SUMS OF S-UNITS IN THE SOLUTION SETS OF
GENERALIZED PELL EQUATIONS

L. HAJDU AND P. SEBESTYEN

ABSTRACT. In this paper we give various finiteness results con-
cerning solutions of generalized Pell equations representable as
sums of S-units with a fixed number of terms. In case of one
term, our result is effective, while in case of more terms we are
able to bound the number of solutions.

1. INTRODUCTION
There are many papers about equations of the form
(1) Up =21+ -+,

where (U,)5%, is a linear recurrence sequence, and zy,. .., 2, are inte-
gers with prime factors coming from a fixed finite set of primes. Here we
only refer to the recent papers Guzman-Sanchez and Luca [8], Bertdk,
Hajdu, Pink and Rébai [1], Bérczes, Hajdu, Pink and Rout [2] and the
(many) references there, where several and various finiteness results
have been proved. We mention that there are also many results in the
literature where other related problems are discussed. For example,
Bravo, Faye and Luca [4] considered a problem connected to sums of
terms of a recurrence sequence yielding perfect powers (also see the
references there).

In this paper we consider the problem of representability of solutions
of generalized Pell equations as a fixed term sum of integers with prime
factors coming from some finite set of primes. As we shall see, this
problem is closely related to equation (1). In fact, the problem is more
general: it turns out that we need to find sums of the form z;+- - -4z in
unions of recurrence sequences, rather than in only one fixed sequence.
We note that there are some closely related results in the literature. We
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mention only two recent papers Luca and Togbé [11] and Ddamulira
and Luca [5] about the z-coordinates of certain Pell-equations which
are (generalized) Fibonacci numbers, and the references therein, and a
very fresh one by Erazo, Gémez and Luca [6] on linear combinations
of prime powers in the z-coordinates of solutions of Pell equations.

2. NEW RESULTS

Before formulating our theorem, we need to introduce some new
notation.
The equation

(2) 2 —dyf =t

is called a generalized Pell equation, where d,t € Z, d > 1 is square-
free, and t is a non-zero integer. (Note that the name Pell equation
usually refers to the cases t = 41, +4, while for the other values of ¢,
(2) is a norm form equation in Q(v/d).) Write X and Y for the sets of
solutions of equation (2) in x € Z and y € Z, respectively.

Let p1,...,pe be distinct primes and put S = {p1,...,p¢}. Then a
rational number z is an S-unit, if z can be written as

z:j:plil...pzf

with some bq,...,b, € Z. Write Ug for the set of S-units.

Further, for v € Q, write h(y) for the maximum of the absolute
values of the numerator and the denominator of 7. Finally, for a non-
zero integer m, let w(m) denote the number of distinct prime divisors
of |m|.

Now we can give our results about sums of S-units in the solution
sets of generalized Pell equations. In the particular case of ’one-term’
sums, our theorem is effective, that is, we are able to bound all the
parameters involved. In the general case we can bound only the number
of solutions.

Theorem 2.1. Use the above notation, and let k > 1. Then there are

at most ¢, tuples (z1,...,2,) € UX such that

(3) Zig ++ 2y, #0
foranyO0<j<kandl<i <---<i; <k, and
(4) 24+ 2z, € XUY,

where ¢y is an effectively computable constant depending only on w(t),
k and €. Further, if k =1 then we also have

h(Zl) < C2,
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where ¢y is an effectively computable constant depending only on d, t
and S.

Remark. Schinzel [13] proved that the greatest prime divisor of f(x)
where f is a quadratic polynomial with integer coefficients having dis-
tinct roots effectively tends to infinity as |z| — oo. From this the
case k = 1 of the above theorem easily follows. However, to keep the
presentation coherent, we shall give a general proof to Theorem 2.1,
ultimately based upon the theory of S-unit equations.

We also note that the condition (3) is not only natural, but it is
necessary, as well. Indeed, if for some zy, ..., z; we have (4), but (3)
does not hold for some 0 < j <k and 1 <1 <--- <1i; <k, then the
sums

2144z + (20 — 1)(2y +"'+Z@'].) (z0 € Ug)

would yield infinitely many solutions for the inclusion (4).

3. THE PROOF OF THEOREM 2.1

To prove our theorem, we need several lemmas. The first one de-
scribes the solutions of equation (2) in the particular, but very impor-
tant case t = 1.

Lemma 3.1. Let ug and vy be the smallest positive solutions (in x and
y, respectively) of the equation

(5) v? —dy* = 1.

Then all positive integer solutions u,v of (5) are given by
u+Vdv = <u0+\/c_ivo> (m >1).
Proof. The statement is Theorem 7.26 of [12] on p. 354. O

Before formulating our further lemmas, we need to introduce some
notation concerning recurrence sequences. Let A, B be integers with
B # 0, and let Uy, U; be integers such that at least one of them is
non-zero. Then the sequence U = (U,,),>¢ satisfying a relation

(6) U, = AUp_1 + BU,_ (n>2)

is called a binary linear recurrence sequence. We shall also use the
notation U = U(A, B,Uy,U;) for the sequence. The characteristic
polynomial of U is defined by

f(z):=2*— Az — B.
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Write o and  for the roots of f(z). The sequence U is called degenerate
if a/f is a root of unity; otherwise it is called non-degenerate. It is
well-known that if U is non-degenerate then we have
(Ul — U()B)Oén — (Ul — U()Oé)ﬁn
a—p

Our second lemma shows that the sets of the coordinates of the
solutions of equation (2) are unions of finitely many non-degenerate
binary linear recurrence sequences. We note that this assertion is long
and well-known qualitatively. However, we do not know any source
where this statement is explicitly formulated (let alone the paper of
Liptai [10] which is in Hungarian). In fact, we shall need only the case
concerning solutions with ged(z,y) = 1. However, we find the general
case of possible independent interest. For a non-negative integer m,
write 7(m) for the number of divisors of |m]|.

Lemma 3.2. Let ug be as in Lemma 3.1. If equation (2) has a solution,
then all its solutions are given by

(z,9) = (GO, HD) (i=1,...,1)
with some binary recurrence sequences
G = G(2u0, 1,6y, ), HY = HO (2ug, 1, H 1)),

Here I and Géi), Ggi), H[()i), Hfi) (t=1,...,1) are some positive integers
with I < c3 and

(8) IGOLIHY < e (0<j <1, 1<i <),

where c3 s an effectively computable constant depending only on 7(t),
while ¢4 is an effectively computable constant depending only on d and
t. Further, for the solutions (x,y) of (2) with ged(x,y) = 1 the same
conclusion holds, with I < c¢s and (8), where c5 is an effectively com-
putable constant depending only on w(t).

Proof. Obviously, we may restrict to positive integer solutions of (2).
So let (p,q) be a positive solution of (2). Then the norm N(p + v/dq)
of the algebraic integer p + v/dg is t in the field Q(v/d). By Lemma
5 of Gy6ry [9] we know that there are only finitely many pairwise
non-associate algebraic integers U + V+/d in Q(v/d) of norm ¢, and
their number I can be bounded in terms of 7(t); further, under the
assumption ged(p, q) = 1, even in terms of w(t). It is well-known (see
e.g. Chapter A of [14]) that we may assume here that

max(|U], [V]) < e,
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where cg is an effectively computable constant depending only on d, ¢.
Thus there exist algebraic integers U; + V/dV; with N (U; + \/c_ZVl) =1
and max(|U;|, |Vi]) < ¢ (i =1,...,I) such that

p+Vdg = v(U; + VaV;)
for some 1 < i < I, where v is a unit in Q(\/E) We immediately get
that N(v) = 1. Thus Lemma 3.1 yields that
v = =+(up + Vduvy)* (2 € Z).

For simplicity, we assume that v = (ug + v/dve)™ with some m >
0, since all the other cases are similar (or can be excluded by our
assumption that p and ¢ are positive). Then we have

whence also
p—Vdg= (Ui — \/avi)(uo — \/C_ivo)m.
Putting
o= ug + \/Evo, b= ug— \/EUO
from these assertions we obtain
Uz‘—l-\/c_ﬂ/z‘ m Ui—\/avz' m
p= X gm y Y
2 2
and
o Ui“‘\/av;'am_ Ui_\/a‘/i
2V/d 2v/d

Hence as a, 8 are roots of the polynomial 22 — 2upz + 1 (also in view
of (7)), we get that p and ¢ are elements of the recurrence sequences

G =G(A,B,GY Gy and H = H(A, B, H", H"), respectively, with
A= 2U0, B=-1

g

and
(Géi), Ggi)) = (Ui,uoUi + dUo%)a (H(()i)aHl(i)) = (VivaUi + 2u0Vi).

Finally, note that it is obvious that the terms of these recurrence se-
quences are solutions of (2). Hence our claim follows. U

We shall also need a recent finiteness result of Bérczes, Hajdu, Pink
and Rout [2] concerning the number of terms of recurrence sequences
representable as k-term sums of S-units.
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Lemma 3.3. Let U, be a non-degenerate binary linear recurrence se-
quence as in (6), and suppose that the characteristic polynomial of U,
has irrational roots. Then for any fized k > 1, equation (1) is solvable
in z1,...,2k € Ug at most for finitely many n. Further, the number of
indices n for which (1) is solvable for this fized k, can be bounded by
an effectively computable constant depending only on ¢ and k.

Proof. The statement is a simple consequence of Theorem 1 of [2] and
its proof. Note that the statement in [2] concerns only the case where
21, ..., 2 € Ug N Z, however, from the proof it is clear that this more
general formulation is also valid. U

Our last lemma is a deep result concerning the finiteness of the so-
lutions of S-unit equations. For its formulation, we need to introduce
some further notation.

Let K be an algebraic number field, and let S = {P;,..., P} be a
finite set of prime ideals of K. Write Ugs for the S-units in K, that is,
for the set of those @ € K for which the principal fractional ideal («)
can be represented as

(@)= P ... P (by,...,by € 7).

By the (naive) height h(7) of an element v € K we mean the maximum
of the absolute values of the coefficients of the defining primitive poly-
nomial of v in Z[z]. Note that for v € Q, h(7) is just the maximum of
the absolute values of the numerator and denominator of .

Lemma 3.4. Use the above notation, and let ay,...,a, be non-zero
elements of K. Then the equation

(9) alxl—I—...—i—aka:k:l

has at most c; solutions (z1, ..., xy) € UL for which the left hand side

of (9) has no vanishing subsums. Here c; is an effectively computable
constant depending only on k,{ and deg K.

Further, if k = 2 then we also have max(h(x1), h(xs)) < cs, where cg
is an effectively computable constant depending only on ay,as, K, S.

Proof. The statement follows from Theorem 6.1.3 on p. 132 and Corol-
lary 4.1.5 on p. 65 of of [7]. For the history of the equation and for
related results see [7]. O

Now we are ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Let z,...,z, € Ug satisfying (4) and (3). As-
sume first that

24+ 2 € X
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Let (p, q) be a solution of (2) such that
2+t 2 =D,
and write z = ged(p, ¢). Observe that z | t. By Lemma 3.2 we have
that
(10) 244z = 2GY
with some ¢ € {1,...,1} and n > 0, where [ is bounded in terms of
w(t) and G is a term of a non-degenerate binary recurrence sequence
GO = GO (2ug, —1, G(()i), Ggi)). Note that as vy > 0 (in Lemma 3.1), we
have uy > 1. Thus the roots a and 3 of the characteristic polynomial
f(z) = 2% —2uy+1

are (real) irrational numbers. (Observe that here f(z), hence o and
are independent of 7.) We can rewrite (10) as

2l 42y = GO,
and observe that here w; := z712z; (j = 1,...,k) is an S*-unit, where

S* =S U{p prime : p | t}.
Thus by Lemma 3.3, we see that the number of possible indices n in (10)
is bounded by a constant ¢y depending only on ¢, w(t) and k. Further,

by (3), GY +£0in (10). Thus setting a; = 1/G7(~f) for j =1,...,k,
equation (10) can be rewritten as

a1w1+---+akwk: 1.
Hence in view of (3), and as the number of the above type equations
appearing is at most cg, our statement concerning the number of so-

lutions to (4) follows by Lemma 3.4. Further, in the particular case
k =1, equation (10) reduces to

(11) wy = GY,
which in view of Lemma 3.2 and (7) can be rewritten as
w1 wy

with some a;, b; depending only on d, t, where
O./:UQ—F\/EUQ, B:’LLQ—\/QUQ.
Let
S = U {P: Pis a prime ideal in Q(v/d), P|(p)}.
pES*

As a and B are roots of the polynomial 22 — 2ugz + 1, they are units
in Q(v/d), so a, B € Us. Thus by Lemma 3.4 we obtain that for some
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(71,72) € Us x Us with max(h(y1), h(72)) < c10, where ¢y is a constant
depending only on d,t and S, we have

an /Bn
— =", —— =72
w1 w1
By multiplying these expressions, in view of af = 1 we obtain
1
M2’
whence we can bound h(z;) in terms of d,¢ and S. Hence in this case
our claim follows also for k = 1.
Let now

2
wy

2+t €Y.

In this case a similar argument applies, using the sequences H @) in
place of the sequences G. Thus we omit the details, and the proof of
the theorem is complete. U

Remark. In case of ¢ € {£1,4+4}, one can easily check that the
sequences G and H® are Lucas-sequences of the first and second
kind, respectively. Hence, in this case for £ = 1, in (11) (or in the

equation wy; = Hff) when z; € V) one can get a very good bound for n,
using the famous result of Bilu, Hanrot and Voutier [3] concerning the
existence of primitive prime divisors of the terms of such sequences.
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