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Abstract. In this paper we give effective finiteness results for the
power values of polynomials with coefficients composed of a fixed
finite set of primes; in particular, of Littlewood polynomials.

1. Introduction

There is an extensive literature on polynomials with restricted co-
efficients, in particular, with coefficients belonging to one of the sets
{−1, 1}, {0, 1} or {−1, 0, 1}. Note that in the first case the polynomials
are called Littlewood polynomials, while in the second case (assuming
that the constant term is non-zero) the polynomials are the Newton
polynomials. Here we mention only a few papers and directions; we
suggest the interested reader to study these papers and their references.
The zeroes (in particular, the number of real zeroes) of polynomials
with coefficients belonging to {−1, 0, 1} have been studied by Bloch
and Pólya [1], Schur [14], Szegő [16], Erdős and Turán [8], Drungilas
and Dubickas [6] (see also papers of Borwein and Erdélyi [2, 3]). A re-
lated question concerning the order of vanishing of such polynomials at
1 has been considered by Borwein and Mossinghoff [4]. Similar studies
for Littlewood polynomials have also been done; see e.g. Peled, Sen and
Zeitouni [12]. Finally, we also mention that divisibility properties of
such polynomials are also of interest; see e.g. Dubickas and Jankauskas
[7] for a question concerning Newton and Littlewood polynomials, and
Mossinghoff [11] for the case of described cyclotomic factors.
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In this paper we initiate the study of Diophantine equations involv-
ing polynomials with restricted coefficients. As a generalization of Lit-
tlewood polynomials, we shall consider polynomials whose coefficients
are composed of primes coming from a fixed finite set. We shall be
interested in perfect power values of such polynomials - that is, in
Schinzel-Tijdeman equations and hyper- and superelliptic equations
related to them. We shall provide effective upper bounds for the so-
lutions of such equations. For this, we need to combine the effective
theory of such equations and the theory of S-unit equations with new
assertions concerning the root structures of such polynomials. In view
of the general interest (indicated above) in polynomials with restricted
coefficients, we find the latter results (Lemmas 3.3, 3.4, 3.5, 3.6) of
possible independent interest. In fact, this is one of the main reasons
why we cut our research into parts: in this way we can present these
’background’ results, as well. In the continuation of this paper, we take
up the general problem of polynomial values of polynomials with re-
stricted coefficients (which requires different techniques, and different
background knowledge about the root structures and decomposability
properties, as well).

2. Notation and main results

Let S = {p1 < p2 < . . . < pk} be a finite set of primes, and write
ZS for the set of integers having no prime divisors outside S. Note
that we have ±1 ∈ ZS but 0 /∈ ZS for any S. In particular, we have
ZS = {−1, 1} for S = ∅. Write PS for the set of polynomials in Z[x]
with coefficients belonging to ZS.

Now we give our main results. The first theorem shows that under
a necessary condition, the polynomials in PS may attain only power
values with bounded exponents.

Theorem 2.1. Let f(x) ∈ PS of degree d and b be a non-zero rational
number. Then there exist effectively computable constants C1 = C1(pk)
and C2 = C2(b, d, pk) depending only on pk and on b, d, pk, respectively,
such that if d > C1 then the equality

(1) f(x) = byn

with x, y, n ∈ Z and |y| > 1 implies n < C2.

Remark 1. The condition d > C1 is necessary. Indeed, let d be
arbitrary, and choose S such that

(
d
i

)
∈ ZS for all i = 0, . . . , d. Then

for any a ∈ ZS we have (x+a)d ∈ PS, however, (1) clearly has infinitely
many solutions x, y with any multiple n of d. So we see that we do
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need a lower bound for d in order to have the statement of Theorem
2.1 being valid.

Now we would like to bound also the solutions x, y of (1). However,
for this we need to switch to S = ∅, i.e. to the case of Littlewood
polynomials. This is in fact necessary; a condition as in Theorem 2.1
saying that the degree of the polynomial should be large enough is not
sufficient - for the reason see part i) of Remark 2 after the statement.

Theorem 2.2. Let f(x) ∈ PS with S = ∅ (i.e. f(x) is a Little-
wood polynomial, with all coefficients being ±1). Assume further that
deg f ≥ 3, and let b be a non-zero rational number. Then all solutions
x, y, n ∈ Z of the equation

(2) f(x) = byn

with n ≥ 2, satisfy

max(|x|, |y|, n) ≤ C4,

except when n = 2 and f is one of the forms

f(x) = ±(x2k+1 + . . .+ xk+1 − xk − . . .− 1),

± (x2k+1 − x2k + . . .+ (−1)k+2xk+1 + (−1)kxk + · · ·+ 1)

with some k ≥ 1. Here C4 = C4(b, d) is an effectively computable
constant depending only on b and the degree d of f .

Remark 2. Here we mention two things.

i) The statement is not valid for arbitrary S, the restriction S = ∅
cannot be omitted - even if we would restrict to polynomials of degrees
’large enough’. To see this, let f1(x) ∈ Z[x] be any not identically
zero polynomial. Let S be an arbitrary, finite set of primes, containing
2, such that both f1(x) and (f1(x))

2 belong to PS. Then inductively
define

fi+1(x) =
(
(xdi+1 + 1)fi(x)

)2
(i ≥ 1),

where di = deg(fi) (i ≥ 1). Observe that then all the polynomials fi(x)
(i ≥ 1) are full squares in PS, and clearly, the sequence d1, d2, d3, . . .
of their degrees is unbounded. That is, for this set S there exists a
polynomial of arbitrarily large degree in PS which is a square. Hence
clearly, equation (2) with b = 1 and n = 2 has infinitely many solutions
in x, y ∈ Z.
ii) In the exceptional cases equation (2) (with appropriate choices of b)
have infinitely many solutions with n = 2 in x, y ∈ Z. Indeed, for any
k ≥ 1 we have

±(x2k+1 + . . .+ xk+1 − xk − . . .− 1) = ±(x− 1)(xk + · · ·+ x+ 1)2,
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which gives a square value whenever ±(x − 1) is a square. Similarly,
for any k ≥ 1 we have

± (x2k+1 − x2k + . . .+ (−1)k+2xk+1 + (−1)kxk + · · ·+ 1) =

= ±(x+ 1)(xk − xk−1 + · · ·+ (−1)k)2,

which gives a square value whenever ±(x+ 1) is a square.

3. Lemmas, auxiliary results and proofs

To prove Theorem 2.1, we need two lemmas. Here and later on, by
the height H(F (x)) of a polynomial F (x) with integer coefficients we
mean the maximum of the absolute values of its coefficients.

Lemma 3.1. Let F (x) ∈ Z[x] having two distinct (complex) roots of
degree D and height H, and B be a non-zero rational number. Then
the equality

F (x) = Byn

with x, y ∈ Z, |y| > 1 implies that n < C4, where C4 = C4(B,D,H) is
an effectively computable constant depending only on B, D and H.

Proof. The statement immediately follows from the Schinzel-Tijdeman
theorem (the main result of [13]; see also [17] and Chapter 9 of [15]). �
Lemma 3.2. Let S be as above, and A,B be non-zero rational numbers.
Then the solutions x, y ∈ ZS of the equation

Ax− By = 1

satisfy
max(|x|, |y|) < C5,

where C5 = C5(A,B, pk) is an effectively computable constant depend-
ing only on A, B and pk.

Proof. The statement is an immediate consequence of a classical result
of Győry [10]; see also Chapter 4 of [9]. �
Proof of Theorem 2.1. The statement immediately follows by Lemma
3.1, as soon as f(x) has two distinct roots. Thus we can assume that
f(x) is of the form f(x) = u(x + v)d, with some u ∈ Z and v ∈ Q.
Writing v = v1/v2 in its primitive form, we clearly have vd2 | u and
u, v1, v2 ∈ ZS. Then checking the coefficients of xd−1 and xd−2 in f ,
we easily see that d,

(
d
2

)
∈ ZS, as well. Hence we obtain that either

d − 1 ∈ ZS, or d − 1 is even and (d − 1)/2 ∈ ZS. In the first case
d, d− 1 ∈ ZS satisfy the equation

(3) w1 − w2 = 1,
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while in the second case d, (d− 1)/2 ∈ ZS are solution to the equation

(4) w1 − 2w2 = 1

in w1, w2 ∈ ZS. However, by Lemma 3.2 we get that for the solutions
of the above equations

max(|w1|, |w2|) < C6

holds, where C6 = C6(pk) is an effectively computable constant depend-
ing only on pk. So if d > C6, then d cannot come from a solution of
either (3) and (4), which implies that f(x) is not of the form u(x+v)d.
Hence taking C1 = C6, the statement follows. �

Now we turn to the proof of Theorem 2.2. For this, we shall need
five further lemmas. The first four of them are new, and we find them
of possible independent interest.

Lemma 3.3. Let m be a non-negative integer and let

(5) G(x) = b0x
t + b1x

t−1 + . . .+ bt−1x+ bt

with b0, b1, . . . , bt ∈ Z, such that all the coefficients of the polynomial
(x− 1)mG(x) belong to {−1, 1}. Then b1 = 0 implies m = 1.

Proof. Clearly, without loss of generality we may assume that b0 = 1.
We shall do so during the proof, without any further mentioning. Write
Bm (m ≥ 0) for the set of coefficients b1 which occur in some polynomial
G(x) (being monic, of arbitrary degree) satisfying the conditions of the
statement. We prove the lemma by describing the sets Bm inductively.
Obviously, we have B0 = {−1, 1}. Assume that we already described

the set Bm for some m ≥ 0, and consider a polynomial G(x) given by
(5), such that all the coefficients of (x− 1)m+1G(x) belong to {−1, 1}.
Then of course, the same is true for the polynomial

(x− 1)m+1G(x) = (x− 1)m((x− 1)G(x)) =

= (x− 1)m(xt+1 + (b1 − 1)xt + . . .+ (bt − bt−1)x− bt).

Thus we obtain that b1 − 1 ∈ Bm. From this, we immediately get that

Bm+1 = Bm + {1}(= {h+ 1 : h ∈ Bm}) (m ≥ 0),

which inductively gives

Bm = {m− 1,m+ 1} (m ≥ 0).

Hence the statement follows. �
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The next lemma describes how the coefficients of a polynomial G(x)
can ’spread’ if it holds the property that (x− 1)mG(x) is a Littlewood
polynomial. In fact, for our present purposes we only need a specific
consequence of this statement (namely, for the coefficient of the second
largest power of x), but we find it interesting to describe this phenom-
enon completely.

Lemma 3.4. Let G(x) ∈ Z[x] and m be a non-negative integer. If all
the coefficients of (x− 1)mG(x) belong to {−1, 1} then, writing

G(x) = b0x
t + b1x

t−1 + . . .+ bt−1x+ bt,

for all i = 0, 1, . . . , t we have

−min

((
m+ i

m

)
,

(
m+ t− i

m

))
≤ bi ≤ min

((
m+ i

m

)
,

(
m+ t− i

m

))
.

Here we use the convention
(
0
0

)
= 1.

Remark 3. We note that, as one can easily check (e.g. by following
the proof), the bounds given for the coefficients of G(x) are sharp.

Proof. First we show that

(6) −
(
m+ i

m

)
≤ bi ≤

(
m+ i

m

)
(i = 0, 1, . . . , t),

by induction on m. For m = 0 the statement is obvious. Assume
that (6) holds for some m ≥ 0, and assume that all the coefficients of
(x− 1)m+1G(x) belong to {−1, 1}. Then in view of

(x− 1)m+1G(x) = (x− 1)m((x− 1)G(x)) =

= (x− 1)m(b0x
t+1 + (b1 − b0)x

t + . . .+ (bt − bt−1)x− bt)

the induction hypothesis by bi = (bi − bi−1) + bi−1 (i ≥ 1) successively
yields

− 1 ≤ b0 ≤ 1, −1−
(
m+ 1

1

)
≤ b1 ≤ 1 +

(
m+ 1

1

)
,

− 1−
(
m+ 1

1

)
−

(
m+ 2

2

)
≤ b2 ≤ 1 +

(
m+ 1

1

)
+

(
m+ 2

2

)
, . . . .

This by a well-known identity gives

−
(
m+ 1 + i

m+ 1

)
≤ bi ≤

(
m+ 1 + i

m+ 1

)
(0 ≤ i ≤ t),

that is, (6) is valid also with m replaced bym+1. So (6) holds for all m.
Now observing that bt = ±1 and starting the argument at the constant
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term and going backwards (or alternatively, working with reciprocal
polynomials), a similar argument gives

−
(
m+ t− i

m

)
≤ bi ≤

(
m+ t− i

m

)
(i = 0, 1, . . . , t).

Hence the lemma follows. �
Lemma 3.5. Let n ≥ 2 and g(x) ∈ Z[x] be non-zero polynomial. If
all the coefficients of (x − 1)n−1gn(x) belong to {−1, 1} then we have
n = 2.

Proof. Write
F (x) = (x− 1)n−1gn(x),

and assume that all the coefficients of F (x) belong to {−1, 1}. Then
(x− 1)F (x) = ((x− 1)g(x))n ,

whence

(7) H (((x− 1)g(x))n) = H ((x− 1)F (x)) ≤ 2.

Put
G(x) = (x− 1)g(x).

Obviously, the constant term of G(x) is ±1. Let ℓ be the smallest
positive exponent for which the coefficient of xℓ in G(x) is non-zero.
(Clearly, such an ℓ exists because degG ≥ 1.) Write uℓ for the coeffi-
cient of xℓ in G(x). Then the coefficient of xℓ in

((x− 1)g(x))n = (G(x))n

is ±nuℓ. However, then by (7) we get |±nuℓ| ≤ 2. This implies n ≤ 2,
in fact n = 2, and the statement follows. �
Lemma 3.6. Let g(x) ∈ Z[x] be a non-constant polynomial and m,n
be integers with 0 ≤ m < n. If all the coefficients of the polynomial
(x−1)m(g(x))n belong to {−1, 1} then n = 2, m = 1 and g(x) is of the
form

g(x) = ±(xℓ + . . .+ x+ 1)

with some ℓ ≥ 1.

Proof. Write

g(x) = u0x
ℓ + u1x

ℓ−1 + . . .+ uℓ−1x+ uℓ

and
G(x) = (g(x))n = b0x

t + b1x
t−1 + . . .+ bt−1x+ bt.

Clearly, u0 = ±1 and b0 = ±1. Further, we have b1 = ±nu1. However,
Lemma 3.4 implies that

|b1| ≤ m+ 1.
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Hence either u1 = b1 = 0, or by m < n we obtain m = n − 1. In the
former case, by Lemma 3.3 we get that m = 1. Then the property
that (x− 1)G(x) has only ±1 coefficients, easily implies that b2 = ±1.
However, on the other hand (as t ≥ 2 and u1 = 0) we also have

b2 = ±nu2,

which by n ≥ 2 is not possible. Hence u1 = 0 cannot hold, and we
are left with the case m = n− 1. Then by Lemma 3.5 we obtain that
n = 2. Thus we have b0 = 1. Further, without loss of generality we
may also assume that u0 = 1, as well. (Then, having described the
possible polynomials g(x), we only need to insert a ± sign in front of
them.) So we can write

(8)

xt + b1x
t−1 + . . .+ bt−1x+ bt =

(
xℓ + u1x

ℓ−1 + . . .+ uℓ−1x+ uℓ

)2
=

= x2ℓ + 2u1x
2ℓ−1 +

(
u2
1 + 2u2

)
x2ℓ−2 + (2u3 + 2u1u2) x

2ℓ−3 + . . . .

We show that here we necessarily have ui = 1 (i = 1, . . . , ℓ). For this,
recall that all the coefficients of (x− 1)(g(x))2, that is of

(x−1)(xt+b1x
t−1+. . .+bt−1x+bt) = (xt+1+(b1−1)xt+. . .+(bt−bt−1)x−bt)

are ±1. That is,

(9) b1 − 1, bt, bi − bi−1 ∈ {−1, 1} (2 ≤ i ≤ t).

In particular, bi is even if i is odd, and bi is odd if i is even. Since
b1 ̸= 0, b1 − 1 = 1 whence b1 = 2. Comparing the coefficients of xt−1

in (8), this gives u1 = 1. Inductively assume that bi = i+1 and ui = 1
for some i with 1 ≤ i < ℓ. Then (9) yields that bi+1 ∈ {i, i+ 2}, while
(8) gives

bi+1 = u0ui+1 + u1ui + . . .+ ui+1u0.

This shows that ui+1 ∈ {0, 1}. However, ui = 0 is impossible. Indeed,
otherwise again by (8) we get that b2(i+1) is even, since in the coefficient

of x2(i+1) all products uju2(i+1)−j occurs twice except for u2
i - which is

assumed to be zero. However, b2(i+1) is known to be odd. Thus we see
that ui+1 = 1 (and bi+1 = i+2) must be valid. So we get that the only
possibility is given by

g(x) = ±(xℓ + . . .+ x+ 1).

Finally, we have to check that the polynomial g(x) given above satisfies
the requirements of the lemma (with n = 2 and m = 1). Indeed, we
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have

(x− 1)(g(x))2 = (x− 1)

(
xℓ+1 − 1

x− 1

)2

=

=
(
xℓ+1 − 1

) xℓ+1 − 1

x− 1
= x2ℓ+1 + . . .+ xℓ+1 − xℓ − . . .− x− 1.

Thus the lemma is proved. �

The following lemma is a theorem of Brindza [5]. To its formulation,
we need some further notation. For any finite set S of primes, write
QS for those rationals whose denominators (in their primitive forms)
are composed exclusively from the primes in S. By the height h(s) of a
rational number s we mean the maximum of the absolute values of the
numerator and the denominator of s (written again in primitive form).

Lemma 3.7. Let F (x) ∈ Z[x] of degree D and height H, and write

F (x) = A
ℓ∏

i=1

(x− γi)
ri ,

where A is the leading coefficient of F , and γ1, . . . , γℓ are the distinct
complex roots of F (x), with multiplicities r1, . . . , rℓ, respectively. Fur-
ther, let n be an integer with n ≥ 2, and put

qi =
n

(n, ri)
(i = 1, . . . , ℓ).

Suppose that (q1, . . . , qℓ) is not a permutation of any of the ℓ-tuples

(q, 1, . . . , 1) (q ≥ 1), (2, 2, 1, . . . , 1).

Then for any finite set S of primes and non-zero rational B, the solu-
tions x, y ∈ QS of the equation

F (x) = Byn

satisfy

max (h(x), h(y)) < C7(B, n,D,H, S),

where C7(B, n,D,H, S) is an effectively computable constant depending
only on B, n,D,H, S.

Proof of Theorem 2.2. First we show that n can be bounded in the
required way. Following the lines of the proof of Theorem 2.1, we
see that it is sufficient to exclude the case when f(x) is of the form
(x ± 1)d. (In the notation of the proof of Theorem 2.1, here we need
to have u = ±1 and v = ±1.) However, this is clearly impossible.
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Hence from this point on we may suppose that n ≥ 2 is fixed. Thus
our statement immediately follows from Lemma 3.7, except in the fol-
lowing two cases:

i) n = 2 and f(x) = h(x)(g(x))2 where deg h = 2 and h(x), g(x) ∈
Z[x];

ii) n is arbitrary and f(x) = (h(x))m(g(x))n, where deg h ≤ 1,
0 ≤ m < n and h(x), g(x) ∈ Z[x].

Clearly, without loss of generality we may assume that all the polyno-
mials f, g, h are monic.

In the case i) write h(x) = x2 + v1x+ v2 and

g(x) = xℓ + u1x
ℓ−1 + . . .+ uℓ.

Clearly, v2 = ±1. Further, we have

g2(x) ≡ x2ℓ + u2
1x

2ℓ−2 + . . .+ u2
ℓ (mod 2).

Thus if v1 is even, then all odd coefficients of h(x)g2(x) are even which
is a contradiction. So v1 must be odd. However, then

h(x)g2(x) ≡ x2ℓ+2 + u2
1x

2ℓ+1 + (u2
1 + 1)x2ℓ + . . . (mod 2).

Thus either the coefficient of x2ℓ+1, or that of x2ℓ is even, but this is
impossible. So case i) cannot hold.

Now consider the case ii). We can be suppose that the polynomials
f, g, h are monic and h(x) = x − 1. (Indeed, if h(x) = x + 1, which
is the only other possibility, then after the substitution x → −x and
multiplying equation (2) by an appropriate power of −1, we are easily
back to this case.) Thus the statement follows from Lemma 3.6. (The
second possibility for f(x) comes from the case h(x) = x+ 1.) �
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