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Abstract. We prove that apart from explicitly given cases, de-
scribed in terms of Dickson polynomials, a polynomial f ∈ Q[x] can
have at most one shift f(x)−λ (λ ∈ C) of the form u(g(x))q(h(x))k

with u ∈ C, g, h ∈ C[x] and either deg(g) = 2, k is even, q = k/2
or deg(g) ≤ 1, k ≥ 2, q ≥ 1. This is shown by handling the case
of two possible shifts, which was an open issue. As an application,
we give a precise statement yielding a description of polynomi-
als f having infinitely many shifted power (S-integral) values, and
a complete description of superelliptic equations having infinitely
many S-integral solutions when the polynomial involved is compos-
ite. In the case where there are finitely many solutions, our results
yield effective bounds for them. Finally, as further applications,
we give effective results for polynomial values in the solutions of
Pell equations and in non-degenerate binary recurrence sequences.

1. Introduction

Let f ∈ C[x]. A λ ∈ C is called an extremum of f if f(x) − λ has
a multiple root in C. Extrema of polynomials are of wide interest. It
is (at least partly) due to the fact that several Diophantine problems
can be reduced to the investigation and description of them. Classical
results of Siegel [42] and Faltings [16] show that irreducibility of curves
is strongly related to the number of integral and rational points on
them. Of particular interest are curves defined by a separable polyno-
mial equations of the form F (x) = G(y); see e.g. results of Davenport,
Lewis and Schinzel [14], Bilu [8], Avanzi and Zannier [3, 4] and An and
Diep [1] and the references there. In particular, Bilu and Tichy [11]
gave a complete description of equations of the form F (x) = G(y) al-
lowing infinitely many solutions x, y ∈ Z. In these results the extrema
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of polynomials played an important role. Further, we can mention
papers of Beukers, Shorey and Tijdeman [7], Bilu, Brindza, Kirschen-
hofer, Pintér and Tichy [9], Rakaczki [33], Kulkarni and Sury [23],
Bilu, Kulkarni and Sury [10], Stoll and Tichy [45], Hajdu, Laishram
and Tengely [21], or Bazsó, Bérczes, Hajdu and Luca [5] (and in fact
many more), see also the survey paper of Győry, Kovács, Péter and
Pintér [20] and the references there, where certain special types of sep-
arable polynomial equations were considered involving some important
families of combinatorial polynomials. Also in them, the extrema of
the occurring polynomials were of particular importance.

In many cases, the main problem is to find or characterize those
extrema λ of a given polynomial f ∈ C[x], where the shifted polynomial
f(x) − λ has ’many’ multiple roots. In case of superelliptic equations
(i.e. equations of the type F (x) = yk with say F ∈ Q[x] and fixed
k ≥ 2, in integer unknowns x, y) it is because of results of LeVeque [25]
and Brindza [12], guaranteeing that the equation has only finitely many
integral solutions, unless the root structure of F (x) is ’degenerate’ in
some sense. Indeed, for example in the papers Pintér and Rakaczki
[32] and Rakaczki [34, 35] the main emphasize is on guaranteeing that
only a ’few’ shifts of the actual (Bernoulli, Euler, Hermite) polynomials
being investigated are ’degenerate’ (i.e. have ’many’ multiple roots),
and then the finiteness of the solutions of the underlying Diophantine
equations follow in an effective form. On the other hand, also in the
general case F (x) = G(y), extrema yielding ’many’ multiple roots are
of great importance as well; see e.g. Section 5 of Bilu and Tichy [11].

In this paper we completely characterize the polynomials f ∈ Q[x]
which for any fixed t have precisely t shifts f(x) − λi (λi ∈ C, i =
1, . . . , t) of the form u(g(x))q(h(x))k with u ∈ C, g, h ∈ C[x] and either
deg(g) = 2, k is even, q = k/2 or deg(g) ≤ 1, k ≥ 2, q ≥ 1. By the
above mentioned results of LeVeque [25] and Brindza [12] this is the
decisive condition for many applications, e.g. concerning superelliptic
equations. In this characterization the main novelty is the description
of the case t = 2, the other cases are well-known and/or simple. Our
main tool will be a deep result of Avanzi and Zannier [3] concerning a
certain Pell-type equation for polynomials.

We apply our results to several Diophantine problems, which are
interesting in themselves and are widely studied. First, we give a pre-
cise statement concerning the infinitude of shifted power values (in
S-integers of an algebraic number field) of a polynomial f ∈ Q[x]. Our
result provides a complete solution to the problem and also an effec-
tive bound for the heights of the solutions when there are finitely many
of them. This theorem can be considered to be an effective algebraic
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version of the main result of Bilu and Tichy [11] concerning equations
of the form f(x) = g(y), when g(y) is of the shape g(y) = βyk + α. In
fact, in our result k ≥ 2 is also a variable for which we derive an upper
bound, too. So our theorem concerns a family of polynomials gk(y) (of
the given shape) rather than only an arbitrary, but fixed one.

At this point we also mention that superelliptic equations, that is
equations of the form

(1) f(x) = βyk

where k ≥ 2 and say f ∈ K[x], β ∈ K in unknown x, y ∈ OK are of wide
interest, with an extremely rich literature. (Here K is a number field
with ring of integers OK.) The same is true for the even more general
situation, when in (1) the exponent k is also a variable. The interested
reader may check for example chapters 6 and 8 of [41] and [6], and
the references there. We shall explicitly give some related results later
(see Lemmas 4.1 from Shorey and Tijdeman [41] and 4.2 from Brindza
[12]), which give explicit conditions under which (1) has only finitely
many solutions in x, y and x, y, k, respectively (bounded in terms of
the parameters involved). Our Theorem 3.2 can be considered as an
extension of these results, too, to the case where on the right hand side
of (1), instead of (almost) powers βyk we have shifted powers βyk +α.
Theorem 3.2 gives a characterization when this more general equation
has infinitely many solutions, and provides effective bounds for the
solutions x, y, k when there are finitely many of them. (In fact, we
shall work in a slightly more general framework, with S-integers.)

We also give a description of composite polynomials assuming infin-
itely many S-integral power values. In the case where there are only
finitely many solutions, the result is effective (i.e., the height of the
solutions can be effectively bounded). After that, we give an effective
result for polynomial values in the solutions of Pell equations. Finally,
we effectively bound the values of polynomials in non-degenerate bi-
nary recurrence sequences. The latter problem attracted a lot of atten-
tion already, and our Theorem 3.5 generalizes and/or extends several
results from the literature, e.g. those of Pethő [31] and Shorey and
Stewart [39] about perfect powers in non-degenerate binary recurrence
sequences, Nemes and Pethő [29] concerning values of general poly-
nomials in certain binary recurrence sequences and of Kovács [24] on
values of certain combinatorial polynomials in concrete, important bi-
nary recurrence sequences. We give more details before the formulation
of Theorem 3.5.

The structure of the paper is the following. In the next section
we introduce some objects needed later, and give some of their most
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important properties. In Section 3 we formulate our results. Their
proofs (together with some lemmas) are given in the last section.

2. Preliminaries

In this section we introduce the objects we need later and collect
some important facts about them.

2.1. Extrema of polynomials. In this subsection we partly follow
the treatment and notation of Section 2.3 of [11]. All polynomials are
assumed to be of degree at least one, unless stated otherwise. The
root type of a polynomial f(x) ∈ C[x] having r distinct roots is the
unordered list [µ1, . . . , µr] of the multiplicities of its roots. Clearly,
µ1 + · · ·+ µr = deg(f). The f -type of a complex number λ is the root
type of the polynomial f(x)− λ. If f(x)− λ has at least one multiple
root (i.e. the f -type of λ is not [1, . . . , 1]), then λ is called an extremum
of f(x). For λ of f -type [µ1, . . . , µr], write

(2) δf (λ) = (µ1 − 1) + · · ·+ (µr − 1) = deg(f)− r.

Observe that δf (λ) > 0 if and only if λ is an extremum of f(x). We
have

(3)
∑
λ∈C

δf (λ) = deg(f)− 1.

This follows from the fact that δf (λ) = deg(gcd(f(x) − λ, f ′(x))), so
the sum in (3) equals to deg(f ′) = deg(f)− 1.

Let λ ∈ C with f -type [µ1, . . . , µr]. We shall say that λ is special
with respect to f , if there exists a k ≥ 2 such that the tuple

(4)

[
k

gcd(k, µ1)
, . . . ,

k

gcd(k, µr)

]
is one of

[2, 2, 1, . . . , 1], [q, 1, . . . , 1] (q ≥ 1).

If the choice of f is obvious, we simply say that λ is special. Note that
as we shall see later, this condition is very important (in fact, decisive)
concerning the infinitude of the solutions of superelliptic equations of
the form f(x)− λ = βyk.

Remark 1. Observe that if deg(f) ≥ 3 and λ is special with respect
to f then λ is also an extremum of f . We shall use this fact throughout
the paper without any further mentioning.

Here we point out that special shifts of polynomials (i.e. shifts with
special extrema) are of special form.
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Lemma 2.1. Let f(x) ∈ Q[x] and λ ∈ C. Then f(x) − λ is of the
form

(5) f(x)− λ = u(g(x))q(h(x))k

with u ∈ C, g, h ∈ C[x] and either deg(g) = 2, k is even, q = k/2 or
deg(g) ≤ 1, k ≥ 2, q ≥ 1, if and only if λ is special with respect to f .

Proof. Assume first that λ is special with respect to f . If with some k,
the tuple (4) is [2, 2, 1, . . . , 1] then k is necessarily even and we have

f(x)− λ = u(g(x))k/2(h(x))k

with u ∈ C, g, h ∈ C[x] and deg(g) = 2. On the other hand, if the
tuple (4) is [q, 1, . . . , 1] with some q ≥ 1, then

f(x)− λ = u(g(x))q(h(x))k

holds with u ∈ C, g, h ∈ C[x] and deg(g) ≤ 1.
Suppose now that f(x)− λ is of the form (5). Then one can readily

check that λ is special with respect to f . �

2.2. Algebraic numbers and S-integers. Let f ∈ Z[x]. Then by
the (naive) height of f we mean the maximum of the absolute values
of its coefficients. If β is an algebraic number, then H(β) denotes
its height, which is the height of the (primitive) defining polynomial
fβ ∈ Z[x] of β.

Let K be an algebraic number field, and let S be a finite set of prime
ideals in K. We say that β ∈ K is an S-integer, if writing the principal
(fractional) ideal (β) as (β) = A/B with some coprime ideals in K, the
ideal B has no prime ideal divisor outside S. The ring of S-integers
will be denoted by OS,K. Note that if β is an algebraic integer of K,
then we clearly have β ∈ OS,K.

2.3. Some families of special polynomials. In this subsection we
introduce some families of polynomials which will appear in our state-
ments. In fact, they will yield the exceptional cases.

The first family we need is formed by shifts of ’almost power’ rational
polynomials:

P1 := {u(g(x))q(h(x))k + v : u, v ∈ Q, u ̸= 0, g, h ∈ Q[x], and

either deg(g) = 2, k is even, q = k/2 or deg(g) ≤ 1, k ≥ 2, q ≥ 1}.

The second family is related to Dickson polynomials. Let a be a
nonzero rational number and d a positive integer. Denote by Dd(x, a)
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the d-th Dickson polynomial with parameter a, given by

Dd(x, a) =

⌊d/2⌋∑
i=0

d

d− i

(
d− i

i

)
(−a)ixd−2i.

Dickson polynomials can be characterized by having exactly two ex-
trema. More precisely, we have the following assertion, which is a
simple consequence of Proposition 5.1 and Theorem 5.2 of Bilu and
Tichy [11].

Lemma 2.2. If d ≥ 3 then Dd(x, a) has exactly two extrema. If d is
odd then both are of type [1, 2, . . . , 2]. If d is even, then one of them is
of type [2, . . . , 2] and the other is of the type [1, 1, 2, . . . , 2].

On the other hand, let f(x) ∈ Q[x] be a polynomial of degree d having
exactly two extrema in C. Moreover, let all its extrema be of one of the
following types:

[2, . . . , 2], [1, 2, . . . , 2], [1, 1, 2, . . . , 2].

Then f(x) = uDd(x+ v, a) + w, where a, u, v, w ∈ Q with au ̸= 0.

We need some further objects. Let G(x) be a square-free monic
polynomial with rational coefficients, of degree four, and consider the
equation

(6) F (x)2 −G(x)H(x)2 = γ

in polynomials F,H ∈ Q[x] and γ ∈ Q \ {0}. By the degree of a
solution triple (F (x), H(x), γ) of equation (6) we mean deg(F (x)).

We shall need the description of the solutions of (6) which has been
completely given by Avanzi and Zannier [3]. For this description, con-
sider the elliptic curve

C : y2 = G(x)

over Q, by choosing one of the two points at infinity (which are rational
as G is monic), as the identity element. Denote by π the other point
at infinity.

The following deep result of Avanzi and Zannier [3] gives a precise
description of the solutions of (6).

Theorem A. Equation (6) is solvable in F,H ∈ Q[x] and γ ∈ Q \ {0}
if and only if π is a torsion point of C.

Further, if π is a torsion point of order exactly N , then there exists
a solution of degree dN for any positive integer d, and, for a fixed
degree, the solution with F monic is unique (up to the sign of H). Let
(F1(x), H1(x), γ1) be the solution with F1(x) monic of minimal degree
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N . Then the solution (Fd(x), Hd(x), γd) with Fd(x) monic of degree dN
is given by

Fd(x) = Dd(F1(x), γ1/4), γd = 41−dγd
1 ,

where Dd is the d-th Dickson polynomial.

Remark 2. Here we mention two points.
1. Importantly, based upon the method of their proof, Avanzi and
Zannier could parametrize and give all solutions of (6), see Section 5 of
[3]. The parametrized solutions are explicitly listed in the PhD thesis
of Avanzi [2].
2. Using the well-known connection between Dickson- and Chebyshev
polynomials, the above statement could be formulated by the help of
(normalized) Chebyshev polynomials. In fact, this is what is done in
[2] (see Theorem 2 there). However, as [3] is easier to access, we follow
the formulation there (with Dickson polynomials).

Now we can introduce the second family of polynomials we shall
need. First, for given G as above, write FG,n(x) for the unique monic
solution F (x) of (6) of degree n (if such solution exists), and let γ(G,n)
be the corresponding γ-value in (6). Put

P2 := {uDd(x+ v, a) + w : d ∈ N, a, u, v, w ∈ Q, au ̸= 0} ∪
{uFG,n(x) + v : G is as above, n is even, u, v ∈ Q, u ̸= 0,

FG,n(x) ̸=
(
FG,n/2(x)

)2 − γ(G,n/2)/2}.

Remark 3. By classical results of Mazur [26, 27] we know that in
Theorem A we have 2 ≤ N ≤ 12 and N ̸= 11. Thus P2 contains
only linear transforms of polynomials of the shape Dd(F (x), a) with
deg(F ) ≤ 12, deg(F ) ̸= 11. Observe further that the polynomials
FG,n(x) excluded from P2 are constant multiples of shifts of full squares
in Q[x].

2.4. Pell equations. Let a, b, c be integers with abc ̸= 0. We shall be
interested in polynomial values in the solution sets of Pell equations of
the shape

(7) ax2 − by2 = c.

If ab > 0 then (7) is called a Pell equation, and as it is well-known,
it can have infinitely many solutions in integers x, y. In case of ab < 0,
equation (7) trivially admits only finitely many solutions in integers
x, y.
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2.5. Binary recurrence sequences. A sequence of integers (Un)
∞
n=0

defined by
Un+2 = AUn+1 +BUn (n ≥ 0)

with some A,B, U0, U1 ∈ Z is called a binary recurrence sequence.
We shall always assume that U2

0 + U2
1 > 0 and that (Un)

∞
n=0 is non-

degenerate, that is AB ̸= 0 and the ratio of the roots α, β of the
characteristic polynomial x2 −Ax−B of the sequence is not a root of
unity. It is well-known that we have

Un =
aαn − bβn

α− β
(n ≥ 0),

where a = U0 − U1β, b = U1 − U0α. Putting Vn = aαn + bβn, one can
easily check that Vn ∈ Z and

(8) V 2
n − (A2 + 4B)U2

n = 4(U2
1 − AU1U0 −BU2

0 )(−B)n (n ≥ 0)

holds. It is important to note that if (Un)
∞
n=0 is non-degenerate and

B = ±1, then we have

A2 + 4B ̸= 0 and U2
1 − AU1U0 −BU2

0 ̸= 0

in (8).

3. New results

Our principal result is the following.

Theorem 3.1. For i ≥ 1, write Si for the set of polynomials f ∈ Q[x]
with deg(f) > 4 for which precisely i complex numbers are special.
Then Si is empty for i ≥ 3, while S2 = P2 and S1 = P1 \ P2.

Remark 4. We give several comments on Theorem 3.1.
1. In view of the theorem, for a monic f ∈ Q[x] of degree at least 5
there exists no special λ ∈ C if and only if f /∈ P1 ∪ P2.
2. As we shall see, the fact that Si is empty for i ≥ 3 is rather simple.
This (under slightly more special assumptions) was essentially proved
by Rakaczki, see Lemma 3 in [34].
3. Clearly, the cases deg(f) ≤ 4 could be handled without any problem.
Naturally, in these cases some special parametric families of polynomi-
als (which could be easily described) arise. To avoid (trivial) technical
complications, we do not give the details here.
4. In view of Remark 3, if f(x) ∈ Q[x] is explicitly given, or if f(x) is a
member of a parametric family of some special polynomials (e.g. with
combinatorial background), then like in case of the applications of the
Bilu-Tichy theorem from [11] (see e.g. [9, 33, 23, 45, 21, 5]), in principle
one should be able to decide (relatively easily) whether f(x) ∈ P2 or
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not. (In our case, one may further use the parametrization of FG,n(x)
given by Avanzi and Zannier [3] and Avanzi [2] if necessary.) This
means that Theorem 3.1 and our other theorems are hopefully easily
accessible for various applications.
5. The above theorem has an interesting connection to elliptic integrals.
Namely, one can show that the polynomials f(x) ∈ P2 can be expressed
by the help of so-called pseudo-elliptic integrals. (As a related paper,
see e.g. [30].) We suppress the details.

Combining Theorem 3.1 with (generalizations of) classical results
of Schinzel and Tijdeman [38] and Brindza [12] we get the following
statement, concerning shifted power values of a polynomial.

Theorem 3.2. Let f ∈ Q[x]\P2 with deg(f) > 4 and K be an algebraic
number field. Then for any α, β ∈ K with α /∈ Q and any finite set S
of prime ideals of K, the equation

(9) f(x) = βyk + α

has only finitely many solutions in x, y ∈ OS,K and k ∈ Z with k ≥ 2,
and we have max(H(x), H(y), k) ≤ C1. Here C1 = C1(f, α, β, S,K) is
an effectively computable constant depending only on f, α, β, S,K, and
we apply the convention that k ≤ ord(y) + 1 if y is a root of unity in
K and k = 2 if y = 0.

Further, if f /∈ P1 ∪ P2 then the same conclusions hold with α ∈ Q,
as well.

Remark 5. Importantly, in view of Theorem 3.1 and Lemma 4.2 the
condition f /∈ P2 (or f /∈ P1 ∪P2 if α is rational) is necessary. That is,
Theorem 3.2 is best possible.

Now we give an application for power values of decomposable poly-
nomials. For this, let f(x) ∈ Q[x], φ(x) a polynomial having algebraic
coefficients, K an algebraic number field, β ∈ K and S a finite set of
prime ideals of K. Consider the equation

(10) φ(f(x)) = βyk

in k ∈ Z with k ≥ 2 and x, y ∈ OS,K.

Theorem 3.3. Suppose that f(x) ∈ Q[x]\P2 with deg(f) > 4 and that
φ has two non-rational roots of coprime multiplicities. Then equation
(10) has only finitely many solutions x, y, k with x, y ∈ OS,K and k ∈ Z
with k ≥ 2, under the convention k ≤ ord(y) + 1 if y is a root of unity
in K and k = 2 if y = 0. Further, we have max(H(x), H(y), k) ≤
C2, where C2 = C2(φ, f, β, S,K) is an effectively computable constant
depending only on φ, f, β, S,K.
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Remark 6. At this point we also mention several things.
1. If all the multiplicities of the roots of φ are multiples of some k ≥ 2,
then certainly, equation (10) may have infinitely many solutions, for
any f . Hence the condition concerning the multiplicities of the roots
of φ cannot be dropped.
2. If there is only one root α of f with multiplicity coprime to k,
and that root is rational, then in case of f ∈ P1 the statement would
fail, too. Hence the condition that there are two non-rational roots of
coprime multiplicities, is necessary as well.
3. For fixed k, Theorem 3.3 ultimately reduces to the question whether
φ(f(x)) − βyk has a genus zero factor or not. Hence in this case the
statement practically follows from Ritt’s Second Theorem [36]. For
details, related results, remarks and explanations see e.g. [17], Section
5 of [37], [47], [18], [3]. However, Theorem 3.3 is much more general
than that: as k is a variable, the statement concerns an infinite family
of curves of the shape φ(f(x))− βyk.

Now we give effective bounds for polynomial values in solutions of
Pell equations and in binary recurrence sequences.

Theorem 3.4. Let a, b, c be integers with abc ̸= 0. Let SX and SY be
the X and Y coordinates, respectively, of the solutions (X, Y ) ∈ Z2 of
the equation

aX2 − bY 2 = c.

Then for any f ∈ Q[x] \ P2 with deg(f) > 4 there exists only finitely
many integers x for which f(x) ∈ SX ∪ SY . Further, there exists an
effectively computable constant C3(a, b, c, f) depending only on a, b, c
and f such that |x| < C3(a, b, c, f) for all such x.

As we shall see, the above theorem immediately implies the next
statement, concerning polynomial values in certain binary recurrence
sequences. As this problem has an extensive literature, first we survey
the related results which are most important from our viewpoint. That
is, we restrict our attention to binary recurrences: in the general case, it
would be an enormous task to survey the related literature. For related
works concerning general recurrences we only refer to the papers of
Nemes and Pethő [28], Kiss [22], Corvaja and Zannier [13], Fuchs and
Tichy [19] and the references there.

Independently, Pethő [31] and Shorey and Stewart [39] provided an
effective bound for the perfect powers in non-degenerate binary recur-
rence sequences. Stewart [44] and Shorey and Stewart [40] gave effec-
tive finiteness results for shifted powers (i.e. polynomial values of the
form xk + c) in certain binary recurrences. Nemes and Pethő [29] gave
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a necessary condition (involving Chebyshev polynomials) for the shape
of polynomials f(x) ∈ Q[x] having infinitely many values in certain
non-degenerate binary recurrence sequences. They did not formulate
an effective statement, but they described the structure of the solution
set in case of infinitely many solutions. Using the special properties
of the problem (in fact, assertion (8)), they could reduce the question
to the solution of a polynomial Pell-type equation of the form (6) -
however, with deg(G(x)) = 2. Thus to prove their theorem, they could
use the corresponding results of Dorey and Whaples [15]. Finally, we
mention that there are many results in the literature where values of
special polynomials in specific binary recurrence sequences are studied
(see e.g. the paper Kovács [24] and the references given there).

Now we formulate our result concerning polynomial values in binary
recurrence sequences.

Theorem 3.5. Let (Un)
∞
n=0 be a non-degenerate binary recurrence se-

quence with B = ±1 and f ∈ Q[x] \ P2 with deg(f) > 4. Then there
exists an effectively computable constant C4(A,U0, U1f) depending only
on A,U0, U1 and f such that max(n, |x|) < C4(A,U0, U1, f) for all so-
lutions n ≥ 0 and x ∈ Z of the equation

Un = f(x).

Remark 7. As we see, Theorem 3.5 can be considered to be a gener-
alization of the above mentioned results from [31], [39], [44], [40] and
[24]. Further, it provides an effective version of the main result from
[29].

4. Proofs

Proof of Theorem 3.1. As we already mentioned, it is easy to see that
Si is empty for i ≥ 3. (See e.g. Lemma 3 of [34] where the problem is
considered in a slightly less general situation.) However, for the sake of
completeness, and also because we shall need some information for the
case i = 2 obtained on our way, we give a complete argument covering
the case i ≥ 3, as well.

We start with investigating the values δf (λ) of special extrema of a
polynomial f(x) ∈ Q[x] of degree n > 4. We show that up to rather
restricted cases, we have

(11) δf (λ) ≥
n

2
.
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Let [µ1, . . . , µr] be the root type of a special extremum λ ∈ C of f .
Then with some k ≥ 2 the tuple[

k

gcd(k, µ1)
, . . . ,

k

gcd(k, µr)

]
is one of

[2, 2, 1, . . . , 1], [q, 1, . . . , 1] (q ≥ 1).

Assume first that[
k

gcd(k, µ1)
, . . . ,

k

gcd(k, µr)

]
= [q, 1, . . . , 1] (q ≥ 1).

Then k | µi (i = 2, . . . , r). Write µi = kui (i = 2, . . . , r). Assume that
contrary to (11) we have

δf (λ) ≤
n− 1

2
.

Then by (2) and

(12) µ1 + µ2 + · · ·+ µr = n

we have

(13) µ1 + · · ·+ µr ≤
µ1 + · · ·+ µr − 1

2
+ r

whence

µ1 + k(u2 + · · ·+ ur) ≤ 2r − 1.

This immediately gives k = 2 and

[µ1, . . . , µr] = [1, 2, . . . , 2],

yielding

δf (λ) =
n− 1

2
.

Suppose next that[
k

gcd(k, µ1)
, . . . ,

k

gcd(k, µr)

]
= [2, 2, 1, . . . , 1].

Then k is even, k/2 divides µ1, µ2 and k | µi (i = 3, . . . , r). Write
µi = (k/2)ui for i = 1, 2 and µi = kui (i = 3, . . . , r). Assume that
contrary to (11) we have

δf (λ) ≤
n− 1

2
.

Then using (2) and (12) again, through (13) we obtain

k(u1/2 + u2/2 + u3 + · · ·+ ur) ≤ 2r − 1.
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After a simple calculation, using that n ≥ 5, this yields that k = 2 and

(14) [µ1, . . . , µr] = [1, 2, . . . , 2], [1, 1, 2, . . . , 2],

with

(15) δf (λ) =
n− 1

2
,
n− 2

2
,

respectively.
Altogether, we conclude that for any special extrema of f (11) holds,

unless k = 2 together with (14) and (15).
Hence using (3) we immediately obtain that for f(x) ∈ Q[x] with

n = deg(f) > 4, no three distinct special extrema exist.
Suppose that α1, α2 are distinct special extrema of f . Then by (3)

again, one of α1 and α2 must be of one of the types (14). Suppose that
say α1 is of the type

[µ1, . . . , µr] = [1, 2, . . . , 2].

Then n is odd, and α2 must be of the same type. However, then by (3)
we see that f has only two extrema, and by Lemma 2.2 f is a linear
transform of a Dickson polynomial. Hence in this case, our theorem
follows. Assume next that say α1 is of the type

(16) [µ1, . . . , µr] = [1, 1, 2, . . . , 2].

Now if δf (α2) ≥ n/2 then by (3) we get that f has only two extrema
again, and by Lemma 2.2 we are done. So we may suppose that α2 is
also of the type (16).

Thus we can write

(17) f(x)− α1 = g1(x)h1(x)
2, f(x)− α2 = g2(x)h2(x)

2

with some g1, g2, h1, h2 ∈ C[x], deg(g1) = deg(g2) = 2. Here we need
some further investigation. If any of α1, α2, say α1 is transcendental,
then as it is well-known, Q(α1) is isomorphic to the field of rational
fractions Q(z). We may assume that g1, h1 ∈ Q(α1)[x] in (17). So
replacing α1 by some transcendental α3 ∈ C different from α1, α2, and
replacing f1, g1 by f3 = σ(f1) and g3 = σ(g1) where σ is the natural
isomorphism from Q(α1)[x] to Q(α3)[x], we get

f(x)− α3 = g3(x)(h3(x))
2.

This is a contradiction, implying that both α1 and α2 are algebraic. A
similar argument shows that either α1, α2 ∈ Q, or α1, α2 are conjugate
quadratic algebraic numbers. In both cases, α1 + α2, α1α2 ∈ Q, so
multiplying the left and right hand sides of the equalities in (17) we
get

(f(x))2 + 2uf(x) + v = g(x)(h(x))2
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with some u, v ∈ Q, whence

(18) (f(x) + u)2 − u2 + v = g(x)(h(x))2.

A simple consideration shows that here we may assume that the poly-
nomials

g(x) = g1(x)g2(x) and h(x) = h1(x)h2(x)

have rational coefficients. Observe that deg(g) = 4 in (18). As

gcd(f(x)− α1, f(x)− α2) = 1,

by (17) we have that g(x) is square-free. Further, since f(x)+u has two
shifts (with α1 − u and α2 − u) of root type (16), by (3) it cannot have
a shift yielding a square of a polynomial. Thus the inclusion S2 ⊆ P2

follows from Theorem A.
To prove the ’only if’ part, let f(x) ∈ P2. Clearly, without loss of

generality we may assume that f is monic. If f is a shifted Dickson
polynomial then by Lemma 2.2 we are immediately done. So let f(x) be
a rational shift f(x) = F (x)+ v of a (monic) solution F (x) of equation
(6), with certain G,H ∈ Q[x] and γ ∈ Q with γ ̸= 0. Reordering (6),
after factorization we get

(F (x) +
√
γ)(F (x)−√

γ) = G(x)H(x)2.

Since

deg(F (x) +
√
γ) = deg(F (x)−√

γ)

and

gcd(F (x) +
√
γ, F (x)−√

γ) = 1

in C[x], we must have either

F (x) +
√
γ = G1(x)H1(x)

2 and F (x)−√
γ = G2(x)H2(x)

2

with some G1, G2, H1, H2 ∈ K[x] with deg(G1) = deg(G2) = 2, where
K = Q(

√
γ), or

F (x) +
√
γ = G1(x)H1(x)

2 and F (x)−√
γ = H2(x)

2

(or vice versa) with some G1, H1, H2 ∈ K[x] with deg(G1) = 4. In the
first case we are done, so we may assume that the second possibility
holds. Then clearly

√
γ ∈ Q, and we must have G1(x) = G(x). Hence

we get

H2(x)
2 + 2

√
γ = G(x)H1(x)

2.

That is, by Theorem A we obtain that

H2(x) = FG,n
2
(x) and − 2

√
γ = γ

(
G,

n

2

)
.
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(Note that n is even in this case.) This shows that this possibility, by
our condition

F (x) = FG,n(x) ̸= (FG,n
2
(x))2 −

γ(G, n
2
)

2
is excluded. Hence the statement concerning S2 follows.

Finally, assume that f has only one special extremum. Observe that
by a similar argument as above, we then get that α ∈ Q must hold.
Then the statement (in view of Lemma 2.1 and the definition of P1)
becomes obvious. �

To prove Theorem 3.2 we need two further lemmas.
Let h(x) be a nonzero polynomial having algebraic coefficients. More-

over, let L be an algebraic number field, β a nonzero element of L, and
T is a finite set of prime ideals of L. Consider the Diophantine equation
(19) h(x) = βyk

in unknown k ∈ Z with k ≥ 2 and x, y ∈ OT,L.
The next lemma is a simple consequence of Theorem 10.5 of Shorey

and Tijdeman [41]. For the first results of this type, we refer to [46]
and [38].

Lemma 4.1. If h(x) has at least two distinct roots and y is not zero and
is not a root of unity, then in (19) we have k < C2(h, β, T,L), where
C2(h, β, T,L) is an effectively computable constant depending only on
h, β, T , L.

The following result is a consequence of the main result of Brindza
[12]. See also Theorem 8.3 in [41].

Lemma 4.2. Let k ≥ 2 also be fixed, and write [µ1, . . . , µr] for the root
type of h(x) in (19). If the tuple[

k

gcd(k, µ1)
, . . . ,

k

gcd(k, µr)

]
is none of

[2, 2, 1, . . . , 1], [q, 1, . . . , 1] (q ≥ 1),

then we have max(H(x), H(y)) < C3(h, k, β, T,L) for each solution
x, y ∈ OT,L of equation (19), where C3(h, k, β, T,L) is an effectively
computable constant depending only on h, k, β, T , L.
Proof of Theorem 3.2. If α /∈ Q, by our assumptions using Theorem
3.1 we have that α is not special with respect to f . Indeed, otherwise
α̂ would also be special with respect to f , where α̂ is any algebraic
conjugate of α. Thus Lemmas 4.1 and 4.2 imply the statement in this
case.
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The statement when α ∈ Q but f /∈ P1 ∪ P2, immediately follows
from Theorem 3.1 and Lemmas 4.1 and 4.2. �
Proof of Theorem 3.3. Write

φ(x) = δ(x− α1)
t1 . . . (x− αr)

tr

where δ is a non-zero algebraic number and α1, . . . , αr are the distinct
(complex) roots of φ, of multiplicities t1, . . . , tr, respectively. Note that
α1, . . . , αr are algebraic numbers. As r ≥ 2, by Lemma 4.1 we get that
k is bounded in (10).

So we may assume that k is fixed. Clearly, without loss of generality
we may assume that δ, α1, . . . , αr all belong to K. Indeed, otherwise
we can replace K by the number field L obtained by adjoining all these
elements to K, and S by the set T of prime ideals of L which divide the
prime ideals of K in S (embedded into L). Suppose that x, y ∈ OS,K
is a solution of (10). Then, as it is well-known (see e.g Lemma 8.1
in [41]), we can find non-zero ν1, . . . , νr, τ1, . . . , τr ∈ OK with heights
bounded in terms of φ, β, f,K such that

(20) f(x)− αi =
νi
τi
zℓii (i = 1, . . . , r),

with some zi ∈ OK, where ℓi = k/ gcd(k, ti). Using our assumptions,
without loss of generality we may assume that α1 and α2 are non-
rational and gcd(t1, t2) = 1. Then one of t1 and t2, say t1 is not divisible
by k. So ℓ1 ≥ 2, and by Theorem 3.2 the statement immediately follows
from (20) with i = 1. �
Proof of Theorem 3.4. Suppose that f(x) ∈ SX , the case f(x) ∈ SY is
similar. Then we can write

(af(x) +
√
ac)(af(x)−

√
ac) = abY 2.

Similarly as in the proof of Theorem 3.3 from this we get that with
some non-zero algebraic integers u1, u2, v1, v2 from K = Q(

√
ac) with

heights bounded in terms of a, b, c, f we have

u1(af(x) +
√
ac) = v1Y

2
1 , u2(af(x)−

√
ac) = v2Y

2
2

with some algebraic integers Y1, Y2 from K. As f(x) /∈ P2, one of

±
√

c/a is not special with respect to f . Thus by Lemma 4.2, one of
the above equations implies that x is bounded as required, and the
statement follows. �
Proof of Theorem 3.5. The statement concerning |x| immediately fol-
lows from Theorem 3.4 using identity (8). Then using the well-know
fact that |Un| tends to infinity as n tends to infinity (see e.g. Theorem
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3.1 of [41], which is a reformulation of a result of Stewart [43]), the
statement concerning n also follows. �
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