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Introduction. Let N be the set of positive integers. It is easy to
see that a set A ⊆ N of upper asymptotic density

δ∗(A) = lim sup
x→∞

1

x

∑
n∈A,n≤x

1 >
1

2

contains two numbers and their sum. An analogous statement for the
product fails, even if δ∗(A) is arbitrarily close to 1, as the following
example shows

Al =
∞⋃

k=0

{n ∈ N : l3k+1 ≤ n < l3k+2}, δ∗(Al) = 1− 1

l
.

However we shall prove

Theorem 1. If a set A ⊆ N has upper Dirichlet density

D(A) = lim sup
s→1+

(s− 1)
∑
n∈A

1

ns
>

1

2
,

then for every x there exist three distinct numbers h1, h2, h3 in A all
greater than x such that

(1) h1h2h3 = �.

Corollary 1. If a set A ⊆ N has lower asymptotic density

δ∗(A) = lim inf
x→∞

1

x

∑
n∈A,n≤x

1 >
1

2

or lower logarithmic density

Dl(A) = lim inf
x→∞

1

log x

∑
n∈A,n≤x

1

n
>

1

2
,

then the assertion of Theorem 1 holds.

Remark 1. The example of the set of integers with odd total number
of prime factors, which has density 1/2 (see [1],§167), but no three
elements hi satisfying (1) shows that the constant 1/2 in Theorem 1
ist best possible.
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In the sequel we shall use the following notation: ω(m), Ω(m) and
τ(m) are the number of distinct prime factors, the total number of
prime factors and the number of divisors of m, respectively.

For S ⊆ N we put

S(x) =
∑

n∈S,n≤x

1 and τ(n, S) =
∑

d|n,d∈S

1 for x > 0, n ∈ N

Theorem 1 is a consequence of the following two theorems

Theorem 2. Let m be a positive integer, and write

D := {d : d divides m}.
Let H be an arbitrary subset of D with |H| > |D|/2. Then there exist
h1, h2, h3 ∈ H such that h1h2h3 = �. Further, if m > 1 is not square-
free, and is neither of the form p2

1p2 or pn1
1 (2 ≤ n1 ≤ 4), then the above

h1, h2, h3 ∈ H can be chosen to be distinct.

Remark 2. For every ε > 0 there exist m ∈ N and a set H of
divisors of m such that |H| > (1− ε)τ(m) and H does not contain two
numbers together with their product.

Theorem 3. Assume that A,B ⊆ N satisfy the condition:

(2) D(A,B) = lim sup
s→1+

∑
n∈A

1
ns∑

n∈B
1
ns

> α.

Then there exists m ∈ N such that

(3) τ(m,A) > ατ(m,B).

Corollary 2. Assume that A,B ⊆ N satisfy the condition: either

(4) lim inf
n→∞

A(n)

B(n)
> α > 0 and

∑
n∈B

1

n
=∞,

or

(5) D(A) > αD(B), or D(A) > αD(B).

Then there exists m ∈ N satisfying (3).

Theorems 2 and 3 imply also the following

Theorem 4. If a set A consists entirely of squarefree numbers and

D(A) >
3

π2

then for every x > 0 there exist three distinct numbers h1, h2, h3 in A
all greater than x satisfying (1). Also there exist two numbers a, b in
A greater than x such that a/b is a prime.
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2. Proof of Theorem 2 We start with proving the existence of
some (not necessarily distinct) h1, h2, h3 ∈ H with h1h2h3 = �.

For m = 1 the statement is trivial. So assume that m > 1 and write
m = pn1

1 . . . pnk
k , where p1, . . . , pk are distinct primes and the exponents

n1, . . . , nk are positive integers. Introduce the following equivalence
relation on D: for d1, d2 ∈ D put

d1 ∼ d2 if and only if d1d2 = �.

We label the equivalence classes of (D,∼) by binary k-tuples a, i.e. by
tuples of the form

a = (a1, . . . , ak) with ai ∈ {0, 1} for i = 1, . . . , k.

A divisor d of m of the form d = pt1
1 . . . p

tk
k with 0 ≤ ti ≤ ni (i =

1, . . . , k) belongs to the class a if and only if ti ≡ ai (mod 2) for all
i = 1, . . . , k. First observe that if there exists an h ∈ H such that h
belongs to the class 0 = (0, 0, . . . , 0), then by the choice h1 = h2 =
h3 = h we have h1h2h3 = �, and the statement follows. So from this
point on we assume that H does not contain such an h.

Denote by ca the number of elements in the class a of (D,∼). A
simple calculation yields that

ca =
k∏

i=1

(ni

2
+ εa,i

)
,

where

εa,i =


1/2, if ni is odd,

0, if ni is even and ai = 1,

1, if ni is even and ai = 0.

Let

A = {a : there exists an h ∈ H belonging to the class a of (D,∼)}.

Then our assumption H > D/2 implies that∑
a∈A

ca >
|D|
2
,

which yields ∑
a∈A

k∏
i=1

(ni

2
+ εa,i

)
>

1

2

k∏
i=1

(ni + 1).
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By the definition of εa,i, after multiplying both sides by 2k and can-
celling the factors corresponding to the odd exponents ni, we obtain

(6)
∑
a∈A

∏
i∈I

(ni + δa,i) > 2k−1
∏
i∈I

(ni + 1),

where I = {i ∈ {1, . . . , k} : ni is even} and for all i ∈ I

δa,i =

{
0, if ai = 1,

2, if ai = 0.

After expanding both sides of inequality (6), we get linear combinations
of terms of the shape ni1 . . . nil with distinct indices i1, . . . , il ∈ I.
Obviously, the coefficients of all terms ni1 . . . nil at the right hand side
of (6) are 2k−1. If I 6= ∅, since 0 /∈ A, the constant term at the left hand
side of (6) is zero. Let si1,...,il denote the coefficient of the corresponding
non-constant term at the left hand side. Observe that in the summand
corresponding to an a ∈ A the term ni1 . . . nil occurs if and only if
δa,i 6= 0 for all i ∈ T , where T = I \ {i1, . . . , il}. Note that by l > 0 we
have |T | < k. By the definition of the δa,i we have

(7) si1,...,il = 2|T | · |B|,
where

B = {a ∈ A : ai = 0 for all i ∈ T}.
Then to have inequality (6), for at least one of these coefficients

(8) si1,...,il > 2k−1

must be valid. Combining (7) and (8) we obtain that

(9) |B| > 2k−|T |−1.

The same inequality is true for I = ∅ = T , B = A. Observe that
if |T | = k − 1, then by 0 /∈ B we have |B| ≤ 1, contradicting (9).
Hence we may suppose that |T | ≤ k−2. In this case we define a graph
V in the following way. The vertices of V are those binary k-tuples
(r1, . . . , rk) for which ri = 0 holds for all i ∈ T . Two such tuples x and
y are connected with an edge if and only if their sum modulo 2 belongs
to B. Obviously, the number of vertices of V is 2k−|T |, and each vertex
x of V is connected exactly to |B| other vertices y of V . (Note that as
0 /∈ B, for all such y we have x 6= y.) Thus using (9), for the number
of edges |E| of V we get

|E| = 2k−|T |−1 · |B| > 2k−|T |−1 · 2k−|T |−1.

Now Turán’s theorem (see [3]) yields that V contains a triangle. If
the vertices of this triangle are x, y, z, then we have that b1 = x + y,
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b2 = x+ z and b3 = y+ z (all taken modulo 2) are distinct elements of
B. This yields that

(10) b1 + b2 = 2x+ y + z = y + z = b3

modulo 2. Hence taking arbitrary h1, h2, h3 ∈ H from the classes
b1, b2, b3 of (D,∼), respectively, we have h1h2h3 = �, and the state-
ment follows.

Now we prove that under the further assumptions, the elements
h1, h2, h3 ∈ H with h1h2h3 = � can be chosen to be distinct. First
observe that if h1h2h3 = � such that none of h1, h2, h3 belongs to the
class 0 of (D,∼), then they are necessarily distinct and we are done.
So we can restrict our attention to the case when there exists a h1 ∈ H
such that h1 belongs to the class 0, that is, h1 is a square. Observe that
then if for any distinct h2, h3 ∈ H with h1 /∈ {h2, h3} we have h2 ∼ h3,
then h1h2h3 = �, and the statement follows. Thus in this case H may
contain only at most one element from each class of (D,∼) different
from 0. Further, obviously H may contain at most two elements from
0. Moreover, from the proof of the first part of the theorem it follows
that if H contains elements from more than 2k−1 classes of (D,∼) out-
side the class 0, then we are done. (In fact this follows from the fact
that b1, b2, b3 are distinct in (10).) This altogether yields that

2k−1 + 2 ≥ |H| > |D|
2

=
1

2

k∏
i=1

(ni + 1)

must be valid, which gives

(11) 2k + 4 >
k∏

i=1

(ni + 1).

Consider first the case when k ≥ 3. Then since m is not square-free by
assumption, we have

k∏
i=1

(ni + 1) ≥ 3 · 2k−1 = 2k + 2k−1,

which by (11) yields a contradiction. Assume next that k = 2. Then
(11) gives

8 > (n1 + 1)(n2 + 1).

However, since m is assumed to be neither of the form p1p2 or p2
1p2,

we get a contradiction again. Finally, let k = 1 and m is of the form
m = pn1

1 with n1 ≥ 5. Then (11) provides a trivial contradiction, and
the statement follows.



6 L. HAJDU, A. SCHINZEL, M. SKA LBA

Remark 3. The prescribed assumptions to have three distinct divisors
h1, h2, h3 ∈ H such that h1h2h3 = � are necessary. One can easily
check that in each case below we have |H| > D/2, however, we do not
have three distinct elements in H with the required property.

• If m = 1, then take H = {1}.
• Let m be of the shape m = p2

1p2, where p1, p2 are distinct primes.
Take H = {1, p1, p2, p

2
1p2}.

• Let m be of the form m = pn1
1 , where p1 is a prime and 2 ≤ n1 ≤ 4.

Choose H = {1, p1, p
2
1}.

• Finally, if m > 1 is an arbitrary square-free integer, then let

H = {d : d | m and has an odd number of prime divisors} ∪ {1}.

Proof of Remark 2. Take y so large that

1√
2π

∫ y

−y

e−x2/2dx > 1− ε

2
,

and n > 3y2, m squarefree with ω(m) = n and

H = {d|m :
1

3
Ω(m) ≤ Ω(d) <

2

3
Ω(m)}.

Clearly a, b ∈ H implies ab /∈ H. On the other hand

1

τ(m)
|H| = 2−n

∑
1
3
n≤k< 2

3
n

(
n

k

)
> 2−n

∑
n
2
− y

2

√
n≤k< n

2
+ y

2

√
n

(
n

k

)
.

By de Moivre-Laplace theorem the right hand side tends to

1√
2π

∫ y

−y

e−x2/2dx > 1− ε

2
,

hence for n large enough it is greater than 1− ε.
3. Proof of Theorem 3. By virtue of (2) there exists s > 1 such

that ∑
n∈A

1

ns
> α

∑
n∈B

1

ns
.

Multiplying this inequality by ζ(s) =
∑∞

n=1
1
ns we obtain

∞∑
n=1

τ(n,A)

ns
> α

∞∑
n=1

τ(n,B)

ns
,

thus there exists m ∈ N satisfying (3).
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Proof of Corollary 2. If (4) holds, then by a known theorem (see
[2],p. 93)

D(A,B) ≥ lim inf
n→∞

A(n)

B(n)
> α

and Theorem 3 applies.
If (5) holds, then

D(A,B) = lim sup
s→1+

(
(s− 1)

∑
n∈A

1

ns
/(s− 1)

∑
n∈B

1

ns

)

≥ max

(
D(A)

D(B)
,
D(A)

D(B)

)
> α

where c/0 =∞ for c > 0. Theorem 3 applies again and gives (3).
Proof of Theorem 1. Apply Theorem 3 to the sets B = N and

(12) A′ = A \ {1, 2, . . . , [x]} \ {12, 22, . . .}.

Since D(A′) = D(A) we have D(A′) > 1/2 and by Theorem 3 there
exists an m such that

(13) τ(m,A′) > 1

2
τ(m).

Now by Theorem 2 m has divisors hi ∈ A′(i = 1, 2, 3) satisfying (1).
However by the definition of A′: hi > x and hi 6= �, thus hi are
distinct.

Proof of Corollary 1. We have (see [2], p. 87 and 97)

D(A) ≥ D(A) ≥ Dl(A) ≥ δ∗(A)

Proof of Theorem 4. Apply Theorem 3 to the set B of squarefree
numbers and the set A′ given by (12). Since D(B) = 6/π2 (see [1],
§152) we infer from Theorem 3 the existence of a number n such that

τ(n,A′) > 1

2
τ(n,B).

Let m be the greatest squarefree divisor of n. Then every squarefree
divisor of n is a divisor of m and we obtain (13). Further proof is the
same as for Theorem 1. In order to prove the second part of Theorem
4 take a prime factor p of m. All divisors of m split into 1

2
τ(m) pairs

{d, pd}, where d|m
p

. By (13) there exists d such that d ∈ A′ and pd ∈ A′.
It suffices to take a = pd, b = d.
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