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1. Introduction

By Dirichlet’s unit theorem the unit group of an algebraic number field is finitely generated.
This theorem was later generalized for S-units (see e.g. [9]). A maximal system of
multiplicatively independent units or S-units with bounded heights is often needed in the
applications of Baker’s theory to diophantine equations. Several results can be found in
the literature (see e.g. [13] and [12] and the references given there) which provide effective
upper bounds for the heights of such units. It is, however, more convenient to use systems of
fundamental units with bounded heights. For ordinary units Siegel [14], and for S-units Brindza
[2] derived explicit upper bounds for the heights of fundamental units. The purpose of this paper
is to give another, extended version of Brindza’s theorem. Thanks to its supplements (included
in our Theorem), this new version seems to be even more applicable to effective investigation
of diophantine problems. In the proof we combine some arguments of the papers [14], [15], [7]
and [2].

2. Notation and results

Let K be an algebraic number field of degree n ≥ 2 with discriminant D and class number
h. Let MK be the set of places on K (i.e. equivalence classes of multiplicative valuations on K).
The rational number field Q has only one infinite place ∞, containing the ordinary absolute
value, and a finite place for each prime number p. In ∞ we choose a representative | . |∞ which
is equal to the ordinary absolute value. In the place corresponding to p (which is also denoted
by p) we choose the valuation | . |p such that | p |p = p−1 as representative. In each place v
of MK we choose a valuation as follows. Let p ∈ MQ be such that v | p (i.e. the restrictions
to Q of the valuations in v belong to p; in particular v is infinite if and only if v | ∞). We put
nv = [Kv : Qp], where Kv and Qp denote the completions of K at v and Q at p, respectively.
In v choose the valuation | . |v satisfying

| α |v = | α |nv/n
p for each α in Q.

By these choices for the valuations we have the product formula∏
v∈MK

| α |v = 1 for α ∈ K \ {0} .

Let S∞ be the set of all infinite places on K, and let S be a finite subset of MK containing S∞.
Let s denote the cardinality of S, and let v1, . . . , vs be the elements of S. Denote by OS and
US the set of S-integers and S-units of K, respectively. If α ∈ US then we have∏

v∈S

| α |v = 1 .
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Suppose that s ≥ 2. (That is, only the case of K = Q (
√
−d ) , d > 0 , S = S∞ is excluded.

In this case the unit group US contains roots of unity only.) For an element η of K let h(η)
denote the absolute logarithmic height and NS(η) the S-norm of η, that is

h(η) = log

( ∏
v∈MK

max(1, | η |v)

)
,

NS(η) =

(∏
v∈S

| η |v

)n

.

If S = S∞ then we clearly have NS(η) = | NK/Q(η) |. (For the above definitions and notation
we refer to [7] and [8].) Let p1, . . . , pt be the prime ideals of K corresponding to the finite
valuations of S. By the above-mentioned generalization of Dirichlet’s unit theorem, US is of
rank s− 1. Let {π1, ..., πs−1} be an arbitrary system of fundamental S-units for K. Denote by
RS the absolute value of the determinant of the matrix (log | πi |vj )i,j=1,...,s−1. It is easy to
verify that RS does not depend on the choice of the system of fundamental S-units π1, ..., πs−1.
Then with the above notation we have

Theorem. There exists a system {η1, . . . , ηs−1} of fundamental S-units for K such that

h(η1) . . . h(ηs−1) ≤ c1 , (1)

where

c1 = 2 (s− 1)! (s− 1)s−1
RS ,

and

h(ηi) ≤ c1

(
6n3

log n

)s−2

, 1 ≤ i ≤ s− 1.

Further, the elements eij of the inverse of the matrix (log | ηi |vj
)
i,j=1,...,s−1

satisfy

| eij | ≤ c2 , i, j = 1, . . . , s− 1 (2)

with

c2 = 22−s (s− 1)! (s− 2)!
6n4

log n
.

Moreover, every S-integer α of K can be written in the form

α = β ηk1
1 . . . η

ks−1
s−1 , (3)

where

h(β) <
s

5
2

2
c3 +

1
n

log NS(α) .

Here k1, . . . , ks−1 are rational integers satisfying

max
1≤i≤s−1

| ki | < c1 (s− 1)! (
s

5
2

2
c3 +

1
n

log NS(α) ) (6n4/ log n)
s+2

h(α) ,

with

c3 =
(s− 1) c1

(log n/6n3)s−2 .
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Remark. Put P = max
1≤j≤t

(e,Norm pj). It should be observed that our estimates are

independent of P .
Brindza [2] proved the estimate

h(π1) . . . h(πs−1) < s!((6n3/ log n)
n | D | log P )

s

for a system of fundamental S-units π1, . . . , πs−1, where the upper bound depends on D and
P instead of RS . A similar estimate can be deduced from (1) by estimating RS from above
in terms of D and P . Indeed, denote by ω the number of roots of unity in K and by r1 and
2r2, respectively, the number of real and non-real embeddings of K into the field of complex
numbers. Following an argument of Pethő [12] one can estimate the S-regulator RS in the
following way:

RS ≤ 4ω

2r1+r2πr2h

(
e

n− 1

)n−1

(h log P )s−r1−r2 | D |
1
2 (log | D |)n−1

.

By the inequality ω ≤ 4n log log (n + 7) (see [11]) and by an upper bound for hRS∞ obtained
by Siegel [14] and a lower bound for RS∞ due to Zimmert [16] we get

RS ≤
(

300 log P | D |
1
2

(e

2
log | D |

)n−1
)s−n

2

.

A variant of (1) and (2) was obtained by Stark [15], but only for ordinary, multiplicatively
independent units. For multiplicatively independent S-units, analogues of (3) were given by
Coates [5], Evertse and Győry [7] and Pethő [12].

3. Proof

We keep the notation of Section 2. For η ∈ K put

| η |S = max
1≤i≤s

| η |vi .

Further, for η ∈ US write
L(η) = max

1≤i≤s−1
| log | η |vi

| .

To the proof of the Theorem we need two lemmas.

Lemma 1. There exists a system {ξ1, . . . , ξs−1} of multiplicatively independent S-units in
K for which

L(ξ1) . . . L(ξs−1) ≤ RS .

Proof. In the special case S = S∞, Lemma 1 is proved in [13] (cf. Lemma A.13, p.22). The
whole argument can trivially be adapted to the general case, and Lemma 1 follows.

Lemma 2. Let η be an S-unit, which is not a root of unity. Then we have

6n4

log n
L(η) ≥ 1 . (4)

Proof. If η is an ordinary unit, then | η |vj
= 1 for all finite valuations vj ∈ S. Then

log | η |S ≤ n L(η)
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(see [13] p. 22), and by a result of Dobrowolski [6] we have

L(η) ≥ log n

6n4
,

which implies (4). Next suppose that | η |vj
6= 1 for some finite valuation vj ∈ S. If

| η |vj
≤ 1, then | η |vj

≤ 1
21/n , whence

− log | η |vj
≥ 1

n
log 2 .

While if | η |vj
> 1, then | (η−1) |vj

< 1 and so

log | η |vj
≥ 1

n
log 2 .

Thus we get L(η) ≥ 1
n log 2, whence (4) follows.

Proof of the Theorem. By Lemma 1 there are multiplicatively independent S-units ξ1, . . . , ξs−1

for which
L(ξ1) . . . L(ξs−1) ≤ RS . (5)

We can suppose that
L(ξ1) ≤ . . . ≤ L(ξs−1) .

Denote by R the set of real numbers. The function L(x) = max
1≤i≤s−1

| xi | , x ∈ Rs−1,

x = (x1, . . . , xs−1), is a convex distance function on Rs−1 (see the proof of Lemma 3 in [3]),
hence there are η1, . . . , ηs−1 fundamental S-units with

L(ηi) ≤ max (1,
i

2
) L(ξi) , i = 1, . . . , s− 1 (6)

(cf. [4], Lemma 8, p.135 and [2]). By h(ηi) ≤ 2(s − 1)L(ηi), i = 1, ..., s − 1, (5) and (6), we
have

h(η1) . . . h(ηs−1) ≤ 2 (s− 1)! (s− 1)s−1
RS . (7)

For any nonzero η ∈ OS which is not a root of unity the inequality

h(η) ≥ log | η |S ≥ min (
log n

6n3
,
1
n

log 2) =
log n

6n3
(8)

holds. Together with (7) this implies

h(ηi) ≤ 2 (s− 1)! (s− 1)s−1

(
6n3

log n

)s−2

RS , 1 ≤ i ≤ s− 1, (9)

and the first part of the Theorem is proved.
To the proof of (2) denote by E the matrix (log | ηi |vj

)
i,j=1,...,s−1

, and by eij the elements

of the inverse of E , i, j=1, . . . , s−1 . By Lemma 2 and (5), (6) we obtain

s−1∏
i=1
i 6=k

L(ηi) ≤ 6n4

log n

(s− 1)!
2s−2

RS .
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Hence we get by Cramer’s rule

| eij | ≤
6n4

log n
22−s (s− 1)! (s− 2)! = c2 ,

and (2) is proved.

Now we turn to the proof of the third part of the Theorem. For a given S-integer α
of K we denote by V(α) the vector ( log | α |v − 1

sn log NS(α) )v∈S (see [7]). The image
of the S-units of K under this map is a lattice in the logarithmic space (see [1], Chapter
2 and [2]). The diameter of the fundamental domain of this lattice spanned by the basis
(log | η1 |v)v∈S , . . . , (log | ηs−1 |v)v∈S is clearly less than

s−1∑
j=1

√√√√ s∑
i=1

log2 | ηj |vi
.

Then, by (8) and (9), we have

| log | ηi |v| ≤ (s− 1) log | ηi |S ≤ (s− 1) h(ηi) ≤ c3

for v ∈ S and i = 1, . . . , s− 1 . Thus we have

1
2

s−1∑
j=1

√√√√ s∑
i=1

log2 | ηj |vi
≤ 1

2
c3 (s− 1)

√
s .

Hence there are rational integers k1, . . . , ks−1 with

| V (α)− V (η1
k1 . . . ηs−1

ks−1) | ≤ 1
2

c3 (s− 1)
√

s .

It yields

h(α η1
−k1 . . . ηs−1

−ks−1) <
s

5
2

2
c3 +

1
n

log NS(α) .

To obtain a bound for | ki |, i=1, . . . , s−1, put β = α η−k1
1 ...η

−ks−1
s−1 and consider the following

equation:

1 =
α

β
η−k1
1 ...η

−ks−1
s−1 .

Now using a theorem of [10] and following an argument of [2], we get

max
1≤i≤s−1

| ki | ≤ c1 (s− 1)! ω (6n4/ log n)
s+1

h(α) h(β) .

Since ω ≤ 4n log log (n + 7), the Theorem is proved.

I would like to thank B. Brindza, K. Győry, A. Pethő and Á. Pintér for their valuable
remarks.
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