the roots of f ′(x) are simple and
real, if deg(gcd(f(x) − λ, f ′(x))) ≥ 1, then λ is an extremal value of
f (in particular, λ ∈ R). However, Theorem 2.4 shows that there
are no three (or more) extremal values of f which are equal. Hence,
deg(T2) = 2. So, if deg(f) is odd, then f is indecomposable. On the
other hand, if deg(f) is even then we have

(17) f(x) = b0((x− c)2 − (b1 − c)2) · · · ((x− c)2 − (bk − c)2).

Indeed, the degree and the leading coefficient of the right hand side in
(17) are the same as those of f . Further, b1, . . . , bk are obviously roots
of the right hand side - and by

(bi − c)2 = (b2k+1−i − c)2 (i = 1, . . . , k)

the same is true for bk+1, . . . , b2k.
Write

f̂(x) = b0(x− (b1 − c)2) · · · (x− (bk − c)2).

(Note that this is the same polynomial that appears in Theorem 2.2.)
We show that this polynomial has rational coefficients. First observe
that we have

2kc = b1 + · · ·+ b2k.

Since the right hand side above is just the negative of the coefficient of
x2k−1 in f(x), this implies that c ∈ Q. Thus f(x + c) = f̂(x2) ∈ Q[x].

But then we also have f̂(x) ∈ Q[x].
Finally, it is easy to check that any other decomposition of f(x) over

Q is equivalent to (17), and the theorem follows.
�
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5. Proof of Theorem 2.2

In the proof of Theorem 2.2 we shall need the following lemmas. Let
T (x) ∈ Z[x] and A be an integer with A ̸= 0, and consider the equation

(18) T (x) = Aym,

in unknown integers x, y,m with m ≥ 2, under the convention that
m ≤ 3 if |y| ≤ 1. The next result is due to Schinzel and Tijdeman [13]
(see also Tijdeman [14]).

Lemma 5.1. If T (x) has at least two different roots, then for all solu-
tions of (18)

m < C2(A, d,H)

holds. Here C2(A, d,H) is an effectively computable constant depending
only on A, the degree d and the height H of T (x).

The following lemma is a special case of the main result of Brindza
[4]. In order to formulate it we need some new notation. Let S be
a finite set of primes, and let ZS be the set of those rationals whose
denominators are composed exclusively of primes from S. By the height
h(q) of a rational number q we mean the maximum of the absolute value
of its denominator and numerator.

Lemma 5.2. Let T (x) ∈ Z[x], and write

T (x) = a
k∏

i=1

(x− γi)
ri ,

where a is the leading coefficient of T , and γ1, . . . , γk are the distinct
complex roots of T (x), with multiplicities r1, . . . , rk, respectively. Fur-
ther, fix m with m ≥ 2, and put

ti =
m

(m, ri)
(i = 1, . . . , k).

Suppose that (t1, . . . , tk) is not a permutation of any of the k-tuples

(t, 1, . . . , 1) (t ≥ 1), (2, 2, 1, . . . , 1).

Then for any finite set S of primes, the solutions x, y ∈ ZS of (18)
satisfy

max (h(x), h(y)) < C3(A,m, d,H, S),

where C3(A,m, d,H, S) is an effectively computable constant depending
only on A,m, d,H, S, where d is the degree and H is the height of T (x).

Now we can give the proof of Theorem 2.2.
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Proof of Theorem 2.2. Since deg(f) > 6 and f ′(x) = (f(x) − B)′ has
simple roots, it is clear that f(x) − B has at least two distinct roots.
Hence, we can apply Lemma 5.1 to get an effective upper bound for m
as claimed.

In particular, from this point on we may assume that m ≥ 2 is
fixed. Using again that f ′(x) = (f(x) − B)′ has simple roots, we see
that f(x) − B has at most double roots. Thus the second part of the
statement immediately follows from Lemma 5.2 for m ≥ 3.

So we may assume that m = 2. Then, the second part of the theorem
also follows from Lemma 5.2, unless we have

(19) f(x)− B = p(x)(q(x))2

with some p, q ∈ Q[x], deg(p) ≤ 2. Differentiating both sides of (19)
we get

f ′(x) = q(x)(p′(x)q(x) + 2p(x)q′(x)).

So writing α1, . . . , αd−1 for the (real, simple) roots of f ′(x), we see that
the roots of q(x) are among them. However, if αi is a root of q(x), then
(19) yields f(αi) = B. However, this may hold at most for two αi-s.
That is, deg(q) ≤ 2. Hence, d ≤ 6, which is excluded, and the theorem
follows. �

6. Proof of Theorem 2.1

To prove Theorem 2.1, we need some more notation and a deep result
of Bilu and Tichy [3].

Let α, β, δ ∈ Q\{0}, µ, ν, q be positive integers, r be a non-negative
integer, and v(x) ∈ Q[x] a polynomial, which is not identically zero.
Write Dµ(x, δ) for the µ-th Dickson polynomial, that is

Dµ(x, δ) =

⌊µ/2⌋∑
i=0

dµ,ix
µ−2i,

where

dµ,i =
µ

µ− i

(
µ− i

i

)
(−δ)i.

We say that the polynomials F (x) and G(x) form a standard pair
over Q, if (F (x), G(x)) or (G(x), F (x)) appears in Table 1.

The following lemma is the main result of Bilu and Tichy [3].

Lemma 6.1. Let f(x), g(x) ∈ Q[x] be non-constant polynomials. Then
the following two assertions are equivalent.
i) The equation

f(x) = g(y)
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Kind Standard pair Parameter restrictions

First (xq, αxrv(x)q) 0 ≤ r < q, (r, q) = 1,

r + deg v(x) > 0

Second (x2, (αx2 + β)v(x)2) -

Third (Dµ(x, α
ν), Dν(x, α

µ)) (µ, ν) = 1

Fourth (α
−µ
2 Dµ(x, α),−β

−ν
2 Dν(x, β)) (µ, ν) = 2

Fifth ((αx2 − 1)3, 3x4 − 4x3) -

Table 1. Standard pairs

has infinitely many solutions with a bounded denominator.
ii) We have f(x) = φ(F (λ(x))) and g(x) = φ(G(κ(x))), where λ(x)
and κ(x) are linear polynomials in Q[x], φ(x) ∈ Q[x] and (F (x), G(x))
is a standard pair over Q such that the equation F (x) = G(y) has
infinitely many solutions with a bounded denominator.

Now we give the proof of Theorem 2.1.

Poof of Theorem 2.1. First observe that if deg(g) = 2, then by a linear
substitution we may get rid of the coefficient of the linear term in g,
and hence the statement follows from Theorem 2.2. So, from this point
on we shall assume that deg(g) ≥ 3.

Suppose that (2) has infinitely many solutions in integers x, y. Then
according to Lemma 6.1 we have f(x) = φ(F (λ(x))) and g(x) =
φ(G(κ(x))), where λ(x) and κ(x) are linear polynomials in Q[x], φ(x) ∈
Q[x] and (F (x), G(x)) is a standard pair over Q. Based on Theorem
2.3 we have three possible cases:

(1) deg(φ) = deg(f) and deg(F ) = 1,
(2) deg(f) = 2k even, deg(φ) = k and deg(F ) = 2,
(3) deg(φ) = 1 and deg(F ) = deg(f).

In the first case φ(x) = f(τ(x)), where τ is a rational linear polyno-
mial. Hence, we have g(y) = f(P (y)), where P (y) ∈ Q[y] is arbitrary
with degree ≥ 1, and the theorem follows in this case.

In the second case we have φ = f̂ and f(x) = f̂((x − c)2). (Note

that from the proof of Theorem 2.2 we already know that f̂(x) ∈ Q[x].)

Thus, we have g(y) = f̂(Q(y)) with some Q(y) ∈ Q[y]. Lemma 6.1
implies that the equation

(x− c)2 = Q(y)

must have infinitely many solutions in x, y ∈ Q with a bounded de-
nominator. Thus, according to Lemma 5.2, Q(y) can have at most two
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roots with odd multiplicity. So the statement is proved also in this
case.

In the third case, we have

(20) f(x) = AF (ax+ b) + B

with A,B, a, b ∈ Q with Aa ̸= 0, and F is a member of one of the five
standard pairs from Table 1. We check the cases of the five standard
pairs in turn.

Assume first that F comes from a standard pair of the fifth kind.
Then differentiating both sides of (20) we see that f ′(x) has a double
root. However, this contradicts the fact that the roots of f ′(x) are
simple (and real). So, this case cannot occur.

Suppose next that F belongs to a standard pair of the first kind. By
our conditions deg(f) > 6 and deg(g) ≥ 3 we see that q ≥ 3. Further,
as f ′(x) has simple (real) roots, we obtain that F (x) = αxrv(x)q must
be valid, but with v(x) being constant and r ≤ 2. However, this
contradicts deg(f) > 6, so this case also cannot occur.

The case that F belongs to a standard pair of the second kind also
cannot hold, since then we would get deg(f) = 2 or deg(g) = 2, which
are excluded.

So we are left with the possibilities where F (x) comes from a stan-
dard pair of the third or fourth kind. In both cases, (20) yields an
equality of the form

f(x) = ADn(ax+ b, δ) + B

where n ≥ 3 and δ is a non-zero rational. By Proposition 3.3 of Bilu
[1] we see that Dn(x, δ) has precisely two different extremal values, and
this property is certainly inherited to ADn(ax + b, δ) + B. However,
Theorem 2.4 shows that f has at least three extremal values already
for deg(f) > 4. Hence, this case also cannot occur, and the theorem is
proved. �
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