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Abstract. In this paper we completely describe those recurrence
sequences which have infinitely many terms in the solution sets of
generalized Pell equations. Further, we give an upper bound for
the number of such terms when there are only finitely many of
them.

1. Introduction

Let d, t be non-zero integers with d > 1 square-free, and consider the
equation

(1) x2 − dy2 = t

in integers x, y. If t = ±1,±4, then (1) is called a Pell equation, while
in case of general t it is a generalized Pell equation.

There are several papers in the literature concerning recurrence se-
quences with terms occurring in the solution sets of (generalized) Pell
equations. We mention a few such recent results; the interested reader
may consult their references. In the papers [1, 2, 3, 4, 5, 6, 8, 11, 15,
16, 19] the authors provide various finiteness results concerning the
values (or sums or products of values) of certain concrete recurrence
sequences (such as Fibonacci, Tribonacci, generalized Fibonacci, Lu-
cas, Padovan, Pell, repdigits) in the x coordinate of equation (1), for
the cases t = ±1,±4. Concerning the y-coordinate, we are aware only
of two related results. Faye and Luca [12] proved that for t = 1 and
d > d0 with some d0, any fixed binary recurrence sequence has at most
two terms among the y-coordinates of the solutions of (1), and the
same authors [13] showed that again with t = 1, there are at most
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two solutions of (1) with y-coordinates of the form 2n − 1. For related
result, for example concerning sums or linear combinations of integers
with fixed prime factors in the solution sets of Pell equations, see e.g.
the papers [7, 9, 18] and the references there.

In view of the above results, it seems to be interesting to consider the
question under more general circumstances. In the present paper we
completely describe those recurrence sequences which have infinitely
many terms in either of the x, y coordinates of the solution sets of
generalized Pell equations, i.e. of (1) with arbitrary t. Furthermore,
we establish an upper bound for the number of solutions in the case
where there are only finitely many solutions. We note that equation (1)
can be considered as a norm form equation of degree two. Recently,
Fuchs and Heintze [14] obtained similar results concerning values of
recurrence sequences in the coordinates of solutions of general norm
form equations. However, their results concern only non-degenerate
recurrences. Thus our results can also be considered as an extension of
those in [14] in the case of norm form equations of degree two.

2. New results

To formulate our main result, we need to introduce some notation.
Write X and Y for the sets of solutions of equation (1) in x ∈ Z and

y ∈ Z, respectively.
Let r be a positive integer, a1, . . . , ar ∈ Z such that ar ̸= 0 and

U0, . . . , Ur−1 ∈ Z not all zero. If

(2) Un = a1Un−1 + · · ·+ arUn−r (n ≥ r)

and r is minimal such that (Un) satisfies a relation above, then we say
that U = (Un) = (Un)n≥0 is a linear recurrence sequence (of integers)
of order r. Throughout the paper we always assume that a recurrence
sequence is given by its minimal length relation (2). We shall also use
the notation

U = U(a1, . . . , ar, U0, . . . , Ur−1).

The characteristic polynomial of (Un) is defined by

(3) f(x) := xr − a1x
r−1 − · · · − ar =

q∏
i=1

(x− αi)
mi

where α1, . . . , αq are distinct algebraic numbers and m1, . . . ,mt are
positive integers. Then as it is well-known (see e.g. Theorem C1 in
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part C of [22]) we have a representation of the form

(4) Un =

q∑
i=1

gi(n)α
n
i for all n ≥ 0.

Here gi(x) is a polynomial of degree mi − 1 (i = 1, . . . , q) with coeffi-
cients in the number field Q(α1, . . . , αq). The sequence (Un) is degen-
erate if there are integers i, j with 1 ≤ i < j ≤ q such that αi/αj is a
root of unity; otherwise it is non-degenerate.

Now we can give our main result about terms of recurrence sequences
in the solution sets of generalized Pell equations.

Theorem 2.1. Let (Un) be a non-degenerate linear recurrence sequence
of integers of order r, such that its characteristic polynomial is not of
the form x2 + ax ± 1 with (a2 ∓ 4)/d being a square in Q. Then the
inclusion

(5) Un ∈ X ∪ Y

holds only for finitely many indices n. Further, the number of such val-
ues n is bounded by c1 = c1(r, d, t), where c1 is an effectively computable
constant depending only on r, d, t.

Remark. We note that the exclusion of the specific binary recurrence
sequences from Theorem 2.1 is necessary. This is demonstrated by
the following example. Take d = 2 and t = −1, that is consider the
classical Pell equation

x2 − 2y2 = −1.

As it is well-known, its positive solutions are given by

x+
√
2y = (1 +

√
2)m (m ≥ 0).

Let U0 = 1, U1 = 3 and

(6) Un+2 = 6Un+1 − Un (n ≥ 0).

One can easily check that (Un) is contained in X - this sequence just
comes from the even values of m in (6). On the other hand, here
a = 6, and (a2 − 4)/2 = 16 is a full square, yielding that the roots
of the characteristic polynomials x2 − 6x + 1 are units of the ring of
integers of Q(

√
2).

3. The proof of Theorem 2.1

In the proof of the theorem we shall use several lemmas. The first
one describes the solutions of equation (1) in the particular, but very
important case t = 1.
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Lemma 3.1. Let u0 and v0 be the smallest positive solutions (in x and
y, respectively) of the equation

(7) x2 − dy2 = 1.

Then all positive integer solutions u, v of (7) are given by

u+
√
dv =

(
u0 +

√
dv0

)m
(m ≥ 1).

Proof. The statement is Theorem 7.26 of [20] on p. 354. �
Our second lemma shows that the sets of the coordinates of the

solutions of equation (1) are unions of finitely many non-degenerate
binary linear recurrence sequences.

Lemma 3.2. Let u0 be as in Lemma 3.1. If equation (1) has a solution,
then all its solutions are given by

(x, y) =
(
G(i)

n , H(i)
n

)
(i = 1, . . . , I)

with some binary recurrence sequences

G(i) = G(i)(2u0,−1, G
(i)
0 , G

(i)
1 ), H(i) = H(i)(2u0,−1, H

(i)
0 , H

(i)
1 ).

Here I and G
(i)
0 , G

(i)
1 , H

(i)
0 , H

(i)
1 (i = 1, . . . , I) are some positive integers

with I < c2 and

(8) |G(i)
j |, |H(i)

j | < c3 (0 ≤ j ≤ 1, 1 ≤ i ≤ I),

where c2 is an effectively computable constant depending only on t,
while c3 is an effectively computable constant depending only on d and
t.

Proof. The assertions of the lemma are long and well-known qualita-
tively. The present formulation is an immediate consequence of Lemma
3.2 in [18]. �

Our last lemma is a deep result of Schlickewei and Schmidt [21] con-
cerning the finiteness of the solutions of so-called polynomial-exponential
equations. For its formulation, we need to introduce some further no-
tation.

Consider the equation

(9)
k∑

ℓ=1

Pℓ(x)α
x
ℓ = 0

in variables x = (x1, . . . , xs) ∈ Zs, where the Pℓ are polynomials with
coefficients in an algebraic number field K, and

αx
ℓ = αx1

ℓ1 · · ·α
xs
ℓs
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with given non-zero αℓ1, . . . , αℓs ∈ K (ℓ = 1, . . . , k).
Let P be a partition of the set Λ = {1, . . . , k}. Then the system of

equations

(10)
∑
ℓ∈λ

Pℓ(x)α
x
ℓ = 0 (λ ∈ P)

yields a refinement of (9). Let S(P) be the set of solutions of (10)
which are not solutions of (10) with any proper refinement of P . Set

ℓ
P∼ m if ℓ and m lie in the same subset λ of P . Let G(P) be the

subgroup of Zs consisting of z with

αz
ℓ = αz

m for any ℓ,m with ℓ
P∼ m.

Lemma 3.3. Using the above notation, if G(P) = {0} then we have

|S(P)| < 235A
3

D6A2

with D = deg(K) and

A = max

(
s,
∑
ℓ∈Λ

(
s+ δℓ
s

))
,

where δℓ is the total degree of the polynomial Pℓ.

Proof. The statement is Theorem 1 in [21]. �

Now we can give the proof of Theorem 2.1.

Proof of Theorem 2.1. Let (Un) be a linear recurrence sequence of order
r, satisfying the assumptions of the statement. In view of Lemma 3.2,
X ∪ Y is the union of at most 2c2 binary recurrence sequences (Vm)
satisfying

Vm+2 = 2u0Vm+1 − Vm (m ≥ 0)

with some V0, V1 obeying

|V0|, |V1| ≤ c3.

Here c2 and c3 are the constants appearing in Lemma 3.2. Since u0 > 1,
by (4) we get that

Vm = Bβm + Cγm (m ≥ 0),

where β, γ are the (real) roots of the polynomial x2 − 2u0x + 1 and

B,C are non-zero conjugated elements of Q(
√
d). In particular, β, γ

are units and conjugates in Q(
√
d).
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Thus, writing Un in the form (4), the inclusion Un ∈ X ∪Y is equiv-
alent with

(11) Bβm + Cγm =

q∑
i=1

gi(n)α
n
i

for some m ≥ 0. Note that by our convention on the minimality
on r in (2), here none of gi and αi is zero; further, the degrees of
the gi are bounded by r. We shall show that (11) has only finitely
many solutions in (n,m), whose number is effectively bounded in terms
of r, d, t. This, in view of that B,C, β, γ are coming from a finite
set of at most 2c2 elements, implies our theorem. Observe that as
deg(gi) ≤ r, the number of those values of n which are roots of one
of these polynomials, is bounded by r2. So in what follows we shall
assume that n is not a root of gi (1 ≤ i ≤ q).

We shall handle equation (11) by Lemma 3.3. For this, introduce
the following notation. Suppose that the positive integers n,m are
solutions of (11). Write N = (n,m),

hi(N) =


gi(n), if i = 1, . . . , q,

−B, if i = q + 1,

−C, if i = q + 2,

and

δi =


(αi, 1), if i = 1, . . . , q,

(1, β), if i = q + 1,

(1, γ), if i = q + 2.

Let P be a partition of the set {1, . . . , q, q+1, q+2} such that we have

(12)
∑
i∈λ

hi(N)δN
i = 0 (λ ∈ P),

but (12) does not hold for any proper refinement of P . Observe that
all solutions (n,m) of (11) are solutions of (12) with some P . Now we
distinguish subcases according to the structure of P .

Assume first that there is a subset λ of P such that λ ⊆ {1, . . . , q}.
Here |λ| = 1, as αi ̸= 0 (1 ≤ i ≤ q), is not possible. Thus |λ| ≥ 2. We
shall use Lemma 3.3 to prove our claim. For this, observe that by the
non-degeneracy of (Un) we have G(P) = {(0, 0)}. Hence by Lemma
3.3 we get an upper bound for the number of these values of n in terms
of r.

Suppose next that there is a subset λ of P such that q+1, q+2 ∈ λ.
Since β/γ is not a root of unity, we see that G(P) = {(0, 0)} again. So
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Lemma 3.3 yields an upper bound for the number of such values of n
in terms of r also in this case.

Thus we are left with the case where P consists of precisely two sets,
say λ1 and λ2 with q + 1 ∈ λ1, q + 2 ∈ λ2. Obviously, |λ1|, |λ2| ≥ 2.
Assume that one of these sets, say λ1, has more than two elements.
Then there exists i, j with 1 ≤ i < j ≤ q with i, j ∈ λ1. Since αi/αj

is not a root of unity, we get that G(P) = {(0, 0)}. Thus Lemma 3.3
provides an upper bound in terms of r for the number of these values
of n once again. That is, we may assume that |λ1| = |λ2| = 2 and that
(12) (switching back to the notation used in (11)) reads as

(13)

{
Bβm = g1(n)α

n
1 ,

Cγm = g2(n)α
n
2 .

Importantly, we also see that the characteristic polynomial of (Vn) has
precisely two distinct roots. In particular, α1, α2 are either rational, or
conjugated quadratic algebraic numbers. If in (13) we have G(P) =
{(0, 0)}, then we can bound the number of solutions in the usual way.
So we may assume that G(P) ̸= {(0, 0)}. Thus there exist t1, t2 ∈ Z
for which

βt1 = αt2
1 , γt1 = αt2

2 .

If α1, α2 ∈ Q, then taking conjugates in K := Q(β) = Q(γ), we get that
α1 = α2, a contradiction. So α1, α2 are conjugated quadratic integers.
This easily implies that α1, α2 ∈ K. Since β and γ are units in Z[

√
d],

α1, α2 are units in OK . Multiplying the left and right hand sides of
(13), using that βγ = 1 and that α1, α2 are conjugated units of OK , we
obtain

BC = (±1)ng1(n)g2(n).

Hence, if any of g1, g2 is not a constant polynomial, we get at most 2r2

solutions for n in this case. Thus we may assume that g1 and g2 are
constant, that is, the characteristic polynomial of (Vn) is

T (x) := (x− α1)(x− α2) ∈ Z[x].
However, as the roots of T (x) are units of OK , its constant term is ±1
and the square-free part of its discriminant equals d. So we are just
in the exceptional case excluded from the theorem, and the statement
follows.

�

Acknowledgements

The authors are grateful to the referee for the helpful and insightful
remarks and suggestions.



8 L. HAJDU AND P. SEBESTYÉN
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