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Abstract. There are many results in the literature concerning
power values, equal values or more generally, polynomial values
of lattice point counting polynomials. In the present paper we
prove various finiteness results for polynomial values of polynomi-
als counting the lattice points on the surface of an n-dimensional
cube, pyramid and simplex.

1. Introduction

There are many papers in the literature about equal values and poly-
nomial values of lattice point counting polynomials. Their survey would
be an enormous task; here we only mention the most important results
from our viewpoint. These results have an interesting common feature,
namely that they all hold a nice geometric meaning: they describe those
polynomials whose values taken in integers, infinitely often give back
the number of lattice points in certain regular bodies.

In the present paper, among regular bodies we focus on the n-
dimensional cube, pyramid and simplex. As it is well known, the num-
ber of integral points in the interior of these bodies in Rn (in case of
their usual placement) is given by the polynomials

(1) (x+ 1)n, 1n−1 + 2n−1 + · · ·+ (x+ 1)n−1,

(
x+ n

n

)
,

respectively.
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The polynomial values of the first polynomial in (1), namely the so
called superelliptic equation

(x+ 1)n = g(y)

has been studied by many mathematicians. Here g is a polynomial
with rational coefficients and x, y are integral unknowns. Results of
Tijdeman [22] and Schinzel and Tijdeman [20] imply that under certain
necessary assumptions here n can be effectively bounded. Baker (see
[1, 2]) and Brindza [7] showed that given n, under some assumptions
one can also bound the absolute values of x, y, as well. For further
related results see the book of Shorey and Tijdeman [21].

The second polynomial in (1) is denoted by Sn−1(x+ 1). The poly-
nomial values of this polynomial, i.e. the equation

Sn−1(x+ 1) = g(y)

where g is a polynomial with rational coefficients and x, y are integral
unknowns, has also been intensively studied. In the special case where
g is of the form g(y) = yℓ, a classical result of Schäffer [19] shows
that (apart from certain completely described exceptions) the above
equation has only finitely many solutions for n fixed. When g(y) is a
shifted power, or more generally it is of the shape g(y) = Ayℓ+B with
A,B ∈ Q, A ̸= 0, Győry, Tijdeman and Voorhoeve [14] obtained deep
finiteness results - again, with n fixed. Later, the same authors derived
even more general finiteness results concerning shifts of Sn−1(x + 1)
with polynomials (see [23]). The general case has been taken up by
Rakaczki [18]. He proved that the previous equation for any fixed n,
apart from certain well-described exceptions, has only finitely many
solutions in integers x, y. For more related results see e.g. the papers
Bennett, Győry and Pintér [5], Győry and Pintér [13], Bazsó [3] and
Hajdu [15] and the references given there.

Finally, the investigation of the third polynomial in (1) reduces to
the equation (

x+ n

n

)
= g(y)

in integers x, y, where g is a polynomial with rational coefficients again.
This is also a famous equation, studied by several authors. In the case
where g(y) = yℓ, the equation has been completely solved by Erdős
[10] (for n ≥ 4) and Győry [11] (for n = 2, 3). When g is of the shape
g(y) = Ayℓ + B with A,B ∈ Q, A ̸= 0, Yuan [24] gave effective upper
bounds for the absolute values of x, y. In the general case, Kulkarni
and Sury [17] gave an ineffective finiteness theorem for the solutions of
the previous equation.
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Besides the above mentioned results, there are many more related
papers in the literature. The interested reader may consult e.g. the
paper of Bilu, Brindza, Kirschenhofer, Pintér and Tichy [8] or the sur-
vey paper of Győry, Kovács, Péter and Pintér [12] and the references
therein.

In the present paper we study the polynomials describing the num-
ber of lattice points on the surfaces of the above mentioned regular
bodies. These polynomials can be obtained by certain differences of
the polynomials in (1). Namely, one can easily check that the number
of integral points on the surfaces of the n-dimesional cube, pyramid
and simplex (for arbitrary n ≥ 1) can be given by the polynomials

(2) Fn(x) = (x+ 1)n − (x− 1)n, Gn(x) = (x+ 1)n−1 + xn−1,

Hn(x) =

(
x+ n

n

)
−
(
x− 1

n

)
,

respectively. We provide various finiteness results for the polynomial
values of F (x), G(x), H(x), that is for the integer solutions of the equa-
tions

Fn(x) = g(y), Gn(x) = g(y), Hn(x) = g(y)

where g is a polynomial with rational coefficients. In the general case
our theorems are ineffective. However, in the case where g is of the form
g(y) = Ayℓ + B with A,B ∈ Q, A ̸= 0 then we can provide effective
finiteness results. In our proofs (among others) we combine Baker’s
method and the Bilu-Tichy theorem [9]. To apply these methods (as
we shall see) we need to get precise information on the root structures
of the polynomials, their derivatives and their shifts from (2). We
shall also have to understand the decomposability properties of these
polynomials. It is worth to mention that to prove the related properties
of the difference polynomials (2) in many cases is significantly more
difficult than in case of the original polynomials (1). Finally, we note
that related investigations (i.e. papers concerned with differences of
combinatorial polynomials) are known in the literature: see e.g. the
paper of Liptai, Luca, Pintér and Szalay [16] (and the references there),
where the equation Sk(x− 1) = Sℓ(y − 1)− Sℓ(x) has been studied.

The structure of the paper is the following. In the next section we
give our main results. In Section 3 we describe the root structures of the
polynomials (2) and of their derivatives and shifts, together with their
decomposability properties. Then we provide the proofs of our effective
statements. Finally, we give the proofs of our ineffective results.
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2. Main results

In our paper we examine the equation

(3) f(x) = g(y)

where f(x) is one of the polynomials Fn(x), Gn(x), Hn(x) (n ≥ 1) from
(2), and g(y) ∈ Q[y]. Our purpose is to prove finiteness results for the
integer solutions x, y of (3). First we provide a general theorem for
the problem considered. This result is ineffective, so it only shows the
finiteness of the number of solutions, it does not give bounds for the
solutions themselves.

Theorem 2.1. Let n ≥ 6 and deg(g) ≥ 2. If equation (3) has infinitely
many solutions in integers x, y then either

g(y) = f(P (y))

where P (y) ∈ Q[y], or

g(y) = f̂(Q(y))

where Q(y) ∈ Q[y] with at most two roots of odd multiplicity, n is odd,

and in case of f(x) = Fn(x), Gn(x), Hn(x) the polynomial f̂ is φ1, φ2,
φ3, respectively, with

φ1(x) = 2

(
n

1

)
x

n−1
2 + 2

(
n

3

)
x

n−3
2 + · · ·+ 2

(
n

n− 2

)
x+ 2,

φ2(x) = 2x
n−1
2 +

1

2

(
n− 1

2

)
x

n−3
2 + · · ·+ 1

2n−4

(
n− 1

n− 3

)
x+

1

2n−2
,

φ3(x) =
2

n!
(s1x

n−1
2 +· · ·+sn) where sj =

∑
A⊆{1,...,n}

|A|=j

∏
a∈A

a (j = 1, . . . , n).

Remark 2.1. Clearly, we have to exclude polynomials g with deg(g) =
1, so the assumption deg(g) ≥ 2 is necessary. The condition n ≥ 6 is
necessary, too. For n ≤ 5 one can easily find counterexamples (which
is not surprising in view of the many free parameters involved; see the
proof of the theorem).

In the case where g(y) = Ayℓ + B with A,B ∈ Q with A ̸= 0, we
can give an effective upper bound for the absolute values of the integer
solutions x, y of the equation (3).

Theorem 2.2. Let n ≥ 1 and consider the equation

(4) f(x) = Ayℓ +B
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where f(x) is one of the polynomials Fn(x), Gn(x), Hn(x) from (2),
A,B are given rationals with A ̸= 0, and x, y and ℓ ≥ 2 are integer
unknowns.
i) Let n ≥ 4. Then there exists an effectively computable constant
C1(A,B, n), depending only on A,B, n such that

ℓ < C1(A,B, n)

for every solutions of (4) with |y| > 1.
ii) Let ℓ ≥ 2 be arbitrary but fixed and n ≥ 8. Then there exists an
effectively computable constant C2(A,B, n), depending only on A,B, n
such that

max(|x|, |y|) ≤ C2(A,B, n)

for every integer solution x, y of (4).

Remark 2.2. Also in this case, the assumptions made for n are all
necessary; one could easily find counterexamples in the excluded cases.

For the formulation of our last theorem we need some more notions
and notation.

By the decomposition of a polynomial T (x) over a field K we mean
a composition of the form T (x) = U1(U2(x)), where U1(x), U2(x) ∈
K[x]. We say that the decomposition is nontrivial if deg(U1) > 1
and deg(U2) > 1. Two decompositions T (x) = U1(U2(x)) and T (x) =
V1(V2(x)) are equivalent if there exists a linear polynomial t(x) ∈ K[x]
such that U1(x) = V1(t(x)) and V2(x) = t(U2(x)). If T (x) has at
least one nontrivial decomposition over K then we say that T (x) is
decomposable; otherwise T (x) is indecomposable.

In the proof of our ineffective results the following theorem plays
an important role. It completely describes the decompositions of the
polynomial families Fn(x), Gn(x), Hn(x).

Theorem 2.3. Let n ≥ 2. If n is even then the polynomials Fn(x),
Gn(x), Hn(x) are indecomposable. If n is odd, then all the decomposi-
tions of these polynomials are equivalent with

Fn(x) = φ1(x
2), Gn(x) = φ2

((
x+

1

2

)2
)
, Hn(x) = φ3(x

2),

respectively. Here φ1, φ2, φ3 are the same polynomials as in Theorem
2.1.

3. Root structures and decompositions

In this section we describe the root structures of the studied poly-
nomial families, of their derivatives and of their shifts. We also prove
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Theorem 2.3 in this section, characterizing the decompositions of the
polynomials Fn(x), Gn(x), Hn(x).

We note that obviously

deg(Fn) = deg(Gn) = deg(Hn) = n− 1 (n ≥ 1).

3.1. The polynomial family Fn(x). In this subsection we describe
the root structure of Fn(x), of its derivative and of its shifts. We start
with Fn(x) itself.

Lemma 3.1. Let n ≥ 2. Then all the roots of Fn(x) = (x+1)n−(x−1)n

are simple.

Proof. Taking derivative we get

F ′
n(x) = n(x+ 1)n−1 − n(x− 1)n−1

whence

nFn(x)− (x+ 1)F ′
n(x) = 2n(x− 1)n−1.

Thus the common roots of Fn(x) and F ′
n(x) are also roots of (x−1)n−1.

As clearly there are no such roots, our claim follows. �
As a simple consequence we obtain the following statement concern-

ing F ′
n(x).

Corollary 3.1. Let n ≥ 3. Then all the roots of F ′
n(x) are simple.

Proof. Since F ′
n(x) = nFn−1(x), the statement immediately follows

from Lemma 3.1. �
In the next lemma we examine the root structure of the shifted poly-

nomials of Fn(x).

Lemma 3.2. Let n ≥ 2. Then for any r ∈ C the polynomial Fn(x)+ r
has at most two multiple roots, which are at most double.

Proof. By Lemma 3.1 we may assume that r ̸= 0. Differentiating
Fn(x) + r we obtain

(Fn(x) + r)′ = n(x+ 1)n−1 − n(x− 1)n−1.

Thus

n(Fn(x) + r)− (x− 1)(Fn(x) + r)′ = 2n(x+ 1)n−1 + nr.

So any common root α of Fn(x) + r and (Fn(x) + r)′ is a root of
2(x+ 1)n−1 + r, which implies that

(5) |α + 1| = n−1

√∣∣∣r
2

∣∣∣.
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On the other hand, we also have

n(Fn(x) + r)− (x+ 1)(Fn(x) + r)′ = 2n(x− 1)n−1 + nr.

So α is also a root of 2(x− 1)n−1 + r whence

(6) |α− 1| = n−1

√∣∣∣r
2

∣∣∣.
Combining (5) and (6) we see that the multiple roots of Fn(x) + r are
on the intersection of two circles on the complex plane. This shows
that there are at most two such roots. The multiplicity of these roots
(if they exist) cannot be greater than two, since by Corollary 3.1 all
the roots of (Fn(x) + r)′ = F ′

n(x) are simple. �
Finally, we need the following assertion to prove the corresponding

part of Theorem 2.3.

Lemma 3.3. Let n ≥ 2. Then maxλ∈C deg(gcd(Fn(x)−λ, F ′
n(x))) ≤ 2.

Proof. We know from Lemma 3.2 that for any λ ∈ C the polynomial
Fn(x) − λ has at most two multiple roots, which are at most double.
Hence deg(gcd(Fn(x)− λ, F ′

n(x))) ≤ 2, and our claim follows. �
3.2. The polynomial family Gn(x). Now we examine the polyno-
mials Gn(x). Since this family is similar to Fn(x), the proofs here are
very similar to those in the previous subsection, and we shall omit the
details.

Lemma 3.4. For any n ≥ 2 the roots of the polynomial Gn(x) =
(x+ 1)n−1 + xn−1 are all simple.

Proof. By taking derivative, the proof is similar to that of Lemma
3.1. �
By the previous statement we can easily describe the root structure

of G′
n(x), as well.

Corollary 3.2. For any n ≥ 3 the roots of the polynomial G′
n(x) are

all simple.

Proof. As G′
n(x) = (n− 1)Gn−1(x), the statement immediately follows

from Lemma 3.4. �
Now we examine the root structure of the shifts of Gn(x).

Lemma 3.5. Let n ≥ 2. Then in case of any r ∈ C the polynomial
Gn(x) + r has at most two multiple roots, which are at most double.

Proof. The proof follows the same line as that of Lemma 3.2. We omit
the details. �
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To prove the corresponding part of Theorem 2.3 we also need the
following lemma.

Lemma 3.6. Let n ≥ 2. Then maxλ∈C deg(gcd(Gn(x)− λ,G′
n(x))) ≤

2.

Proof. The statement is an easy consequence of Lemma 3.5 (like Lemma
3.3 of Lemma 3.2). �

3.3. The polynomial family Hn(x). Finally, we examine the family
Hn(x).

Lemma 3.7. For all n ≥ 2, all the roots of

Hn(x) =
1

n!
((x+ 1) . . . (x+ n)− (x− 1) . . . (x− n))

are simple. Further, the real part of any root of Hn(x) is zero.

Proof. We distinguish two cases, according to the parity of n.
Assume first that n is odd. Observe that then the coefficients of

the odd powers of h(x) are zero. In particular, we easily see that
deg(h) = n − 1 and 0 is not a root of h(x). It is also obvious that
if α is a root of h(x), so is −α. Thus it is sufficient to show that
h(x) has roots of the form aki with distinct positive real numbers ak
(k = 1, . . . , (n− 1)/2). For arbitrary positive real a, we have

h(ai) = |ai+ 1| . . . |ai+ n|(cos(α1 + . . .+ αn) + i sin(α1 + . . .+ αn))

−|ai− 1| . . . |ai−n|(cos(nπ−α1− . . .−αn)+ i sin(nπ−α1+ . . .−αn))

= 2|ai+ 1| . . . |ai+ n| cos

(
n∑

j=1

arctan

(
a

j

))
.

Here we wrote αj for the argument of ai + j, and used that αj =
arctan(a/j) (j = 1, . . . , n). Put

s(a) =
n∑

j=1

arctan

(
a

j

)
.

Observe that s(a) is strictly monotone increasing in a, and

0 < s(a) < n arctan(a) <
π

2

if arctan(a) < π/2n, and

(n− 1)
π

2
< n arctan

(a
n

)
< s(a)
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if (n−1)π/2n < arctan(a/n). So by the continuity of s(a), we get that
there exist distinct positive real numbers ak such that

(7) s(ak) = (2k − 1)π/2 (k = 1, . . . , (n− 1)/2).

However, then we have h(aki) = 0 (k = 1, . . . , (n − 1)/2), and the
statement follows in this case.

Assume now that n is even. Observe that then the coefficients of
the even powers of h(x) are zero. In particular, we easily see that
deg(h) = n− 1 and 0 is a simple root of h(x). Again, if α is a root of
h(x), so is −α. Thus it is sufficient to show that h(x) has roots of the
form aki with distinct positive real numbers ak (k = 1, . . . , (n− 2)/2).
Similarly as for n odd, for arbitrary positive real a, we have

h(ai) = 2i|ai+ 1| . . . |ai+ n| sin

(
n∑

j=1

arctan

(
a

j

))
.

Now we get that there exist distinct positive real numbers ak such that
s(ak) = kπ (k = 1, . . . , (n − 2)/2). However, then we have h(aki) = 0
(k = 1, . . . , (n− 2)/2), and the statement follows also in this case. �

The characterization of the root structure of H ′
n(x) is much more

complicated then for F ′
n(x) and G′

n(x).

Lemma 3.8. For all n ≥ 2, all the roots of H ′
n(x) are simple.

Proof. According to the parity of n we distinguish two cases again.
Assume first that n is odd. Then Hn(x) can be written in the form

Hn(x) = un−1x
n−1 + un−3x

n−3 + . . .+ u2x
2 + u0.

We know, that the roots ofHn(x) are on the imaginary axis: (n−1)/2
roots are on its positive part and (n − 1)/2 roots are on its negative
part. We introduce the polynomials H∗

n(x) := Hn(ix). Then we have

H∗
n(x) = (−1)

n−1
2 un−1x

n−1 + (−1)
n−3
2 un−3x

n−3 + . . .+ u2x
2 + u0.

It is easy to check that H∗(x) ∈ R[x] and H∗
n(a) = 0 if and only if

Hn(ia) = 0 (a ∈ R). Since the roots of Hn(x) have the shape ±aki
(k = 1, . . . , (n− 1)/2) with 0 < a1 < . . . < a(n−1)/2, the roots of H∗

n(x)
are ±ak (k = 1, . . . , (n − 1)/2). Applying Rolle’s theorem, we get
that (H∗

n)
′(x) has a root in every interval [−aj+1,−aj] and [aj, aj+1]

(j = 1, . . . , (n − 3)/2), so every root of (H∗
n)

′(x) is simple and real.
Observe that

(8) (H∗
n)

′(x) = x
(
(−1)

n−1
2 (n− 1)un−1x

n−3 + . . .+ 4u4x
2 − 2u2

)
,
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hence 0 is a root of (H∗
n)

′(x), and if b is a root of (H∗
n)

′(x), then so is
−b. Thus the roots of (H∗

n)
′(x) are given by

b0,±b1, . . . ,±bn−3
2

with
0 = b0 < b1 < . . . < bn−3

2

and

−an−1
2

< −bn−3
2

< −an−3
2

< . . . < −b1 < −a1 < b0 < a1 <(9)

< b1 < a2 < . . . < an−3
2

< bn−3
2

< an−1
2
.(10)

Also, (H ′
n)

∗(b) = 0 if and only if H ′
n(ib) = 0. (Here ∗ stands for the

earlier transformation: in case of g(x) ∈ C[x], g∗(x) = g(ix).) We show
that (H ′

n)
∗(x) = (−i)(H∗

n)
′(x). It easily follows, since

H ′
n(x) = x

(
(n− 1)un−1x

n−3 + (n− 3)un−3x
n−5 + . . .+ 4u4x

2 + 2u2

)
and thus

(H ′
n)

∗(x) = ix
(
(−1)

n−3
2 (n− 1)un−1x

n−3 + . . .− 4u4x
2 + 2u2

)
which by (8) gives our claim. Hence the roots of H ′

n(x) are given by

(11) 0 = b0, ±bji

(
j = 1, . . . ,

n− 3

2

)
.

So the statement is true for n odd.
Assume next that n is even. Using the transformation H×

n (x) :=
iHn(ix) in place of H∗

n(x), a very similar argument works as in case of
n odd. We omit the details. �

Now we examine the root structures of the shifts of Hn(x).

Corollary 3.3. For any n ≥ 2 and for all r ∈ C, the multiplicities of
the roots of Hn(x) + r are at most two.

Proof. The statement is an immediate consequence of Lemma 3.8. �
To prove the corresponding part of Theorem 2.3 we need one more

lemma, similar to Lemmas 3.3 and 3.6.

Lemma 3.9. Let n ≥ 2. Then maxλ∈C deg(gcd(Hn(x)− λ,H ′
n(x))) ≤

2.

Proof. We split the proof into two parts, according to the parity of n
again.

If n is odd then recalling (11) from the proof of Lemma 3.8, we know
that the roots of H ′

n(x) can be written in the form

b0, ±bki (k = 1, . . . , (n− 3)/2)
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where 0 = b0 < b1 < . . . < b(n−3)/2 are real numbers. Also, by (9) here

0 = b0 < a1 < b1 < a2 < b2 < . . . < an−3
2

< bn−3
2

< an−1
2

holds, where ±aki (k = 1, . . . , (n− 1)/2) are the roots of Hn(x). Fur-
thermore, for all

ak−1 ≤ t ≤ ak

(
k = 2, . . . ,

n− 1

2

)
we have

|Hn(ti)| ≤ |Hn(bk−1i)|.
Recall that by (7)

n∑
j=1

arctan

(
ak
j

)
= (2k − 1)

π

2

(
k = 1, . . . ,

n− 1

2

)
also holds. Now, let b̂s ∈ [ak, ak+1] (k = 1, . . . , (n−3)/2) be that unique
real number for which

n∑
j=1

arctan

(
b̂k
j

)
= kπ.

With this notation, since

n∏
j=1

|b̂ki+ j| >
n∏

j=1

|bk−1i+ j|
(
k = 1, . . . ,

n− 3

2

)
is obviously true, we obtain

|Hn(bk−1i)| < |Hn(b̂ki)| ≤ |Hn(bki)|.

It can be similarly proved (in fact, it also follows by symmetry) that

|Hn(−bk−1i)| < |Hn(−bki)|
(
k = 1, . . . ,

n− 3

2

)
.

This implies that H ′
n cannot have three different roots β1, β2, β3 with

H ′
n(β1) = H ′

n(β2) = H ′
n(β3).

As the roots of H ′
n are simple, we get that for any λ ∈ C

deg(gcd(H ′
n(x), Hn(x)− λ)) ≤ 2,

and the statement is proved for n odd.
In case of n even our claim follows by a rather similar argument, so

we omit the details. �
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3.4. The decomposition properties of Fn(x), Gn(x), Hn(x). In
this subsection we prove Theorem 2.3.

Proof of Theorem 2.3. Let the polynomial f(x) be one of Fn(x), Gn(x),
Hn(x) (n ≥ 2) and suppose that it is decomposable. Then f is of the
shape f(x) = T1(T2(x)) with some T1, T2 ∈ Q[x], deg(T1), deg(T2) > 1.
It is well-known (see e.g. the proof of Theorem 4.3 in [8]) that we have

deg(T2) ≤ max
λ∈C

deg(gcd(f(x)− λ, f ′(x))).

Thus based on Lemmas 3.3, 3.6 and 3.9 we obtain deg(T2) ≤ 2. This
immediately shows that n−1 (the common degree of Fn, Gn, Hn) must
be even, or in other words, that our polynomials are indecomposable
for n even.

So assume that n is odd. Then by direct checking we get

Fn(x) = (x+ 1)n − (x− 1)n =

= 2

(
n

1

)
xn−1 + 2

(
n

3

)
xn−3 + · · ·+ 2

(
n

n− 2

)
x2 + 2 = φ1(x

2)

with

φ1(t) = 2

(
n

1

)
t
n−1
2 + 2

(
n

3

)
t
n−3
2 + · · ·+ 2

(
n

n− 2

)
t+ 2,

Gn(x) = (x+ 1)n−1 + xn−1 =

=

((
x+

1

2

)
+

1

2

)n−1

+

((
x+

1

2

)
− 1

2

)n−1

=

= 2

(
x+

1

2

)n−1

+
1

2

(
n− 1

2

)(
x+

1

2

)n−3

+ · · ·

· · ·+ 1

2n−4

(
n− 1

n− 3

)(
x+

1

2

)2

+
1

2n−2
= φ2

((
x+

1

2

)2
)
,

with

φ2(t) = 2t
n−1
2 +

1

2

(
n− 1

2

)
t
n−3
2 + · · ·+ 1

2n−4

(
n− 1

n− 3

)
t+

1

2n−2

and

Hn(x) =
1

n!
((x+ 1) · · · (x+ n)− (x− 1) · · · (x− n))

=
2

n!
(s1x

n−1 + s3x
n−3 + · · ·+ sn),
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where

sj =
∑

A⊆{1,...,n}
|A|=j

∏
a∈A

a (j = 1, . . . , n),

so Hn(x) = φ3(x
2) with

φ3(t) =
2

n!
(s1t

n−1
2 + s3t

n−3
2 + · · ·+ sn−2t+ sn).

We only need to show that if n is odd then all decompositions of Fn(x),
Gn(x) and Hn(x) are equivalent to the above ones, respectively. We
only check it for Fn(x), the two other cases can be handled similarly.
Since in any decomposition we must have deg(T2) = 2, we can write
T2(x) = α(x− β)2 + γ with some α, β, γ ∈ C. Then the decomposition

Fn(x) = T1(α(x− β)2 + γ)

is equivalent to a decomposition of the form Fn(x) = P ((x− β)2) with
some P (x) ∈ C[x]. Thus the roots of Fn(x) are symmetric about β. So
necessarily β = 0, which proves our statement. �

4. The proofs of our effective results

In this section we prove our effective results. For this, we give two
lemmas (which will be also used in the proofs of the ineffective theo-
rems).

Let f(x) ∈ Z[x] and A be an integer with A ̸= 0, and consider the
equation

(12) f(x) = Ayℓ,

in unknown integers x, y, ℓ with ℓ ≥ 2. In the proofs of our theorems we
will need two lemmas concerning the solutions of equation (12). The
first lemma is a special case of a theorem of Bérczes, Brindza and Hajdu
[6]. We mention that the first result of this kind is due to Tijdeman
[22] and Schinzel and Tijdeman [20].

Lemma 4.1. If f(x) has at least two different roots, then for all solu-
tions of (12) with |y| > 1

ℓ < C3(A, d,H)

holds. Here C3(A, d,H) is an effectively computable constant which
depends only on A, the degree d of f(x) and the height H (the maximum
of the absolute values of the coefficients) of f(x).

The second lemma is a special case of the main result of Brindza [7].
To formulate the statement, we need some new notation.
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Let S be a finite set of primes, and let ZS be the set of those rationals
whose denominators are composed exclusively of primes from S.

By the height h(q) of a rational number q we mean the maximum of
the absolute value of its denominator and numerator.

Lemma 4.2. Let f(x) ∈ Z[x], and write

f(x) = a

k∏
i=1

(x− γi)
ri ,

where a is the leading coefficient of f , and γ1, . . . , γk are the distinct
complex roots of f(x), with multiplicities r1, . . . , rk, respectively. Fur-
ther, fix ℓ with ℓ ≥ 2, and put

ti =
ℓ

(ℓ, ri)
(i = 1, . . . , k).

Suppose that (t1, . . . , tk) is not a permutation of any of the k-tuples

(t, 1, . . . , 1) (t ≥ 1), (2, 2, 1, . . . , 1).

Then for any finite set S of primes, the solutions x, y ∈ ZS of (12)
satisfy

max (h(x), h(y)) < C4(A, ℓ, d,H, S),

where C4(A, ℓ, d,H, S) is an effectively computable constant depending
only on A, ℓ, d,H, S, where d is the degree and H is the height of f(x).

Remark 4.1. Note that if ℓ ≥ 3 and f(x) has at least two simple roots,
or if ℓ = 2 and f(x) has at least three simple roots, then the conditions
of Lemma 4.2 are satisfied.

Proof of Theorem 2.2. Recall that for any B ∈ Q, we have deg(f(x)−
B) = n − 1. If n ≥ 4 then by Lemmas 3.2, 3.5 and Corollary 3.3 the
polynomial f(x)−B has at least two distinct roots. Hence by Lemma
4.1 part i) of the theorem follows.

To prove part ii) of the statement, we examine the cases f(x) =
Fn(x), Gn(x), Hn(x) separately. We shall always assume that n ≥ 8.
Further, note that by part i), ℓ is bounded in terms of A, d,H, unless
|y| ≤ 1 - but in that case the statement is obvious.

Lemmas 3.2 and 3.5 yield that the polynomials Fn(x) − B and
Gn(x) − B have at least three simple roots. Thus Lemma 4.2 im-
mediately shows that the statement is true for f(x) = Fn(x), Gn(x).

So finally, let f(x) = Hn(x). If ℓ ≥ 3 then Corollary 3.3 gives
that Hn(x)−B has at least three distinct roots, and the multiplicity of
these roots cannot be larger then two. Thus our statement follows from
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Lemma 4.2 also in this case. Let now ℓ = 2. Clearly, our statement
follows from Lemma 4.2 also in this case, unless we have

Hn(x)−B = u(x)(v(x))2

with some u(x), v(x) ∈ Q[x] with deg(u) ≤ 2. However, if Hn(x) − B
is of the above shape, then we have

(Hn(x)−B)′ = v(x) (u′(x)v(x) + 2u(x)v′(x)) .

Hence the roots of v(x) are also roots of H ′
n(x). However, these are

roots of the polynomial Hn(x) − B as well. According to Lemma 3.9,
we know that the degree of the greatest common divisor of H ′

n(x) and
Hn(x)−B is at most two. Hence deg(v) ≤ 2, so n ≤ 7. This contradicts
our assumption n ≥ 8, and our statement follows. �

5. The proofs of our ineffective results

In this section we prove Theorem 2.1. For this we need some notation
and a deep result of Bilu and Tichy [9].
Let α, β, δ ∈ Q\{0}, µ, ν, q be positive integers, r be a non-negative

integer, and v(x) ∈ Q[x] a polynomial, which is not identically zero.
Write Dµ(x, δ) for the µ-th Dickson polynomial, that is

Dµ(x, δ) =

⌊µ/2⌋∑
i=0

dµ,ix
µ−2i,

where

dµ,i =
µ

µ− i

(
µ− i

i

)
(−δ)i.

We say that the polynomials F (x) and G(x) form a standard pair
over Q, if (F (x), G(x)) or (G(x), F (x)) appears in Table 1.

Kind Standard pair Parameter restrictions

First (xq, αxrv(x)q) 0 ≤ r < q, (r, q) = 1,

r + deg(v(x)) > 0

Second (x2, (αx2 + β)v(x)2) -

Third (Dµ(x, α
ν), Dν(x, α

µ)) (µ, ν) = 1

Fourth (α
−µ
2 Dµ(x, α),−β

−ν
2 Dν(x, β)) (µ, ν) = 2

Fifth ((αx2 − 1)3, 3x4 − 4x3) -

Table 1. Standard pairs

The following lemma is the main result of Bilu and Tichy [9].
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Lemma 5.1. Let f(x), g(x) ∈ Q[x] be non-constant polynomials. Then
the following two assertions are equivalent.
i) The equation

f(x) = g(y)

has infinitely many solutions with a bounded denominator.
ii) We have f = φ ◦ F ◦ λ and g = φ ◦G ◦ κ, where λ(x), κ(x) ∈ Q[x]
are linear polynomials, φ(x) ∈ Q[x] and (F (x), G(x)) is a standard
pair over Q such that the equation F (x) = G(x) has infinitely many
solutions with a bounded denominator.

Now we give the proof of Theorem 2.1. We mention that the poly-
nomials Fn and Gn (n ≥ 1) form so-called Appell families. Thus in the
proof we could use some results of Bazsó and Pink [4]. However, as we
should handle certain cases separately anyhow, to keep the presentation
coherent, we proceed differently.

Proof of Theorem 2.1. Suppose that (3) has infinitely many solutions
in integers x, y. Then according to Lemma 5.1 we have f = φ ◦ F ◦ λ
and g = φ ◦G ◦ κ, where φ, λ, κ ∈ Q[x], deg(λ) = deg(κ) = 1 and F,G
form a standard pair. Thus using Theorem 2.3 we obtain that only one
of the following cases is possible:

• deg(φ) = n− 1 and deg(F ) = 1,
• n− 1 is even, deg(φ) = (n− 1)/2, deg(F ) = 2, and φ is one of
the polynomials φ1, φ2, φ3,

• deg(φ) = 1 and deg(F ) = n− 1.

In the first case we get that φ(x) = f(τ(x)), where τ(x) ∈ Q[x] is a
linear polynomial. Thus we have g(y) = f(P (y)), where P (y) ∈ Q[y],
and our statement follows.

In the second case we have one of

f(x) = φ1(x
2), φ2

((
x+

1

2

)2
)
, φ3(x

2).

Hence now g(y) = f̂(Q(y)) holds, where f̂ is one of φ1, φ2, φ3. Fur-
thermore, Lemma 5.1 implies that the equation

x2 = Q(y),

(
x+

1

2

)2

= Q(y), x2 = Q(y),

respectively, must have infinitely many solutions in rational numbers
with bounded denominators. So by Lemma 4.2 we deduce that Q(y)
can have at most two roots with odd multiplicity. This proves our
claim also in this case.
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Finally, assume that we are in the third case, that is deg(φ) = 1 and
deg(F ) = n− 1. Then we can write

f(x) = AF (ax+ b) +B

with some A,B, a, b ∈ Q, Aa ̸= 0, were F is a member of one of the
five standard pairs. We shall check all the five standard pairs in turn.
Recall that by our assumption we have n ≥ 6. Further, one can easily
see that the theorem for deg(g) = 2 follows from the case ℓ = 2 of
Theorem 2.2. Hence we may also assume that deg(g) ≥ 3.

We start with the case where F (x) is from a standard pair of the fifth
kind. It can be easily seen that then f ′(x) has multiple roots. However,
this is not possible because of Corollaries 3.1, 3.2 and Lemma 3.8. So
this possibility cannot hold.

Assume next that F (x) is from a standard pair of the first kind. If

f(x) = A(ax+ b)q +B,

then
f ′(x) = Aaq(ax+ b)q−1.

However, by Corollaries 3.1, 3.2 and Lemma 3.8 we know that the roots
of f ′(x) are simple. Thus we get q ≤ 2, contradicting n ≥ 6. If f is of
the form

f(x) = Aα(ax+ b)rv(ax+ b)q +B

where 0 ≤ r < q, (r, q) = 1, r + deg(v) > 0, then

f ′(x) = Aαa(ax+ b)r−1v(ax+ b)q−1(rv(ax+ b) + q(ax+ b)v′(ax+ b)).

This similarly as above yields that r ≤ 2, and either q ≤ 2 or deg(v) =
0. If deg(v) = 0 then we get back to the previous case, which has
already been excluded. Thus we may assume that deg(v) > 0, and by
r < q and gcd(r, q) = 1 also that (r, q) = (0, 1), (1, 2). Now as

g = φ ◦G ◦ κ
where deg(φ) = deg(κ) = 1 and deg(G) = q, we get deg(g) ≤ 2, which
is excluded. Thus our theorem follows also in this case.

Consider now the case where F (x) is a member of a standard pair of
the second kind. Now we easily get that either deg(f) = 2, contradict-
ing our assumption n ≥ 6, or deg(g) = 2, contradicting the condition
deg(g) ≥ 3.

Finally, assume that F (x) is from a standard pair of the third or
fourth kind. We give detailed arguments only for the case f(x) =
Fn(x), since f(x) = Gn(x), Hn(x) can be handled similarly. So let
f(x) = Fn(x). Then

Fn(x) = ADn−1(ax+ b) +B,
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where Dn−1(x) is a Dickson-polynomial, with some parameter δ. So

2

(
n

1

)
xn−1 + 2

(
n

3

)
xn−3 + 2

(
n

5

)
xn−5 + 2

(
n

7

)
xn−7 + . . .

= Ad0(ax+ b)n−1 + Ad1(ax+ b)n−3 + Ad2(ax+ b)n−5 + . . .

with

di =
n− 1

n− 1− i

(
n− 1− i

i

)
(−δ)i (i ≥ 0).

Comparing the leading coefficients, we get that Aan−1 = 2n, and from
the coefficients of xn−2 we immediately see that b = 0. Now checking
the coefficients of xn−3, we obtain

− δ

a2
=

n− 2

6
.

Then the comparison of the coefficients of xn−5 yields a contradiction,
and our theorem follows in this case. As we mentioned, in the case of
the other two polynomial families a similar argument applies, and thus
the proof of our theorem is complete. �

Acknowledgements

The authors are grateful to the Referee for the helpful remarks.

References

[1] A. Baker, Bounds for the solutions of hyperelliptic equations, Proc. Camb. Phil.
Soc. 65 (1969), 439–444.

[2] A. Baker, Transcendental Number Theory, Cambridge University Press, 1975.
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[6] A. Bérczes, B. Brindza, L. Hajdu, On the power values of polynomials, Publ.
Math. Debrecen 53 (1998), 375–381.

[7] B. Brindza, On S-integral solutions of the equation ym = f(x), Acta Math.
Hungar. 44 (1984), 133–139.

[8] Yu. Bilu, B. Brindza, P. Kirschenhofer, Á. Pintér, R. F. Tichy, Diophantine
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[15] L. Hajdu, On a conjecture of Schäffer concerning the equation 1k+...+xk = yn,
J. Number Theory 155 (2015), 129–138. Corrigendum: ibid 164 (2016) 429–
432.
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