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Introduction. Let N be the set of positive integers. It is easy to
see that a set A C N of upper asymptotic density

— 1 1

F(A) = limsup— > 1>

(A) im sup — 1> 5
neAn<x

contains two numbers and their sum. An analogous statement for the
product fails, even if §*(A) is arbitrarily close to 1, as the following
example shows

> — 1
A= J{n e NP < < PR2), F(A)=1-7.

k=0
However we shall prove

Theorem 1. If a set A C N has upper Dirichlet density
D(A) = limsup(s — 1) Z — > -

s—1+

then for every x there exist three distinct numbers hq, ho, hs in A all
greater than x such that

(1) hihohs = O
Corollary 1. If a set A C N has lower asymptotic density
1 1
0*(A) = liminf — 1> =
(A) e x Z 2

neAN<x

or lower logarithmic density

D,;(A) = liminf ! Z 1 >

z—oo logx

Y

DN | —

neAn<z

then the assertion of Theorem 1 holds.

Remark 1. The example of the set of integers with odd total number
of prime factors, which has density 1/2 (see [1],§167), but no three
elements h; satisfying (1) shows that the constant 1/2 in Theorem 1

ist best possible.
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In the sequel we shall use the following notation: w(m), (m) and
7(m) are the number of distinct prime factors, the total number of
prime factors and the number of divisors of m, respectively.

For S C N we put

S(x) = Z 1 and 7(n,S) = Z 1forz>0,neN
neSn<lz d|n,deS

Theorem 1 is a consequence of the following two theorems

Theorem 2. Let m be a positive integer, and write
D :={d: d divides m}.

Let 'H be an arbitrary subset of D with |H| > |D|/2. Then there exist
hi,ho, hs € H such that hihohs = 0. Further, if m > 1 is not square-
free, and is neither of the form p2py or pi* (2 < ny < 4), then the above
hi,ho, hs € H can be chosen to be distinct.

Remark 2. For every € > 0 there exist m € N and a set ‘H of
divisors of m such that |H| > (1 — €)7(m) and H does not contain two
numbers together with their product.

Theorem 3. Assume that A, B C N satisfy the condition:

ZneA #

(2) D(A, B) = limsup =415 > q.
s—1+ neEB ns
Then there exists m € N such that
(3) 7(m, A) > at(m, B).
Corollary 2. Assume that A,B C N satisfy the condition: either
.. A 1
(4) lim inf >a >0 and — = 00,
n—oo 3(n) neZBn
or
(5) D(A) > aD(B), or D(A) > aD(B).

Then there ezists m € N satisfying (3).
Theorems 2 and 3 imply also the following

Theorem 4. If a set A consists entirely of squarefree numbers and

— 3
then for every x > 0 there exist three distinct numbers hy, ho, hy in A
all greater than x satisfying (1). Also there exist two numbers a,b in
A greater than x such that a/b is a prime.
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2. Proof of Theorem 2 We start with proving the existence of
some (not necessarily distinct) hq, ho, hy € H with hihohs = O.

For m = 1 the statement is trivial. So assume that m > 1 and write
m = pi'...p.F, where py, ..., py are distinct primes and the exponents
ny,...,n are positive integers. Introduce the following equivalence
relation on D: for dq,ds € D put

dy ~ dy if and only if didy = 0.

We label the equivalence classes of (D, ~) by binary k-tuples a, i.e. by
tuples of the form

a=(ay,...,a;) with a; € {0,1} fori=1,... k.

A divisor d of m of the form d = pi' .. .p};’“ with 0 < t; < n; (i =
1,...,k) belongs to the class a if and only if ¢; = a; (mod 2) for all
1 =1,..., k. First observe that if there exists an h € H such that h
belongs to the class 0 = (0,0,...,0), then by the choice hy = hy =
hs = h we have hihohs = [, and the statement follows. So from this
point on we assume that H does not contain such an h.

Denote by ¢, the number of elements in the class a of (D,~). A
simple calculation yields that

where
1/2, if n; is odd,
€ai = {0, if n; is even and a; = 1,
1, if n; is even and a; = 0.
Let

A = {a : there exists an h € H belonging to the class a of (D, ~)}.

Then our assumption H > D/2 implies that

which yields
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By the definition of €,;, after multiplying both sides by 2% and can-
celling the factors corresponding to the odd exponents n;, we obtain

(6) > i+ 6ai) > 2 [ [ (i + 1),

acA iel el

where I = {i € {1,...,k} :n; is even} and for all i € [

5. — O, if CLZ‘:L
“ )2, ifa; =0,

After expanding both sides of inequality (6), we get linear combinations
of terms of the shape n;, ...n; with distinct indices 4,...,74; € 1.
Obviously, the coefficients of all terms n;, ...n;, at the right hand side
of (6) are 2*=1. If I # (), since 0 ¢ A, the constant term at the left hand
side of (6) is zero. Let s;, . ;, denote the coefficient of the corresponding
non-constant term at the left hand side. Observe that in the summand
corresponding to an @ € A the term n;, ...n; occurs if and only if
0o # 0 for all ¢ € T', where T'= I \ {i1,...,4}. Note that by [ > 0 we
have |T'| < k. By the definition of the d,; we have

(7) Sitiy = 2‘T| ’ ’3‘7

where
B={acA:aq;=0forallieT}.
Then to have inequality (6), for at least one of these coefficients

(8) Sityeyiy = Zk_l
must be valid. Combining (7) and (8) we obtain that
(9) |B| > 2k~ 1711,

The same inequality is true for I = ) = T, B = A. Observe that
if |T| = k — 1, then by 0 ¢ B we have |B| < 1, contradicting (9).
Hence we may suppose that |T'| < k—2. In this case we define a graph
V' in the following way. The vertices of V' are those binary k-tuples
(r1,...,rg) for which r; = 0 holds for all i € T'. Two such tuples = and
y are connected with an edge if and only if their sum modulo 2 belongs
to B. Obviously, the number of vertices of V is 2¢~!71, and each vertex
x of V' is connected exactly to |B| other vertices y of V. (Note that as
0 ¢ B, for all such y we have x # y.) Thus using (9), for the number
of edges |E| of V' we get

’E| — 2k7|T|71 . ‘B’ > 2k7|T\71 . 2k7\T\71.

Now Turdn’s theorem (see [3]) yields that V' contains a triangle. If
the vertices of this triangle are z,y, z, then we have that b; = x + v,
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by = x + z and b3 = y + z (all taken modulo 2) are distinct elements of
B. This yields that

(10) b1+b2:2x+y—|—22y+z:b3

modulo 2. Hence taking arbitrary hq, he, hs € H from the classes
b1, by, bs of (D, ~), respectively, we have hihahy = [, and the state-
ment follows.

Now we prove that under the further assumptions, the elements
hi, ho, hs € H with hihohs = [ can be chosen to be distinct. First
observe that if hihohs = [ such that none of Ay, ho, hs belongs to the
class 0 of (D, ~), then they are necessarily distinct and we are done.
So we can restrict our attention to the case when there exists a h; € H
such that h; belongs to the class 0, that is, hy is a square. Observe that
then if for any distinct ho, hs € H with hy ¢ {hg, hs} we have hy ~ hs,
then hihohs = [, and the statement follows. Thus in this case H may
contain only at most one element from each class of (D, ~) different
from 0. Further, obviously H may contain at most two elements from
0. Moreover, from the proof of the first part of the theorem it follows
that if H contains elements from more than 2~ classes of (D, ~) out-
side the class 0, then we are done. (In fact this follows from the fact
that by, by, bs are distinct in (10).) This altogether yields that

D _ 1y
214 9> L + 1
+2> [H| > 5 QE(nz—l— )
must be valid, which gives

k
(11) ¢ +4> [[ni+1).

i=1
Consider first the case when k£ > 3. Then since m is not square-free by
assumption, we have
k
[J(ni+1) >3- 28" =2k 2671,
i=1
which by (11) yields a contradiction. Assume next that & = 2. Then
(11) gives
8> (n1+1)(ng +1).
However, since m is assumed to be neither of the form pyp, or p?ps,
we get a contradiction again. Finally, let £k = 1 and m is of the form

m = py* with ny > 5. Then (11) provides a trivial contradiction, and
the statement follows.
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Remark 3. The prescribed assumptions to have three distinct divisors
hi,hs, hg € H such that hihohs = [ are necessary. One can easily
check that in each case below we have |H| > D/2, however, we do not
have three distinct elements in ‘H with the required property.

o If m =1, then take H = {1}.
e Let m be of the shape m = p?py, where py, py are distinct primes.
Take H = {17p17p27p%p2}'

e Let m be of the form m = pi"*, where p; is a prime and 2 < n; < 4.
Choose H = {1, p1, p?}.

e Finally, if m > 1 is an arbitrary square-free integer, then let
H ={d:d|m and has an odd number of prime divisors} U {1}.

Proof of Remark 2. Take y so large that

1 ¥ 2 €
_ —z%/2 — -
e x> 1 )

V2T /y 2

and n > 3y?, m squarefree with w(m) = n and

H = {d|m - %Q(m) < Qd) < gQ(m)}.

Clearly a,b € H implies ab ¢ H. On the other hand

STLCEERND S () E D DI (4]

gnsk<in 5-§vnsh<i+ivn

By de Moivre-Laplace theorem the right hand side tends to

1 ¥ 2 €
_ —z%/2 — -
e x> 1 )

V2T /y 2

hence for n large enough it is greater than 1 — e.
3. Proof of Theorem 3. By virtue of (2) there exists s > 1 such

that
1 1
DoETad
neA n neB n
Multiplying this inequality by ((s) = >, % we obtain
o 7A o ’B
S A0y TR
n=1 n’ n=1 ne

thus there exists m € N satisfying (3).



MULTIPLICATIVE PROPERTIES OF SETS OF POSITIVE INTEGERS 7

Proof of Corollary 2. If (4) holds, then by a known theorem (see
[2],p. 93)

D(A, B) > liminf .;l(n) >

w B(n)

and Theorem 3 applies.
If (5) holds, then

D(A, B) = limsup ((s —1) Z %/(S -1 Z %)

sl neA neB

D(A) D(A)
= max (% | M) -

where ¢/0 = oo for ¢ > 0. Theorem 3 applies again and gives (3).
Proof of Theorem 1. Apply Theorem 3 to the sets B = N and

(12) A=A\ {1,2,...,[2]}\ {1%,2%, .. .}.

Since D(A’) = D(A) we have D(A’) > 1/2 and by Theorem 3 there
exists an m such that

1
(13) 7(m, A") > §T(m).
Now by Theorem 2 m has divisors h; € A'(i = 1,2,3) satisfying (1).
However by the definition of A": h; > x and h; # O, thus h; are
distinct.
Proof of Corollary 1. We have (see [2], p. 87 and 97)

D(A) = D(A) = Di(A) = 6" (A)

Proof of Theorem 4. Apply Theorem 3 to the set B of squarefree
numbers and the set A’ given by (12). Since D(B) = 6/7% (see [1],
§152) we infer from Theorem 3 the existence of a number n such that

7(n, A) > %T(n, B).

Let m be the greatest squarefree divisor of n. Then every squarefree
divisor of n is a divisor of m and we obtain (13). Further proof is the
same as for Theorem 1. In order to prove the second part of Theorem
4 take a prime factor p of m. All divisors of m split into %T(m) pairs
{d,pd}, where d|*. By (13) there exists d such that d € A" and pd € A".
It suffices to take a = pd, b = d.



L. HAJDU, A. SCHINZEL, M. SKALBA

REFERENCES

[1] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Reprint
Chelsea 1953.

[2] H. Ostmann, Additive Zahlentheorie, Erster Teil, Berlin 1956.

[3] P. Turan, An extremal problem in graph theory, Collected papers, 231-250.



