CORRIGENDUM TO: ON THE LENGTH OF ARITHMETIC PROGRESSIONS IN LINEAR COMBINATIONS OF S-UNITS

LAJOS HAJDU AND FLORIAN LUCA

ABSTRACT. In the paper "On the length of arithmetic progressions in linear combinations of *S*-units" (Arch. Math. 94 (2010), 357– 363), Lemma 2.1 contains an error. This error also affects the final bound appearing in Theorem 1.1. In this corrigendum we give these statements in correct forms.

Corrigendum to: Arch. Math. 94 (2010), 357–363 DOI 10.1007/s00013-010-0111-7

In formulating Lemma 2.1 in [2], a result of Amoroso and Viada [1] is interpreted in a wrong way. We are grateful to Kálmán Győry for calling our attention to this error. The correct formulation of the lemma is the following.

Lemma 2.1. Equation (2.1) has at most $C(k,r) := (8k)^{4k^4(k+r^k+1)}$ nondegenerate solutions $(x_1, \ldots, x_k) \in \Gamma^k$.

Proof. Since the rank of Γ^k is at most r^k , this is an immediate consequence of Theorem 6.2 in [1], indeed.

Unfortunately, this error affects the bound in Theorem 1.1 in [2]. Now we give a correct formulation of this result, and indicate the main changes in the proof (which are only technical ones).

Theorem 1.1. We have

$$L < \exp\left((8(n+t+r))^{8(2r+2)^{2t+2}} \right).$$

Proof. The change in Lemma 2.1 implies simple automatic changes in the proof. These lead to the correct form of (2.4), given by

$$|\mathcal{I}| < n^t 2^{t+1} (8(t+1))^{4(t+1)^4(t+(r+s)^{t+1}+2)}.$$

Date: 30 July, 2014.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11B25; Secondary 11D61.

Key words and phrases. Arithmetic progressions, finitely generated groups, Sunit equations, subspace theorem.

Then, at the end of the proof making the choice s = r+2, the statement follows by a simple calculation.

References

- F. Amoroso and E. Viada, Small points on subvarieties of a torus. Duke Math. J. 150 (2009), 407–442.
- [2] L. Hajdu and F. Luca, On the length of arithmetic progressions in linear combinations of S-units. Arch. Math. 94 (2010), 357–363.

UNIVERSITY OF DEBRECEN, INSTITUTE OF MATHEMATICS, P.O. Box 12, H-4010 DEBRECEN, HUNGARY

E-mail address: hajdul@math.klte.hu

School of Mathematics, University of the Witwatersrand, P.O. Box Wits 2050, South Africa, and, Mathematical Institute, UNAM Juriquilla, Santiago de Querétaro 76230, Querétaro de Arteaga, Mexico

E-mail address: fluca@matmor.unam.mx