MULTIPLICATIVE PROPERTIES OF SETS OF POSITIVE INTEGERS

L. HAJDU, A. SCHINZEL, M. SKAŁBA

Introduction. Let \mathbb{N} be the set of positive integers. It is easy to see that a set $\mathcal{A} \subseteq \mathbb{N}$ of upper asymptotic density

$$\overline{\delta^*}(\mathcal{A}) = \limsup_{x \to \infty} \frac{1}{x} \sum_{n \in \mathcal{A}, n \leq x} 1 > \frac{1}{2}$$

contains two numbers and their sum. An analogous statement for the product fails, even if $\overline{\delta^*}(\mathcal{A})$ is arbitrarily close to 1, as the following example shows

$$\mathcal{A}_l = \bigcup_{k=0}^{\infty} \{ n \in \mathbb{N} : l^{3k+1} \le n < l^{3k+2} \}, \quad \overline{\delta^*}(\mathcal{A}_l) = 1 - \frac{1}{l}.$$

However we shall prove

Theorem 1. If a set $\mathcal{A} \subseteq \mathbb{N}$ has upper Dirichlet density

$$\overline{D}(\mathcal{A}) = \limsup_{s \to 1+} (s-1) \sum_{n \in \mathcal{A}} \frac{1}{n^s} > \frac{1}{2},$$

then for every x there exist three distinct numbers h_1, h_2, h_3 in \mathcal{A} all greater than x such that

(1)
$$h_1h_2h_3 = \Box.$$

Corollary 1. If a set $\mathcal{A} \subseteq \mathbb{N}$ has lower asymptotic density

$$\delta^*(\mathcal{A}) = \liminf_{x \to \infty} \frac{1}{x} \sum_{n \in \mathcal{A}, n \le x} 1 > \frac{1}{2}$$

or lower logarithmic density

$$\underline{D}_l(\mathcal{A}) = \liminf_{x \to \infty} \frac{1}{\log x} \sum_{n \in \mathcal{A}, n \le x} \frac{1}{n} > \frac{1}{2},$$

then the assertion of Theorem 1 holds.

Remark 1. The example of the set of integers with odd total number of prime factors, which has density 1/2 (see [1],§167), but no three elements h_i satisfying (1) shows that the constant 1/2 in Theorem 1 ist best possible. In the sequel we shall use the following notation: $\omega(m)$, $\Omega(m)$ and $\tau(m)$ are the number of distinct prime factors, the total number of prime factors and the number of divisors of m, respectively.

For $S \subseteq \mathbb{N}$ we put

$$S(x) = \sum_{n \in S, n \leq x} 1 \text{ and } \tau(n, S) = \sum_{d \mid n, d \in S} 1 \text{ for } x > 0, n \in \mathbb{N}$$

Theorem 1 is a consequence of the following two theorems

Theorem 2. Let *m* be a positive integer, and write

$$\mathcal{D} := \{d : d \ divides \ m\}.$$

Let \mathcal{H} be an arbitrary subset of \mathcal{D} with $|\mathcal{H}| > |\mathcal{D}|/2$. Then there exist $h_1, h_2, h_3 \in \mathcal{H}$ such that $h_1h_2h_3 = \Box$. Further, if m > 1 is not squarefree, and is neither of the form $p_1^2p_2$ or $p_1^{n_1}$ $(2 \leq n_1 \leq 4)$, then the above $h_1, h_2, h_3 \in \mathcal{H}$ can be chosen to be distinct.

Remark 2. For every $\epsilon > 0$ there exist $m \in \mathbb{N}$ and a set \mathcal{H} of divisors of m such that $|\mathcal{H}| > (1 - \epsilon)\tau(m)$ and \mathcal{H} does not contain two numbers together with their product.

Theorem 3. Assume that $\mathcal{A}, \mathcal{B} \subseteq \mathbb{N}$ satisfy the condition:

(2)
$$\overline{D}(\mathcal{A},\mathcal{B}) = \limsup_{s \to 1+} \frac{\sum_{n \in \mathcal{A}} \frac{1}{n^s}}{\sum_{n \in \mathcal{B}} \frac{1}{n^s}} > \alpha.$$

Then there exists $m \in \mathbb{N}$ such that

Corollary 2. Assume that $\mathcal{A}, \mathcal{B} \subseteq \mathbb{N}$ satisfy the condition: either

(4)
$$\liminf_{n \to \infty} \frac{\mathcal{A}(n)}{\mathcal{B}(n)} > \alpha > 0 \text{ and } \sum_{n \in \mathcal{B}} \frac{1}{n} = \infty,$$

or

(5)
$$\overline{D}(\mathcal{A}) > \alpha \overline{D}(\mathcal{B}), \text{ or } \underline{D}(\mathcal{A}) > \alpha \underline{D}(\mathcal{B}).$$

Then there exists $m \in \mathbb{N}$ satisfying (3).

Theorems 2 and 3 imply also the following

Theorem 4. If a set \mathcal{A} consists entirely of squarefree numbers and

$$\overline{D}(\mathcal{A}) > \frac{3}{\pi^2}$$

then for every x > 0 there exist three distinct numbers h_1, h_2, h_3 in \mathcal{A} all greater than x satisfying (1). Also there exist two numbers a, b in \mathcal{A} greater than x such that a/b is a prime. **2.** Proof of Theorem 2 We start with proving the existence of some (not necessarily distinct) $h_1, h_2, h_3 \in \mathcal{H}$ with $h_1h_2h_3 = \Box$.

For m = 1 the statement is trivial. So assume that m > 1 and write $m = p_1^{n_1} \dots p_k^{n_k}$, where p_1, \dots, p_k are distinct primes and the exponents n_1, \dots, n_k are positive integers. Introduce the following equivalence relation on \mathcal{D} : for $d_1, d_2 \in \mathcal{D}$ put

$$d_1 \sim d_2$$
 if and only if $d_1 d_2 = \Box$

We label the equivalence classes of (\mathcal{D}, \sim) by binary k-tuples \underline{a} , i.e. by tuples of the form

$$\underline{a} = (a_1, \dots, a_k)$$
 with $a_i \in \{0, 1\}$ for $i = 1, \dots, k$.

A divisor d of m of the form $d = p_1^{t_1} \dots p_k^{t_k}$ with $0 \leq t_i \leq n_i$ $(i = 1, \dots, k)$ belongs to the class \underline{a} if and only if $t_i \equiv a_i \pmod{2}$ for all $i = 1, \dots, k$. First observe that if there exists an $h \in \mathcal{H}$ such that h belongs to the class $\underline{0} = (0, 0, \dots, 0)$, then by the choice $h_1 = h_2 = h_3 = h$ we have $h_1 h_2 h_3 = \Box$, and the statement follows. So from this point on we assume that \mathcal{H} does not contain such an h.

Denote by $c_{\underline{a}}$ the number of elements in the class \underline{a} of (\mathcal{D}, \sim) . A simple calculation yields that

$$c_{\underline{a}} = \prod_{i=1}^{k} \left(\frac{n_i}{2} + \varepsilon_{\underline{a},i} \right),$$

where

$$\varepsilon_{\underline{a},i} = \begin{cases} 1/2, & \text{if } n_i \text{ is odd,} \\ 0, & \text{if } n_i \text{ is even and } a_i = 1, \\ 1, & \text{if } n_i \text{ is even and } a_i = 0. \end{cases}$$

Let

 $A = \{\underline{a} : \text{there exists an } h \in \mathcal{H} \text{ belonging to the class } \underline{a} \text{ of } (\mathcal{D}, \sim) \}.$

Then our assumption $\mathcal{H} > \mathcal{D}/2$ implies that

$$\sum_{\underline{a}\in A} c_{\underline{a}} > \frac{|\mathcal{D}|}{2},$$

which yields

$$\sum_{\underline{a}\in A}\prod_{i=1}^{k}\left(\frac{n_{i}}{2}+\varepsilon_{\underline{a},i}\right) > \frac{1}{2}\prod_{i=1}^{k}(n_{i}+1).$$

By the definition of $\varepsilon_{\underline{a},i}$, after multiplying both sides by 2^k and cancelling the factors corresponding to the odd exponents n_i , we obtain

(6)
$$\sum_{\underline{a}\in A}\prod_{i\in I}(n_i+\delta_{\underline{a},i})>2^{k-1}\prod_{i\in I}(n_i+1),$$

where $I = \{i \in \{1, \dots, k\} : n_i \text{ is even}\}$ and for all $i \in I$

$$\delta_{\underline{a},i} = \begin{cases} 0, & \text{if } a_i = 1, \\ 2, & \text{if } a_i = 0. \end{cases}$$

After expanding both sides of inequality (6), we get linear combinations of terms of the shape $n_{i_1} \ldots n_{i_l}$ with distinct indices $i_1, \ldots, i_l \in I$. Obviously, the coefficients of all terms $n_{i_1} \ldots n_{i_l}$ at the right hand side of (6) are 2^{k-1} . If $I \neq \emptyset$, since $0 \notin A$, the constant term at the left hand side of (6) is zero. Let s_{i_1,\ldots,i_l} denote the coefficient of the corresponding non-constant term at the left hand side. Observe that in the summand corresponding to an $\underline{a} \in A$ the term $n_{i_1} \ldots n_{i_l}$ occurs if and only if $\delta_{\underline{a},i} \neq 0$ for all $i \in T$, where $T = I \setminus \{i_1, \ldots, i_l\}$. Note that by l > 0 we have |T| < k. By the definition of the $\delta_{\underline{a},i}$ we have

(7)
$$s_{i_1,\dots,i_l} = 2^{|T|} \cdot |B|,$$

where

$$B = \{ \underline{a} \in A : a_i = 0 \text{ for all } i \in T \}.$$

Then to have inequality (6), for at least one of these coefficients

(8)
$$s_{i_1,\dots,i_l} > 2^{k-1}$$

must be valid. Combining (7) and (8) we obtain that

(9)
$$|B| > 2^{k-|T|-1}$$

The same inequality is true for $I = \emptyset = T$, B = A. Observe that if |T| = k - 1, then by $0 \notin B$ we have $|B| \leq 1$, contradicting (9). Hence we may suppose that $|T| \leq k - 2$. In this case we define a graph V in the following way. The vertices of V are those binary k-tuples (r_1, \ldots, r_k) for which $r_i = 0$ holds for all $i \in T$. Two such tuples x and y are connected with an edge if and only if their sum modulo 2 belongs to B. Obviously, the number of vertices of V is $2^{k-|T|}$, and each vertex x of V is connected exactly to |B| other vertices y of V. (Note that as $0 \notin B$, for all such y we have $x \neq y$.) Thus using (9), for the number of edges |E| of V we get

$$|E| = 2^{k-|T|-1} \cdot |B| > 2^{k-|T|-1} \cdot 2^{k-|T|-1}.$$

Now Turán's theorem (see [3]) yields that V contains a triangle. If the vertices of this triangle are x, y, z, then we have that $b_1 = x + y$, $b_2 = x + z$ and $b_3 = y + z$ (all taken modulo 2) are distinct elements of B. This yields that

(10)
$$b_1 + b_2 = 2x + y + z = y + z = b_3$$

modulo 2. Hence taking arbitrary $h_1, h_2, h_3 \in \mathcal{H}$ from the classes b_1, b_2, b_3 of (\mathcal{D}, \sim) , respectively, we have $h_1h_2h_3 = \Box$, and the statement follows.

Now we prove that under the further assumptions, the elements $h_1, h_2, h_3 \in \mathcal{H}$ with $h_1h_2h_3 = \Box$ can be chosen to be distinct. First observe that if $h_1h_2h_3 = \Box$ such that none of h_1, h_2, h_3 belongs to the class $\underline{0}$ of (\mathcal{D}, \sim) , then they are necessarily distinct and we are done. So we can restrict our attention to the case when there exists a $h_1 \in \mathcal{H}$ such that h_1 belongs to the class $\underline{0}$, that is, h_1 is a square. Observe that then if for any distinct $h_2, h_3 \in \mathcal{H}$ with $h_1 \notin \{h_2, h_3\}$ we have $h_2 \sim h_3$, then $h_1h_2h_3 = \Box$, and the statement follows. Thus in this case \mathcal{H} may contain only at most one element from each class of (\mathcal{D}, \sim) different from $\underline{0}$. Further, obviously \mathcal{H} may contain at most two elements from $\underline{0}$. Moreover, from the proof of the first part of the theorem it follows that if \mathcal{H} contains elements from more than 2^{k-1} classes of (\mathcal{D}, \sim) outside the class $\underline{0}$, then we are done. (In fact this follows from the fact that b_1, b_2, b_3 are distinct in (10).) This altogether yields that

$$2^{k-1} + 2 \ge |\mathcal{H}| > \frac{|\mathcal{D}|}{2} = \frac{1}{2} \prod_{i=1}^{k} (n_i + 1)$$

must be valid, which gives

(11)
$$2^k + 4 > \prod_{i=1}^k (n_i + 1)$$

Consider first the case when $k \geq 3$. Then since *m* is not square-free by assumption, we have

$$\prod_{i=1}^{k} (n_i + 1) \ge 3 \cdot 2^{k-1} = 2^k + 2^{k-1},$$

which by (11) yields a contradiction. Assume next that k = 2. Then (11) gives

$$8 > (n_1 + 1)(n_2 + 1).$$

However, since m is assumed to be neither of the form p_1p_2 or $p_1^2p_2$, we get a contradiction again. Finally, let k = 1 and m is of the form $m = p_1^{n_1}$ with $n_1 \ge 5$. Then (11) provides a trivial contradiction, and the statement follows. **Remark 3.** The prescribed assumptions to have three distinct divisors $h_1, h_2, h_3 \in \mathcal{H}$ such that $h_1h_2h_3 = \Box$ are necessary. One can easily check that in each case below we have $|\mathcal{H}| > \mathcal{D}/2$, however, we do not have three distinct elements in \mathcal{H} with the required property.

- If m = 1, then take $\mathcal{H} = \{1\}$.
- Let *m* be of the shape $m = p_1^2 p_2$, where p_1, p_2 are distinct primes. Take $\mathcal{H} = \{1, p_1, p_2, p_1^2 p_2\}.$

• Let *m* be of the form $m = p_1^{n_1}$, where p_1 is a prime and $2 \le n_1 \le 4$. Choose $\mathcal{H} = \{1, p_1, p_1^2\}$.

• Finally, if m > 1 is an arbitrary square-free integer, then let

 $\mathcal{H} = \{d : d \mid m \text{ and has an odd number of prime divisors}\} \cup \{1\}.$

Proof of Remark 2. Take *y* so large that

$$\frac{1}{\sqrt{2\pi}} \int_{-y}^{y} e^{-x^2/2} dx > 1 - \frac{\epsilon}{2},$$

and $n > 3y^2$, m squarefree with $\omega(m) = n$ and

$$\mathcal{H} = \{d|m: \frac{1}{3}\Omega(m) \le \Omega(d) < \frac{2}{3}\Omega(m)\}.$$

Clearly $a, b \in \mathcal{H}$ implies $ab \notin \mathcal{H}$. On the other hand

$$\frac{1}{\tau(m)}|\mathcal{H}| = 2^{-n} \sum_{\frac{1}{3}n \le k < \frac{2}{3}n} \binom{n}{k} > 2^{-n} \sum_{\frac{n}{2} - \frac{y}{2}\sqrt{n} \le k < \frac{n}{2} + \frac{y}{2}\sqrt{n}} \binom{n}{k}.$$

By de Moivre-Laplace theorem the right hand side tends to

$$\frac{1}{\sqrt{2\pi}} \int_{-y}^{y} e^{-x^2/2} dx > 1 - \frac{\epsilon}{2},$$

hence for n large enough it is greater than $1 - \epsilon$.

3. Proof of Theorem 3. By virtue of (2) there exists s > 1 such that

$$\sum_{n \in \mathcal{A}} \frac{1}{n^s} > \alpha \sum_{n \in \mathcal{B}} \frac{1}{n^s}$$

Multiplying this inequality by $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ we obtain

$$\sum_{n=1}^{\infty} \frac{\tau(n, \mathcal{A})}{n^s} > \alpha \sum_{n=1}^{\infty} \frac{\tau(n, \mathcal{B})}{n^s},$$

thus there exists $m \in \mathbb{N}$ satisfying (3).

Proof of Corollary 2. If (4) holds, then by a known theorem (see [2],p. 93)

$$\overline{D}(\mathcal{A},\mathcal{B}) \geq \liminf_{n \to \infty} \frac{\mathcal{A}(n)}{\mathcal{B}(n)} > \alpha$$

and Theorem 3 applies.

If (5) holds, then

$$\overline{D}(\mathcal{A}, \mathcal{B}) = \limsup_{s \to 1+} \left((s-1) \sum_{n \in \mathcal{A}} \frac{1}{n^s} / (s-1) \sum_{n \in \mathcal{B}} \frac{1}{n^s} \right)$$
$$\geq \max\left(\frac{\overline{D}(\mathcal{A})}{\overline{D}(\mathcal{B})}, \frac{\underline{D}(\mathcal{A})}{\underline{D}(\mathcal{B})} \right) > \alpha$$

where $c/0 = \infty$ for c > 0. Theorem 3 applies again and gives (3). **Proof of Theorem 1.** Apply Theorem 3 to the sets $\mathcal{B} = \mathbb{N}$ and

(12)
$$\mathcal{A}' = \mathcal{A} \setminus \{1, 2, \dots, [x]\} \setminus \{1^2, 2^2, \dots\}.$$

Since $\overline{D}(\mathcal{A}') = \overline{D}(\mathcal{A})$ we have $\overline{D}(\mathcal{A}') > 1/2$ and by Theorem 3 there exists an m such that

(13)
$$\tau(m, \mathcal{A}') > \frac{1}{2}\tau(m).$$

Now by Theorem 2 *m* has divisors $h_i \in \mathcal{A}'(i = 1, 2, 3)$ satisfying (1). However by the definition of \mathcal{A}' : $h_i > x$ and $h_i \neq \Box$, thus h_i are distinct.

Proof of Corollary 1. We have (see [2], p. 87 and 97)

$$\overline{D}(\mathcal{A}) \ge \underline{D}(\mathcal{A}) \ge D_l(\mathcal{A}) \ge \delta^*(\mathcal{A})$$

Proof of Theorem 4. Apply Theorem 3 to the set \mathcal{B} of squarefree numbers and the set \mathcal{A}' given by (12). Since $D(\mathcal{B}) = 6/\pi^2$ (see [1], §152) we infer from Theorem 3 the existence of a number n such that

$$au(n, \mathcal{A}') > \frac{1}{2}\tau(n, \mathcal{B}).$$

Let *m* be the greatest squarefree divisor of *n*. Then every squarefree divisor of *n* is a divisor of *m* and we obtain (13). Further proof is the same as for Theorem 1. In order to prove the second part of Theorem 4 take a prime factor *p* of *m*. All divisors of *m* split into $\frac{1}{2}\tau(m)$ pairs $\{d, pd\}$, where $d|\frac{m}{p}$. By (13) there exists *d* such that $d \in \mathcal{A}'$ and $pd \in \mathcal{A}'$. It suffices to take a = pd, b = d.

 $\overline{7}$

References

- [1] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Reprint Chelsea 1953.
- [2] H. Ostmann, Additive Zahlentheorie, Erster Teil, Berlin 1956.
- [3] P. Turan, An extremal problem in graph theory, Collected papers, 231–250.