MULTIPLICATIVE PROPERTIES OF SETS OF POSITIVE INTEGERS

L. HAJDU, A. SCHINZEL, M. SKAŁBA

Introduction. Let \mathbb{N} be the set of positive integers. It is easy to see that a set $\mathcal{A} \subseteq \mathbb{N}$ of upper asymptotic density

$$
\overline{\delta^{*}}(\mathcal{A})=\limsup _{x \rightarrow \infty} \frac{1}{x} \sum_{n \in \mathcal{A}, n \leq x} 1>\frac{1}{2}
$$

contains two numbers and their sum. An analogous statement for the product fails, even if $\overline{\delta^{*}}(\mathcal{A})$ is arbitrarily close to 1 , as the following example shows

$$
\mathcal{A}_{l}=\bigcup_{k=0}^{\infty}\left\{n \in \mathbb{N}: l^{3 k+1} \leq n<l^{3 k+2}\right\}, \quad \overline{\delta^{*}}\left(\mathcal{A}_{l}\right)=1-\frac{1}{l}
$$

However we shall prove
Theorem 1. If a set $\mathcal{A} \subseteq \mathbb{N}$ has upper Dirichlet density

$$
\bar{D}(\mathcal{A})=\limsup _{s \rightarrow 1+}(s-1) \sum_{n \in \mathcal{A}} \frac{1}{n^{s}}>\frac{1}{2},
$$

then for every x there exist three distinct numbers h_{1}, h_{2}, h_{3} in \mathcal{A} all greater than x such that

$$
\begin{equation*}
h_{1} h_{2} h_{3}=\square . \tag{1}
\end{equation*}
$$

Corollary 1. If a set $\mathcal{A} \subseteq \mathbb{N}$ has lower asymptotic density

$$
\delta^{*}(\mathcal{A})=\liminf _{x \rightarrow \infty} \frac{1}{x} \sum_{n \in \mathcal{A}, n \leq x} 1>\frac{1}{2}
$$

or lower logarithmic density

$$
\underline{D}_{l}(\mathcal{A})=\liminf _{x \rightarrow \infty} \frac{1}{\log x} \sum_{n \in \mathcal{A}, n \leq x} \frac{1}{n}>\frac{1}{2},
$$

then the assertion of Theorem 1 holds.
Remark 1. The example of the set of integers with odd total number of prime factors, which has density $1 / 2$ (see [1],§167), but no three elements h_{i} satisfying (1) shows that the constant $1 / 2$ in Theorem 1 ist best possible.

In the sequel we shall use the following notation: $\omega(m), \Omega(m)$ and $\tau(m)$ are the number of distinct prime factors, the total number of prime factors and the number of divisors of m, respectively.

For $S \subseteq \mathbb{N}$ we put

$$
S(x)=\sum_{n \in S, n \leq x} 1 \text { and } \tau(n, S)=\sum_{d \mid n, d \in S} 1 \text { for } x>0, n \in \mathbb{N}
$$

Theorem 1 is a consequence of the following two theorems
Theorem 2. Let m be a positive integer, and write

$$
\mathcal{D}:=\{d: d \text { divides } m\} .
$$

Let \mathcal{H} be an arbitrary subset of \mathcal{D} with $|\mathcal{H}|>|\mathcal{D}| / 2$. Then there exist $h_{1}, h_{2}, h_{3} \in \mathcal{H}$ such that $h_{1} h_{2} h_{3}=\square$. Further, if $m>1$ is not squarefree, and is neither of the form $p_{1}^{2} p_{2}$ or $p_{1}^{n_{1}}\left(2 \leq n_{1} \leq 4\right)$, then the above $h_{1}, h_{2}, h_{3} \in \mathcal{H}$ can be chosen to be distinct.

Remark 2. For every $\epsilon>0$ there exist $m \in \mathbb{N}$ and a set \mathcal{H} of divisors of m such that $|\mathcal{H}|>(1-\epsilon) \tau(m)$ and \mathcal{H} does not contain two numbers together with their product.

Theorem 3. Assume that $\mathcal{A}, \mathcal{B} \subseteq \mathbb{N}$ satisfy the condition:

$$
\begin{equation*}
\bar{D}(\mathcal{A}, \mathcal{B})=\limsup _{s \rightarrow 1+} \frac{\sum_{n \in \mathcal{A}} \frac{1}{n^{s}}}{\sum_{n \in \mathcal{B}} \frac{1}{n^{s}}}>\alpha . \tag{2}
\end{equation*}
$$

Then there exists $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\tau(m, \mathcal{A})>\alpha \tau(m, \mathcal{B}) \tag{3}
\end{equation*}
$$

Corollary 2. Assume that $\mathcal{A}, \mathcal{B} \subseteq \mathbb{N}$ satisfy the condition: either

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\mathcal{A}(n)}{\mathcal{B}(n)}>\alpha>0 \text { and } \sum_{n \in \mathcal{B}} \frac{1}{n}=\infty \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{D}(\mathcal{A})>\alpha \bar{D}(\mathcal{B}), \text { or } \underline{D}(\mathcal{A})>\alpha \underline{D}(\mathcal{B}) \tag{5}
\end{equation*}
$$

Then there exists $m \in \mathbb{N}$ satisfying (3).
Theorems 2 and 3 imply also the following
Theorem 4. If a set \mathcal{A} consists entirely of squarefree numbers and

$$
\bar{D}(\mathcal{A})>\frac{3}{\pi^{2}}
$$

then for every $x>0$ there exist three distinct numbers h_{1}, h_{2}, h_{3} in \mathcal{A} all greater than x satisfying (1). Also there exist two numbers a, b in \mathcal{A} greater than x such that a / b is a prime.
2. Proof of Theorem 2 We start with proving the existence of some (not necessarily distinct) $h_{1}, h_{2}, h_{3} \in \mathcal{H}$ with $h_{1} h_{2} h_{3}=\square$.

For $m=1$ the statement is trivial. So assume that $m>1$ and write $m=p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}$, where p_{1}, \ldots, p_{k} are distinct primes and the exponents n_{1}, \ldots, n_{k} are positive integers. Introduce the following equivalence relation on \mathcal{D} : for $d_{1}, d_{2} \in \mathcal{D}$ put

$$
d_{1} \sim d_{2} \text { if and only if } d_{1} d_{2}=\square
$$

We label the equivalence classes of (\mathcal{D}, \sim) by binary k-tuples \underline{a}, i.e. by tuples of the form

$$
\underline{a}=\left(a_{1}, \ldots, a_{k}\right) \text { with } a_{i} \in\{0,1\} \text { for } i=1, \ldots, k .
$$

A divisor d of m of the form $d=p_{1}^{t_{1}} \ldots p_{k}^{t_{k}}$ with $0 \leq t_{i} \leq n_{i}(i=$ $1, \ldots, k)$ belongs to the class \underline{a} if and only if $t_{i} \equiv a_{i}(\bmod 2)$ for all $i=1, \ldots, k$. First observe that if there exists an $h \in \mathcal{H}$ such that h belongs to the class $\underline{0}=(0,0, \ldots, 0)$, then by the choice $h_{1}=h_{2}=$ $h_{3}=h$ we have $h_{1} h_{2} h_{3}=\square$, and the statement follows. So from this point on we assume that \mathcal{H} does not contain such an h.

Denote by $c_{\underline{a}}$ the number of elements in the class \underline{a} of (\mathcal{D}, \sim). A simple calculation yields that

$$
c_{\underline{a}}=\prod_{i=1}^{k}\left(\frac{n_{i}}{2}+\varepsilon_{\underline{a}, i}\right),
$$

where

$$
\varepsilon_{\underline{a}, i}= \begin{cases}1 / 2, & \text { if } n_{i} \text { is odd } \\ 0, & \text { if } n_{i} \text { is even and } a_{i}=1, \\ 1, & \text { if } n_{i} \text { is even and } a_{i}=0\end{cases}
$$

Let
$A=\{\underline{a}:$ there exists an $h \in \mathcal{H}$ belonging to the class \underline{a} of $(\mathcal{D}, \sim)\}$.
Then our assumption $\mathcal{H}>\mathcal{D} / 2$ implies that

$$
\sum_{\underline{a} \in A} c_{\underline{a}}>\frac{|\mathcal{D}|}{2},
$$

which yields

$$
\sum_{\underline{a} \in A} \prod_{i=1}^{k}\left(\frac{n_{i}}{2}+\varepsilon_{\underline{a}, i}\right)>\frac{1}{2} \prod_{i=1}^{k}\left(n_{i}+1\right) .
$$

By the definition of $\varepsilon_{\underline{a}, i}$, after multiplying both sides by 2^{k} and cancelling the factors corresponding to the odd exponents n_{i}, we obtain

$$
\begin{equation*}
\sum_{\underline{a} \in A} \prod_{i \in I}\left(n_{i}+\delta_{\underline{a}, i}\right)>2^{k-1} \prod_{i \in I}\left(n_{i}+1\right) \tag{6}
\end{equation*}
$$

where $I=\left\{i \in\{1, \ldots, k\}: n_{i}\right.$ is even $\}$ and for all $i \in I$

$$
\delta_{\underline{a}, i}= \begin{cases}0, & \text { if } a_{i}=1 \\ 2, & \text { if } a_{i}=0\end{cases}
$$

After expanding both sides of inequality (6), we get linear combinations of terms of the shape $n_{i_{1}} \ldots n_{i_{l}}$ with distinct indices $i_{1}, \ldots, i_{l} \in I$. Obviously, the coefficients of all terms $n_{i_{1}} \ldots n_{i_{l}}$ at the right hand side of (6) are 2^{k-1}. If $I \neq \emptyset$, since $\underline{0} \notin A$, the constant term at the left hand side of (6) is zero. Let $s_{i_{1}, \ldots, i_{l}}$ denote the coefficient of the corresponding non-constant term at the left hand side. Observe that in the summand corresponding to an $\underline{a} \in A$ the term $n_{i_{1}} \ldots n_{i_{l}}$ occurs if and only if $\delta_{\underline{a}, i} \neq 0$ for all $i \in T$, where $T=I \backslash\left\{i_{1}, \ldots, i_{l}\right\}$. Note that by $l>0$ we have $|T|<k$. By the definition of the $\delta_{\underline{a}, i}$ we have

$$
\begin{equation*}
s_{i_{1}, \ldots, i_{l}}=2^{|T|} \cdot|B| \tag{7}
\end{equation*}
$$

where

$$
B=\left\{\underline{a} \in A: a_{i}=0 \text { for all } i \in T\right\} .
$$

Then to have inequality (6), for at least one of these coefficients

$$
\begin{equation*}
s_{i_{1}, \ldots, i_{l}}>2^{k-1} \tag{8}
\end{equation*}
$$

must be valid. Combining (7) and (8) we obtain that

$$
\begin{equation*}
|B|>2^{k-|T|-1} \tag{9}
\end{equation*}
$$

The same inequality is true for $I=\emptyset=T, B=A$. Observe that if $|T|=k-1$, then by $\underline{0} \notin B$ we have $|B| \leq 1$, contradicting (9). Hence we may suppose that $|T| \leq k-2$. In this case we define a graph V in the following way. The vertices of V are those binary k-tuples $\left(r_{1}, \ldots, r_{k}\right)$ for which $r_{i}=0$ holds for all $i \in T$. Two such tuples x and y are connected with an edge if and only if their sum modulo 2 belongs to B. Obviously, the number of vertices of V is $2^{k-|T|}$, and each vertex x of V is connected exactly to $|B|$ other vertices y of V. (Note that as $\underline{0} \notin B$, for all such y we have $x \neq y$.) Thus using (9), for the number of edges $|E|$ of V we get

$$
|E|=2^{k-|T|-1} \cdot|B|>2^{k-|T|-1} \cdot 2^{k-|T|-1}
$$

Now Turán's theorem (see [3]) yields that V contains a triangle. If the vertices of this triangle are x, y, z, then we have that $b_{1}=x+y$,
$b_{2}=x+z$ and $b_{3}=y+z$ (all taken modulo 2) are distinct elements of B. This yields that

$$
\begin{equation*}
b_{1}+b_{2}=2 x+y+z=y+z=b_{3} \tag{10}
\end{equation*}
$$

modulo 2. Hence taking arbitrary $h_{1}, h_{2}, h_{3} \in \mathcal{H}$ from the classes b_{1}, b_{2}, b_{3} of (\mathcal{D}, \sim), respectively, we have $h_{1} h_{2} h_{3}=\square$, and the statement follows.

Now we prove that under the further assumptions, the elements $h_{1}, h_{2}, h_{3} \in \mathcal{H}$ with $h_{1} h_{2} h_{3}=\square$ can be chosen to be distinct. First observe that if $h_{1} h_{2} h_{3}=\square$ such that none of h_{1}, h_{2}, h_{3} belongs to the class $\underline{0}$ of (\mathcal{D}, \sim), then they are necessarily distinct and we are done. So we can restrict our attention to the case when there exists a $h_{1} \in \mathcal{H}$ such that h_{1} belongs to the class $\underline{0}$, that is, h_{1} is a square. Observe that then if for any distinct $h_{2}, h_{3} \in \mathcal{H}$ with $h_{1} \notin\left\{h_{2}, h_{3}\right\}$ we have $h_{2} \sim h_{3}$, then $h_{1} h_{2} h_{3}=\square$, and the statement follows. Thus in this case \mathcal{H} may contain only at most one element from each class of (\mathcal{D}, \sim) different from $\underline{0}$. Further, obviously \mathcal{H} may contain at most two elements from $\underline{0}$. Moreover, from the proof of the first part of the theorem it follows that if \mathcal{H} contains elements from more than 2^{k-1} classes of (\mathcal{D}, \sim) outside the class $\underline{0}$, then we are done. (In fact this follows from the fact that b_{1}, b_{2}, b_{3} are distinct in (10).) This altogether yields that

$$
2^{k-1}+2 \geq|\mathcal{H}|>\frac{|\mathcal{D}|}{2}=\frac{1}{2} \prod_{i=1}^{k}\left(n_{i}+1\right)
$$

must be valid, which gives

$$
\begin{equation*}
2^{k}+4>\prod_{i=1}^{k}\left(n_{i}+1\right) \tag{11}
\end{equation*}
$$

Consider first the case when $k \geq 3$. Then since m is not square-free by assumption, we have

$$
\prod_{i=1}^{k}\left(n_{i}+1\right) \geq 3 \cdot 2^{k-1}=2^{k}+2^{k-1}
$$

which by (11) yields a contradiction. Assume next that $k=2$. Then (11) gives

$$
8>\left(n_{1}+1\right)\left(n_{2}+1\right)
$$

However, since m is assumed to be neither of the form $p_{1} p_{2}$ or $p_{1}^{2} p_{2}$, we get a contradiction again. Finally, let $k=1$ and m is of the form $m=p_{1}^{n_{1}}$ with $n_{1} \geq 5$. Then (11) provides a trivial contradiction, and the statement follows.

Remark 3. The prescribed assumptions to have three distinct divisors $h_{1}, h_{2}, h_{3} \in \mathcal{H}$ such that $h_{1} h_{2} h_{3}=$are necessary. One can easily check that in each case below we have $|\mathcal{H}|>\mathcal{D} / 2$, however, we do not have three distinct elements in \mathcal{H} with the required property.

- If $m=1$, then take $\mathcal{H}=\{1\}$.
- Let m be of the shape $m=p_{1}^{2} p_{2}$, where p_{1}, p_{2} are distinct primes. Take $\mathcal{H}=\left\{1, p_{1}, p_{2}, p_{1}^{2} p_{2}\right\}$.
- Let m be of the form $m=p_{1}^{n_{1}}$, where p_{1} is a prime and $2 \leq n_{1} \leq 4$. Choose $\mathcal{H}=\left\{1, p_{1}, p_{1}^{2}\right\}$.
- Finally, if $m>1$ is an arbitrary square-free integer, then let $\mathcal{H}=\{d: d \mid m$ and has an odd number of prime divisors $\} \cup\{1\}$.

Proof of Remark 2. Take y so large that

$$
\frac{1}{\sqrt{2 \pi}} \int_{-y}^{y} e^{-x^{2} / 2} d x>1-\frac{\epsilon}{2},
$$

and $n>3 y^{2}, m$ squarefree with $\omega(m)=n$ and

$$
\mathcal{H}=\left\{d \mid m: \frac{1}{3} \Omega(m) \leq \Omega(d)<\frac{2}{3} \Omega(m)\right\} .
$$

Clearly $a, b \in \mathcal{H}$ implies $a b \notin \mathcal{H}$. On the other hand

$$
\frac{1}{\tau(m)}|\mathcal{H}|=2^{-n} \sum_{\frac{1}{3} n \leq k<\frac{2}{3} n}\binom{n}{k}>2^{-n} \sum_{\frac{n}{2}-\frac{y}{2} \sqrt{n} \leq k<\frac{n}{2}+\frac{y}{2} \sqrt{n}}\binom{n}{k}
$$

By de Moivre-Laplace theorem the right hand side tends to

$$
\frac{1}{\sqrt{2 \pi}} \int_{-y}^{y} e^{-x^{2} / 2} d x>1-\frac{\epsilon}{2}
$$

hence for n large enough it is greater than $1-\epsilon$.
3. Proof of Theorem 3. By virtue of (2) there exists $s>1$ such that

$$
\sum_{n \in \mathcal{A}} \frac{1}{n^{s}}>\alpha \sum_{n \in \mathcal{B}} \frac{1}{n^{s}} .
$$

Multiplying this inequality by $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ we obtain

$$
\sum_{n=1}^{\infty} \frac{\tau(n, \mathcal{A})}{n^{s}}>\alpha \sum_{n=1}^{\infty} \frac{\tau(n, \mathcal{B})}{n^{s}}
$$

thus there exists $m \in \mathbb{N}$ satisfying (3).

Proof of Corollary 2. If (4) holds, then by a known theorem (see [2],p. 93)

$$
\bar{D}(\mathcal{A}, \mathcal{B}) \geq \liminf _{n \rightarrow \infty} \frac{\mathcal{A}(n)}{\mathcal{B}(n)}>\alpha
$$

and Theorem 3 applies.
If (5) holds, then

$$
\begin{aligned}
\bar{D}(\mathcal{A}, \mathcal{B})= & \limsup _{s \rightarrow 1+}\left((s-1) \sum_{n \in \mathcal{A}} \frac{1}{n^{s}} /(s-1) \sum_{n \in \mathcal{B}} \frac{1}{n^{s}}\right) \\
& \geq \max \left(\frac{\bar{D}(\mathcal{A})}{\bar{D}(\mathcal{B})}, \underline{\frac{D}{D}(\mathcal{A})}\right)>\alpha
\end{aligned}
$$

where $c / 0=\infty$ for $c>0$. Theorem 3 applies again and gives (3).
Proof of Theorem 1. Apply Theorem 3 to the sets $\mathcal{B}=\mathbb{N}$ and

$$
\begin{equation*}
\mathcal{A}^{\prime}=\mathcal{A} \backslash\{1,2, \ldots,[x]\} \backslash\left\{1^{2}, 2^{2}, \ldots\right\} \tag{12}
\end{equation*}
$$

Since $\bar{D}\left(\mathcal{A}^{\prime}\right)=\bar{D}(\mathcal{A})$ we have $\bar{D}\left(\mathcal{A}^{\prime}\right)>1 / 2$ and by Theorem 3 there exists an m such that

$$
\begin{equation*}
\tau\left(m, \mathcal{A}^{\prime}\right)>\frac{1}{2} \tau(m) . \tag{13}
\end{equation*}
$$

Now by Theorem $2 m$ has divisors $h_{i} \in \mathcal{A}^{\prime}(i=1,2,3)$ satisfying (1). However by the definition of $\mathcal{A}^{\prime}: h_{i}>x$ and $h_{i} \neq \square$, thus h_{i} are distinct.

Proof of Corollary 1. We have (see [2], p. 87 and 97)

$$
\bar{D}(\mathcal{A}) \geq \underline{D}(\mathcal{A}) \geq D_{l}(\mathcal{A}) \geq \delta^{*}(\mathcal{A})
$$

Proof of Theorem 4. Apply Theorem 3 to the set \mathcal{B} of squarefree numbers and the set \mathcal{A}^{\prime} given by (12). Since $D(\mathcal{B})=6 / \pi^{2}$ (see [1], $\S 152)$ we infer from Theorem 3 the existence of a number n such that

$$
\tau\left(n, \mathcal{A}^{\prime}\right)>\frac{1}{2} \tau(n, \mathcal{B}) .
$$

Let m be the greatest squarefree divisor of n. Then every squarefree divisor of n is a divisor of m and we obtain (13). Further proof is the same as for Theorem 1. In order to prove the second part of Theorem 4 take a prime factor p of m. All divisors of m split into $\frac{1}{2} \tau(m)$ pairs $\{d, p d\}$, where $d \left\lvert\, \frac{m}{p}\right.$. By (13) there exists d such that $d \in \mathcal{A}^{\prime}$ and $p d \in \mathcal{A}^{\prime}$. It suffices to take $a=p d, b=d$.

References

[1] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Reprint Chelsea 1953.
[2] H. Ostmann, Additive Zahlentheorie, Erster Teil, Berlin 1956.
[3] P. Turan, An extremal problem in graph theory, Collected papers, 231-250.

