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Generalizing the majority voting scheme to spatially
constrained voting
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Abstract—Generating ensembles from multiple individual clas-
sifiers is a popular approach to raise the accuracy of the decision.
As a rule for decision making, majority voting is a usually
applied model. In this paper, we generalize classical majority
voting by incorporating probability terms pn,k to constrain the
basic framework. These terms control whether a correct or
false decision is made ifk correct votes are present among the
total number of n. This generalization is motivated by object
detection problems, where the members of the ensemble are
image processing algorithms giving their votes as pixels in the
image domain. In this scenario, the termspn,k can be specialized
by a geometric constraint. Namely, the votes should fall inside
a region matching the size and shape of the object to vote
together. We give several theoretical results in this new model
for both dependent and independent classifiers, whose individual
accuracies may also differ. As a real world example, we present
our ensemble-based system developed for the detection of the
optic disc in retinal images. For this problem, experimental
results are shown to demonstrate the characterization capability
of this system. We also investigate how the generalized model
can help us to improve an ensemble with extending it by adding
a new algorithm.

Index Terms—generalized majority voting, classifier combina-
tion, independence and dependence, pattern recognition, object
detection.

EDICS Category: ARS-IVA, ARS-RBS, TEC-BIP,
SMR-SMD, SMR-REP

I. I NTRODUCTION

ENSEMBLE-BASED systems are rather popular to raise
the decision accuracy by combining the responses of

different sources (voters, classifiers). Regarding pattern recog-
nition, the idea of combining the decisions of multiple clas-
sifiers has also been studied [1]. As corresponding examples,
we can mention neural networks [2], [3], decision trees [4],
sets of rules [5] and other models [6], [7], [8]. As a specific
application field, now we will focus on object detection in
digital images which is a vivid field [9], [10], [11], as well.

A usual way for information fusion is to consider the ma-
jority of the votes of the classifiers as the basis of the decision.
The current literature is quite rich regarding both theoretical
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results and applications of such systems (ensembles). Strong
focus is set to the combination of votes of binary (correct/false)
values. The related decision may take place based on simple
majority [2], [12], [13], weighted majority [12], or using some
other variants [14], [15].

In the research of majority voting, a cardinal issue is the as-
sumptions on the dependency of the voters. Several results are
achieved for independent voters, and the minimal and maximal
accuracies of such majority voting systems are also studied
for the dependent case. In this paper, we investigate how such
voting systems behave if we apply some further constraints
on the votes. Namely, we generalize the classical majority
voting scheme by introducing real values0 ≤ pn,k ≤ 1 for the
probability that a good decision is made if we havek correct
votes out of then ones. In other words, in our case it will be
possible that a good decision is made even if the good votes
are in minority (less than half).

The creation of this new model is motivated by a retinal
image processing problem – the detection of the optic disc
(OD), which appears as a bright circular patch within the
region of interest (ROI) in a retinal image (see Figure 1).
Namely, in a former work we observed that organizing more
individual OD detector algorithms into an ensemble may raise
detection accuracy [16]. In the voting system applied here,
each individual OD algorithm votes in terms of a single pixel
as its candidate for the OD center. The application of existing
majority voting models are not adequate here, since they
consider only the correctness of the votes, which concerns
falling into the true OD region in this scenario. However, in
our case, the spatial behavior of the votes is also important,
since they vote together for a specific location of the OD,
only if they fall within a region matching the OD geometry.
Consequently, we should consider discs of diameter of the OD
dOD ∈ R≥0 covering the candidates of the individual detector
algorithms as shown in Figure 1. The diameterdOD can be
derived by averaging the manual annotations made by clinical
experts on a dataset and can be adjusted to the resolution of
the image. As a final decision, the disc having diameterdOD

with maximal number of candidates included is chosen for the
OD location. In this combined system, we can make a good
decision even if the false candidates have majority such as in
the case illustrated in Figure 1. A bad decision is made only
when a subset of false candidates with larger cardinality than
the number of correct ones can be covered by a disc having
diameterdOD.

In this paper, we propose the generalization of the clas-
sical majority voting model by incorporating the probability
termspn,k mentioned before. With an appropriate geometric
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Fig. 1. The optic disc (OD) of diameterdOD in a retinal image and the
OD center candidates (3 correct, 5 false) of individual detector algorithms.
Candidates inside the black circles can vote together for possible OD locations.

constraint, our generalized model can be specialized to be
applicable for the above detection scenario, as well. Namely,
the corresponding valuespn,k will be adjusted by requiring
that the candidates should fall inside a disc of a fixed diameter
dOD to vote together. With the help of this model, we can
characterize our detector ensemble and gain information on
further improvability issues, as well. As a different approach,
it would be possible to require more than half of the votes to
fall inside such a disc. However, this strict majority voting rule
is rather unnatural in the spatial domain, which impressionhas
been also confirmed during our empirical studies.

The rest of the paper is organized as follows. Section II
recalls the basic concepts of classical majority voting, which
will provide fundamentals for our more general framework. In
section III, we show how to incorporate the probability terms
pn,k to constrain the basic formulation. We present theoretical
results for the case of independent voters. Since in applications
independent detector algorithms can hardly be expected, we
also generalize the method to the dependent case in section
IV. As a main focus, we investigate the possible lowest
and highest accuracy of constrained ensembles. Moreover,
we both consider equal and different individual accuracies
for the members of the ensemble. From a practical point of
view, the further improvability of an ensemble is of great
importance, so in section V we give the theoretical background
on how an ensemble behaves if a new classifier is added to
it. Section VI contains our empirical results regarding a real
world application (optic disc detection), where we apply this
new model to characterize our current OD detector ensemble
and to analyse its further improvability by adding a new
algorithm. In section VII, we discuss our results and draw
some conclusions regarding other test datasets and detection
problems, and the improvability of the proposed method.

II. M AJORITY VOTING

Let D1, D2, . . . , Dn be a set of classifiers (voters),Di :
Λ → Ω (i = 1, . . . , n), whereΛ can be any domain, andΩ is
a set of finite class labels. The majority voting rule assigns
the class label supported by the majority of the classifiers
D1, . . . , Dn to α ∈ Λ. Usually, ties (same number of different
votes) are broken randomly.

In [13] Kuncheva et al. discuss exhaustively the following
special case. Letn be odd, |Ω| = 2 (each classifier has

a binary (correct/false) output value) and all classifiers are
independent and have the same classification accuracyp. A
correct class label is given by majority voting if at least⌈n/2⌉
classifiers give correct answers. The majority voting rule
with independent classifier decisions gives an overall correct
classification accuracy calculated by the following formula:

P =
n
∑

k=⌈n/2⌉

(

n

k

)

pk(1− p)n−k. (1)

Several interesting results can be found in [1] applying
majority voting to pattern recognition tasks. This method
is guaranteed to give a higher accuracy than the individual
classifiers if the classifiers are independent andp > 0.5 holds
for their individual accuracies.

III. G ENERALIZATION TO CONSTRAINED VOTING

As it has been discussed in the introduction, we generalize
the classical majority voting approach by considering some
constraints that must be also met by the votes. To give a
more general methodology beyond geometric considerations,
we model this type of constrained voting by introducing values
0 ≤ pn,k ≤ 1 describing the probability of making a good
decision, when we have exactlyk good votes from then
voters. Then, in section VI we will adopt this general model
to our practical problem with spatial constraints.

As we have summarized in the introduction, several the-
oretical results are achieved for independent voters in the
current literature, so we start with generalizing them to this
case. However, in the vast majority of applications, we cannot
expect independency among algorithms trying to detect the
same object. Thus, later we extend the model to the case of
dependent voters with generalizing such formerly investigated
concepts that have high practical impact, as well.

A. The independent case

In our model, we consider a classifierDi with accuracypi
as a random variableηi of Bernoulli distribution, i.e.:

P (ηi = 1) = pi, P (ηi = 0) = 1− pi (i = 1, . . . , n).

Hereηi = 1 means correct classification byDi. In particular,
the accuracy ofDi is just the expected value ofηi, that is,
Eηi = pi (i = 1, . . . , n).

Let pn,k (k = 0, 1, . . . , n) be given real numbers with0 ≤
pn,0 ≤ pn,1 ≤ · · · ≤ pn,n ≤ 1, and let the random variableξ
be such that:

P (ξ = 1) = pn,k and P (ξ = 0) = 1− pn,k,

wherek = |{i : ηi = 1}|. That is,ξ represents the modified
majority voting of the classifiersD1, . . . , Dn: if k out of then
classifiers give a correct vote, then we make a good decision
(i.e. we haveξ = 1) with probability pn,k.

Note that, in the special case, where:

pn,k =















1, if k > n/2,

1/2, if k = n/2,

0, otherwise,

(2)
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Fig. 3. The graph ofpn,k = k/n providing p = q.

we get back the classical majority voting scheme.
The valuespn,k as a function ofk corresponding to the

classical majority voting can be observed in Figure 2 for both
an odd and evenn, respectively.
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(b) n is even

Fig. 2. The graph ofpn,k for classical majority voting for (a) an odd, and
(b) an even number of votersn.

The ensemble accuracy of the classical majority voting
system is shown in Table I for different number of classifiers
n for some equal individual accuraciesp (see also [12]).

n=3 n=5 n=7 n=9

p = 0.6 0.6480 0.6826 0.7102 0.7334
p = 0.7 0.7840 0.8369 0.8740 0.9012
p = 0.8 0.8960 0.9421 0.9667 0.9804
p = 0.9 0.9720 0.9914 0.9973 0.9991

TABLE I
ENSEMBLE ACCURACY FOR CLASSICAL MAJORITY VOTING.

As the very first step of our generalization, we show that
similarly to the individual voters,ξ is of Bernoulli distribution,
as well. We also provide its corresponding parameterq, that
represents the accuracy of the ensemble in our model.

Lemma 3.1:The random variableξ is of Bernoulli distri-
bution with parameterq, where:

q =

n
∑

k=0

pn,k

(

∑

I⊆{1,...,n}

|I|=k

∏

i∈I

pi
∏

j∈{1,...,n}\I

(1− pj)

)

. (3)

Proof: Since for anyk ∈ {0, 1, . . . , n} we have:

P (|{i : ηi = 1}| = k) =
∑

I⊆{1,...,n}

|I|=k

∏

i∈I

pi
∏

j∈{1,...,n}\I

(1−pj),

the statement immediately follows from the definition ofξ.
The special case assuming equal accuracy for the classifiers

received strong attention in the literature, so we investigate
this case first. That is, in the rest of section III, we suppose
that p = p1 = . . . = pn. Then, (3) reads as:

q =
n
∑

k=0

pn,k

(

n

k

)

pk(1− p)n−k. (4)

Thus, ifn is odd then by the particular choice (2) for the values
pn,k, we getq = P , whereP is given in (1). In order to have
our generalized majority voting model be more accurate than
the individual decisions, we have to guarantee thatq ≥ p. The
next statement yields a guideline along this way.

Proposition 3.1:Let pn,k = k/n (k = 0, 1, . . . , n). Then,
we haveq = p, and consequentlyEξ = p.

Proof: See Appendix.
Figure 3 also illustrates the special linear case forpn,k = k/n.

The above statement shows that if the probabilitiespn,k
increase uniformly (linearly), then the ensemble has the same
accuracy as the individual classifiers. As a trivial consequence
we obtain the following corollary.

Corollary 3.1: Suppose that for allk = 0, 1, . . . , n we have
pn,k ≥ k/n. Thenq ≥ p, and consequentlyEξ ≥ p.

The next result helps us to compare our model constrained
by pn,k with the classical majority voting scheme.

Theorem 3.1:Suppose thatp ≥ 1/2 and for anyk with
0 ≤ k ≤ n/2 we have:

(i) pn,k + pn,n−k ≥ 1,
(ii) pn,n−k ≥ (n− k)/n.

Let q be given by (4). Then,q ≥ p, and consequentlyEξ ≥ p.
Proof: See Appendix.

As a specific case, we obtain the following corollary con-
cerning the classical majority voting scheme [13].

Corollary 3.2: Suppose thatn is odd,p ≥ 1/2 and for all
k = 0, 1, . . . , n we have:

pn,k =

{

1, if k > n/2,

0, otherwise.

Then,q ≥ p, and consequentlyEξ ≥ p.
Proof: Observing that by the above choice for the values

pn,k both properties (i) and (ii) of Theorem 3.1 are satisfied,
the statement immediately follows from Theorem 3.1.

Of particular interest is the case, when the ensemble makes
exclusively good decisions aftert executions. That is, we are
curious to know the conditions to have a system with accuracy
100%. So write ξ⊗t for the random variable obtained by
repeatingξ independentlyt times, and counting the number
of one values (correct decisions) received, wheret is a
positive integer. Then, as it is well-known,ξ⊗t is a random
variable of binomial distribution with parameters(t, q) with
q given by (4). Now we are interested in the probability
P (ξ⊗t = t). In case of using an individual classifierDi (that
is, a random variableηi) with any i = 1, . . . , n, we certainly
haveP (η⊗t

i = t) = pt. To make the ensemble better than the
individual classifiers, we need to choose the probabilitiespn,k
so thatP (ξ⊗t = t) ≥ pt. In fact, we can characterize a much
more general case. For this purpose we need the following
lemma, due to Gilat [17].

Lemma 3.2:For any integerst and l with 1 ≤ l ≤ t the
function:

f(x) =
t

∑

k=l

(

t

k

)

xk(1− x)t−k

is strictly monotone increasing on[0, 1].
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Note that, for anyx ∈ [0, 1] we obviously have:

t
∑

k=0

(

t

k

)

xk(1− x)t−k = 1.

As a simple consequence of Lemma 3.2, we obtain the
following result.

Theorem 3.2:Let t and l be integers with1 ≤ l ≤ t. Then,
P (ξ⊗t ≥ l) ≥ P (η⊗t

1 ≥ l), if and only if, q ≥ p, i.e. Eξ⊗t ≥
tp.

Proof: See Appendix.

IV. T HE DEPENDENT CASE

In this section, we investigate how dependencies among
the voters influence the accuracy of the ensemble; for related
results, see e.g. [12], [19]. For this purpose, we generalize
some concepts that were introduced for classical majority
voting to measure the extremal behavior (minimal and maxi-
mal accuracies) of an ensemble. First we considerpattern of
successandpattern of failure[12] which are such realizations
of the votes in a series of experiments that lead to the possible
highest and lowest accuracy of the ensemble, respectively.It
is worth noting that to define these measures, a rather serious
restriction considering discretization of the model is needed to
be applied. Namely, not only the accuracies of the individual
classifiers are given, but also the precise numbers of successful
decisions during the experiment are fixed. E.g. for a classifier
having accuracyp = 0.6 we consider 6 correct votes in 10
experimental runs.

Though there are some results in the literature for the case
of different accuraciespi of the classifiersDi (or, in other
words, for the caseEηi = pi (i = 1, . . . , n)), see e.g. [2], [20],
[21] and the references there, the vast majority of the results
(such as e.g. in [13]) concern the casep = p1 = . . . = pn.
So in section IV-A, we shall make the latter assumption, too.
However, in section IV-B, we give a much more general frame-
work which handles both dependencies without the restriction
considering discretization, and also different accuracies of
classifiers that makes the model realistic for applications.

A. Pattern of success and pattern of failure

In this section, we suppose that the individual classifier
accuracies coincide (p = p1 = . . . = pn). Repeat the
experimentsη1, . . . , ηn t times, with some positive integert,
and write η

(j)
i for the j-th realization ofηi (j = 1, . . . , t).

Suppose (as a rather strong, but standard assumption) that we
have:

|{j : η
(j)
i = 1}| = r for all i = 1, . . . , n. (5)

Here r is a positive integer withr = np. We are interested
in the behavior (accuracy) ofξ repeatedt times, or in other
words in the valueEξ⊗t, under the condition (5). Writeξ(j)

for the j-th realization ofξ (j = 1, . . . , t). Then, we clearly
haveEξ⊗t = Eξ(1) + . . .+ Eξ(t).

The number of one values is fixed forηi, however, their
positions can freely change. For simplicity, we shall describe
the situation by a tableT of sizen× t: in the (i, j)-th entry

T (i, j) of T we write 0 or 1, according to the actual value
of η

(j)
i (1 ≤ i ≤ n, 1 ≤ j ≤ t). Our first result in this

interpretation concerns the case of linearpn,k.
Proposition 4.1: If pn,k = k/n for all k = 0, 1, . . . , n, then

Eξ⊗t = r.
Proof: Denote byuj the number of ones in thej-th

column of the tableT for j = 1, . . . , t. Then, we have
Eξ(j) = uj/n. Thus:

Eξ⊗t = Eξ(1) + . . .+ Eξ(t) = u1/n+ . . .+ ut/n. (6)

Sinceu1 + . . .+ ut is just the total number of ones inT , we
have:

u1 + . . .+ ut = nr. (7)

Combining (6) and (7) we obtainEξ⊗t = r, and the statement
follows.

In view of the proof of Proposition 4.1, we see that in case
of a general systempn,k we have:

Eξ⊗t =
t

∑

j=1

pn,uj
. (8)

So to describe the pattern of success (highest accuracy) and
the pattern of failure (lowest accuracy), we need to maximize
and minimize the above quantity, respectively.

Our next result concerns the pattern of success. Here we
consider the problem only under some further assumptions,
which in fact are not necessary to study and describe the
situation as it will be shown in section IV-B. However, on the
one hand, the statement together with its proof already show
the basic idea for construction. On the other hand, former
results usually consider these assumptions, so in this way our
model can be fitted to the existing literature, as well. In section
IV-B, we describe the general method, which works without
any technical restrictions.

Theorem 4.1:Let the probabilitiespn,k be arbitrary, up to
pn,0 = 0. Let k1 6= 0 be an index such thatpn,k1

/k1 ≥ pn,k/k
for all k = 1, . . . , n. Then,Eξ⊗t ≤ nrpn,k1

/k1. Further, if
tk1 = nr then the maximum can be attained.

Proof: See Appendix.
Our next theorem describes the pattern of failure, in a

similar fashion as the previous statement.
Theorem 4.2:Let the probabilitiespn,k be arbitrary, up to

pn,0 = 0. Let k2 6= 0 be an index such thatpn,k2
/k2 ≤ pn,k/k

for all k = 1, . . . , n. Then,Eξ⊗t ≥ nrpn,k2
/k2. Further, if

tk2 = nr then the minimum can be attained.
Proof: Since the proof follows the same lines as that of

Theorem 4.1 (see Appendix), we omit the details.
Similarly to the independent case in section III-A, we also

investigate the case, when only good decision is made by
the ensemble. In other words, we would like to describe the
situation, where:

P (ξ⊗t = t) =

t
∏

j=1

pn,uj

is maximal. Note that, in this case one can easily obtain a
tableT with P (ξ⊗t = t) = 0. So now finding the minimum
(i.e. investigating the pattern of failure) does not make sense.
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For the special case ofpn,k = k/n, we have the following
result.

Theorem 4.3:Let pn,k = k/n for all k = 0, 1, . . . , n, and
assume thatnr ≥ t. Then P (ξ⊗t = t) is maximal for the
tablesT in which:

⌊nr/t⌋ ≤ uj ≤ ⌈nr/t⌉ (1 ≤ j ≤ t),

whereuj denotes the number of ones in thej-th column of
T . Further, all these tablesT can be explicitly constructed.

Proof: See Appendix.
Note that, if t > nr thenT necessarily has a column with

all zero entries, whenceP (ξ⊗t = t) = 0 in this case. For
general valuespn,k, we have the following result.

Theorem 4.4:Let the probabilitiespn,k be arbitrary, up to
pn,0 = 0 andpn,k > 0 for 0 < k ≤ n. Let k0 6= 0 be an index
such that(ln pn,k0

)/k0 ≥ (ln pn,k)/k for all k = 1, . . . , n.
Then,P (ξ⊗t = t) ≤ p

(nr/k0)
n,k0

. Further, if tk0 = nr then the
maximum can be attained.

Proof: See Appendix.

B. Extremal accuracies by linear programming

In this section, we drop the condition (5), and give a com-
pact tool based on linear programming to calculate the minimal
and maximal ensemble accuracies. We assumed earlier that
the random variablesηi (i = 1, . . . , n) are independent. In
our application, we consider different algorithms detecting
the optic disc as voters. These algorithms cannot be assumed
to be independent in all cases, because it can happen that
the operations of the algorithms are based on very similar
principles. In case of dependent algorithms, we have to decide
how to measure the dependencies of the algorithms. For this
aim, we can investigate the joint distribution of the outputs of
the algorithms. So let:

ca1,...,an
= P (η1 = a1, . . . , ηn = an), (9)

where ai ∈ {0, 1, ∗}. The star denotes any of the possible
correctness values, that is,∗ = 0 or 1. The probabilities
ca1,...,an

can be considered as the entries of the contingency
table ofη1, . . . , ηn. The problem to determine the combination
of voters achieving the best/worst ensemble performance is
equivalent to maximize/minimize the function:

q(ca1,...,an
) =

n
∑

k=0

(

pn,k
∑

a1+...+an=k

ca1,...,an

)

(10)

under the following conditions:

∑

ai=1

c∗,...,∗,ai,∗,...,∗ = pi (i = 1, . . . , n),

∑

a1,...,an

ca1,...,an
= 1,

ca1,...,an
≥ 0, ai ∈ {0, 1} (i = 1, . . . , n),

(11)

where Eηi = pi (i = 1, . . . , n) is the accuracy of the
i-th detecting algorithm. Observe that this is just a linear
programming problem for the variablesca1,...,an

, which can
be solved by standard tools.

In the special case, when(η1, . . . , ηn) are totally indepen-
dent, we have:

ca1,...,an
= P (η1 = a1) . . . P (ηn = an). (12)

That is, the entries of the contingency table can be de-
termined by the probabilitiesp1, . . . , pn. In this case, the
ensemble performanceq is simply given by (3).

V. EXTENDING THE ENSEMBLE WITH ADDING A NEW

CLASSIFIER

From a practical point of view, it is very important to
study the improvability of an existing ensemble regarding its
accuracy. To address this issue, we investigate to what extent
the addition of a new classifierDn+1 with accuracypn+1 may
improve the system. For this study, we observe both the change
of the system accuracyq and the interval[qmin, qmax] for the
minimal and maximal system accuracy. More precisely, we
will consider the following cases:

A. we fix the individual accuracies and output of the
algorithms of the current ensemble for an experiment
in terms of a contingency table, and:

1. add a new independent algorithm and check how
the ensemble accuracy (q) changes,

2. add a new dependent algorithm and check how
the minimal (qmin) and maximal (qmax) ensemble
accuracy change, respectively,

B. we fix the individual accuracies, but ignore the output
of the algorithms of the current ensemble for an ex-
periment, add a new algorithm and check the minimal
(qmin) and maximal (qmax) ensemble accuracy.

After adding a new algorithm to the existing system, the
new system accuracy depends not only on the accuracies
p1, . . . , pn+1, but also on the valuespn+1,k. As an estimation
for pn+1,k, from the definition ofpn,k we have:

pn,k ≥ pn+1,k, (13)

pn,k ≤ pn+1,k+1. (14)

In (13), the added vote is supposed to be false, so the prob-
ability of good decision after the extension cannot be greater
than in the existing system. The estimation (14) describes the
case of adding a correct vote to the system. To sum up (13)
and (14), we get the following properties forpn+1,k:

pn,k−1 ≤ pn+1,k ≤ pn,k. (15)

Applying inequalities (15), the valuespn+1,k can be estimated
from the valuespn,k.

If a new member is added to an existing ensemble, the
accuracy of the extended ensemble is affected by two main
properties of the new voter: its accuracy and its correlation
with the members of the existing system. Letηn+1 be a
random variable withEηn+1 = pn+1. To determine the
best/worst choice for the new member to achieve the best
(qmax)/worst (qmin) performance for the extended ensemble
the following linear optimization problem has to be solved in
the general case B. Maximize/Minimize the function:

q(ca1,...,an+1
) =

n+1
∑

k=0

(

pn+1,k

∑

a1+...+an+
+an+1=k

ca1,...,an+1

)

(16)
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under the following conditions:

∑

ai=1

c∗,...,∗,ai,∗,...,∗ = pi (i = 1, . . . , n+ 1),

∑

a1,...,an+1

ca1,...,an+1
= 1,

ca1,...,an+1
≥ 0, ai ∈ {0, 1} (i = 1, . . . , n+ 1),

(17)

whereEηi = pi (i = 1, . . . , n + 1), so the accuracy of the
i-th classifier ispi.

In case A.2., besides the objective function in (16) and the
conditions in (17) are the same, we have an extra condition:

ca1,...,an
= ca1,...,an,0 + ca1,...,an,1. (18)

From the definition ofca1,...,an
given in (9) it follows that

the term containingca1,...,an+1
in (16) can be split as:

∑

a1+...+an+1=k

ca1,...,an+1
=

∑

a1+...+an=k

ca1,...,an,0 +
∑

a1+...+an=k−1

ca1,...,an,1.
(19)

Without having any further information aboutpn+1,k, we
can give an interval forqmin and qmax. Let q⊖min/q⊖max and
q⊕min/q⊕max be the minimal/maximal value of the objective
function (16) if we consider the estimationspn,k−1 = pn+1,k

andpn+1,k = pn,k, respectively. From (15), we get:

q⊖min ≤ qmin ≤ q⊕min, and q⊖max ≤ qmax ≤ q⊕max. (20)

In the special case, whenηn+1 is totally independent from
(η1, . . . , ηn), the entries of the extended contingency table can
be determined byca1,...,an

andpn+1:

ca1,...,an,1 = pn+1ca1,...,an
,

ca1,...,an,0 = (1− pn+1)ca1,...,an
.

(21)

Considering the equations (16), (19) and (21) we get that
the linear optimization problem can be solved by maximiz-
ing/minimizing the function:

q(ca1,...,an+1
) = (22)

n+1
∑

k=0

pn+1,k

(

∑

a1+...+an=k

(1− pn+1)ca1,...,an
+

+
∑

a1+...+an=k−1

pn+1ca1,...,an

)

under the conditions given in (11).
If we consider that the entries of the contingency table

of η1, . . . , ηn remain the same after adding an independent
variableηn+1 to the ensemble (case A.1.), the solution of the
problem in (22) under the conditions (11) depends only on
pn+1 andpn+1,k.

In the same way as in (20), from (15) we get:

q⊖ ≤ q ≤ q⊕, (23)

where q⊖ and q⊕ denote the minimal/maximal value of the
objective function (22) for a fixedpn+1 if we consider the
estimationspn,k−1 = pn+1,k andpn+1,k = pn,k, respectively.

For the improvability of the system, we have the following
proposition.

Proposition 5.1:For the accuracy of the extended ensemble
we have:

q(ca1,...,an+1
) ≥ q(ca1,...,an

),

if:

pn+1 ≥

n
∑

k=0

(

∑

a1+...+an=k

ca1,...,an
(pn,k − pn+1,k)

)

n
∑

k=0

(

∑

a1+...+an=k

ca1,...,an
(pn+1,k+1 − pn+1,k)

)

holds for the accuracy of the added member.
Proof: First, note that the value of this fraction is non-

negative, sincepn,k ≥ pn+1,k and pn+1,k ≤ pn+1,k+1.
Moreover, from (15) and (21) the statement follows.

In section VI-D, we will show some experimental results for
the improvability of the accuracy of our OD detector ensemble
with adding a new algorithm.

VI. A PPLICATION – OPTIC DISC DETECTION

Now we turn to show, how our generalized model supports
real-world problems in a clinical field. Progressive eye diseases
can be caused by diabetic retinopathy (DR) which can lead
even to blindness. One of the first essential steps in automatic
grading of the retinal images is to determine the exact location
of the main anatomical features, such as the optic disc. The
locations of these features play important role in making
diagnosis in the clinical protocol. In this section, for the
OD detection task, we start with showing how the general
formulation considering the probabilitiespn,k is restricted for
this specific challenge using geometric constraints definedby
anatomic rules. Then, we present the accuracy of our current
ensemble, characterize it by the achieved results and discuss
the possibilities of its further improvement.

A. Constraining by shape characteristics

In our application, the votes are required to fall inside a disc
of diameterdOD to vote together. For the calculation of the
valuespn,k for our proposed method, thek correct votes must
fall inside the true OD region, however, then− k false ones
can fall within discs with diameterdOD anywhere else within
the ROI (region of interest in the image). That is, more false
regions are possible to be formed which gives the possibility to
make a correct decision even if the true votes are in minority.
Note that, a candidate of an algorithm is considered to be
correct if its distance from the manually selected OD center
is not larger thandOD/2. For this configuration, see Figure 5.

If we assume independency among the algorithms, for our
application the behavior of the valuespn,k as a function ofk
for a givenn is shown in Figure 4 forn = 9 andp = 0.9.

This function has been determined empirically by dropping
random pixels on the disc in a large number of experiments.
Figure 4 shows thatpn,k increases exponentially ink for a
given n. This fact is also suggested by the results in [22],
[23] saying that the probability that the diameter of a point
set is not less than a given constant decreases exponentially if
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Fig. 5. The geometric constraint applied to the candidates ofthe algorithms:
they should fall inside a disc of a fixed diameterdOD to vote together.
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Fig. 4. The graph ofpn,k for a fixedn = 9 andp = 0.9 with our geometric
constraint to fall within a disc of diameterdOD .

the number of points tends to infinity. Note that, this diameter
corresponds again to the diameterdOD of the OD.

The ensemble accuracy for our spatially constrained system
is measured empirically by the help of a set of test images.
The obtained data are enclosed in Table II for different num-
ber of independent classifiers (n) for some equal individual
accuracies (p).

n=3 n=5 n=7 n=9

p = 0.6 0.6435 0.9076 0.9654 0.9893
p = 0.7 0.7889 0.9631 0.9938 0.9985
p = 0.8 0.9029 0.9906 0.9986 0.9997
p = 0.9 0.9697 0.9994 1.0000 1.0000

TABLE II
MEASURED ENSEMBLE ACCURACY UNDER THE GEOMETRIC CONSTRAINT.

From Table II we can see a rapid increase in the ensemble
accuracy. From trivial geometric considerations, it can be
also seen why an ensemble with few members (e.g.n = 3)
performs bad.

Now, to describe the spatially constrained case in detail,
let us assign the probability(1 − pi)si with si ∈ [0, 1] to
the i-th independent classifier. This probability means that the
i-th voter makes false individual decision (term1 − pi) and
participates in making a false ensemble decision (termsi). For
the algorithmDi with accuracypi giving a false candidate
having coordinates(xi, yi) for the OD center, we consider
that the distribution of(xi, yi) is uniform outside the true OD
region for all i = 1, . . . , n. With this setup, we have:

s1 = . . . = sn =
T0

T − T0
, (24)

where T0 and T are the area of the OD and the ROI,
respectively, so in this casesi is the same predetermined

constant for alli = 1, . . . , n. For better understanding, see
also Figure 5.

For the interpretation of the valuespn,k for this case,
let us consider the decomposition of the number of false
candidatesn−k = k1+ . . .+kl, where all the false votes are
covered by thel disjoint discs of diameterdOD, andki is the
cardinality of the false votes covered by thei-th disc. Without
the loss of generality, we may assume thatk1 ≥ . . . ≥ kl.
To determine the valuespn,k, we introduce the probability
P (n, k, k1, . . . , kl) for the good decision in case of a concrete
realization of then votes:

P (n, k, k1, . . . , kl) =

n!

k!k1! . . . kl!
p1 . . . pk(1− pk+1) . . . (1− pn)·

·

(

1−
T0

T

)k1

. . .

(

1−
lT0

T

)kl

.

Applying the geometric constraint, false decision is made only
when k1 > k so pn,k = 0 for k1 > k, while pn,k = 1 for
k > k1 should hold. The casek1 = k is broken randomly.
Based on these considerations and summing for the possible
distribution of then− k false votes among the discs, we can
calculate the corresponding valuespn,k as follows:

pn,k =
∑

k1+...+kl=n−k,k>k1

P (n, k, k1, . . . , kl)+

+
1

2

∑

k1+...+kl=n−k,k=k1

P (n, k, k1, . . . , kl)
(25)

The valuespn,k calculated by (25) and the ones shown in
Figure 4 slightly differ. The reason for this difference is that
in our geometric derivation to have the closed form (25), we
have considered only disjoint discs that completely fall inside
the ROI, as well. However, these differences are minor, and
both approaches have exponential trends.

From the basic results and concepts introduced in section
II, strict majority voting scheme could be also applied as a
decision rule, which means that at least⌊n/2⌋+1 votes should
fall within a disc of diameterdOD to make a good decision.
However, this strict approach is much more unnatural than the
proposed one confirmed by the experimental results presented
in the next sections, as well.

B. An ensemble-based OD detector

To take advantage of the theoretical foundations of the
previous sections for efficient OD detection, we have collected
eight corresponding individual algorithms to create an ensem-
ble from. Then, with a brute force approach (i.e. checking
all the possible combinations) we select such an ensemble
which maximizes the accuracy of the combined system. For
measuring the accuracy of both the individual algorithms
and the ensembles, we used the dataset MESSIDOR [24]
containing 1200 digital images, where the OD centers were
manually labelled by clinical experts. The images are loss-
lessly compressed with 45◦ FOV and of different resolutions
(1440× 960, 2240× 1488, and2304× 1536 pixels) that were



SUBMITTED TO: IEEE TRANSACTIONS ON IMAGE PROCESSING 8

re-scaled to1500 × 1152 for normalization. For this specific
resolution, we getdOD = 184 pixels from averaging the
manual annotations of clinical experts for this dataset. Asa
result of brute force selection, we composed an ensemble from
six OD-detectors. To have an impression about the similarities
and differences between these approaches, next we give a short
description for each of them. Each individual accuracy(pi) has
been measured on the dataset MESSIDOR.

• Based on pyramidal decomposition:Lalonde et al. [25]
created an algorithm which generates a pyramid with
simple Haar-based discrete wavelet transform. The pixel
with the highest intensity value in the low-resolution
image (4th or 5th level of decomposition) is considered
as the center of the OD.p1 = 0.767

• Based on edge detection:This method [25] uses edge
detection algorithm which is based on Rayleight-based
CFAR threshold. Next, Hausdorff distance is calculated
between the set of edge points and a circular template
like the average OD. The pixel with the lowest distance
value is selected for OD center.p2 = 0.958

• Based on entropy measurement:Sopharak et al. [26]
proposed this method which applies a median and a
CLAHE filter on the retinal image. In a neighborhood
of each pixel, the entropy of intensity is calculated; the
pixel with the largest entropy value is selected as the OD
center.p3 = 0.315

• Based on kNN classification:Niemeijer et al. [27] ex-
tracted features (number, width, orientation and density
of vessels and their combination), and applied a kNN
classifier to decide whether a pixel belongs to the OD
region. The centroid of the largest component found is
considered as the OD center.p4 = 0.759

• Based on fuzzy convergence of blood vessels:This
method [28] thins the vessel system and models each
line-shape segment with a fuzzy segment. A voting map
of these fuzzy segments is created and the pixel receiving
the most votes is considered as OD center.p5 = 0.977

• Based on Hough transformation of vessels:Ravishankar
et al. [29] proposed to fit lines to the thinned vessel sys-
tem by Hough transformation. The intersection of these
lines results in a probability map. A weighting is also
applied considering the intensity values corresponding
to the intersection points. The pixel having the highest
probability is considered as OD center.p6 = 0.647

As for the decision of the ensemble, we select the disc of the
fixed diameterdOD containing the largest number of algorithm
candidates. Then, as the final OD center, we consider the
centroid of these candidates. The final OD center is correctly
found, if it falls inside the disc aligned to the manually selected
OD center and having diameterdOD.

C. Characterizing and comparing OD-ensemble accuracies

A natural question regarding the ensemble of the detectors
is what accuracies we can expect as the best or worst based
on the given individual detector accuracies. Then, we can see

where the accuracy of our current ensemble falls within this
interval, and can also check how it relates to a system which
would contain independent ensemble members.

In our application, the valuespn,k for calculating the above
characterizing ensemble accuracies as a function ofk for
n = 6 is calculated empirically and shown in Figure 6.
Note that, though our system naturally contains dependencies
among its members, the exponential behavior of the indepen-
dent ensemble (see Figure 4) can be observed here, as well.
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Fig. 6. The graph ofpn,k for a fixedn = 6 in our OD detector ensemble.

Using the linear programming technique described in sec-
tion IV-B, we have the following minimal and maximal
ensemble accuracies, respectively:

qmin = 0.899, qmax = 1 (26)

for the given individual accuracies.
Based on our experimental tests, the ensemble accuracy for

our system has been found to be:

q = 0.981, (27)

which is quite close to the possible maximal accuracyqmax =
1. However, if we calculate the system accuracy using (10)
under the conditions (11) and with the assumption (12) on the
independency of the detectors, we have:

qind = 0.998. (28)

That is, an ensemble of independent algorithms with the
given individual accuraciesp1, . . . , p6 would lead to nearly
perfect results regarding accuracy. On the other hand, it isnot
surprising that our current system performs worse, since inthis
specific detection task it is quite challenging to find algorithms
based on different (independent/diverse) principles.

Similarly to our proposed method, we have also determined
the highest ensemble accuracy regarding the strict majority
voting scheme. In this case, the brute force search providedthe
highest accuracy for the ensemble of the five members having
individual accuraciesp1, p2, p4, p5, andp6, respectively. The
ensemble accuracy measured by following the strict decision
rule (at least three votes should fall within a disc of diameter
dOD) has been found to be:

qstrict = 0.944. (29)

Comparing (29) with (27) confirms that the proposed spatially
constrained voting model leads to remarkably higher accuracy
than by simply extending the classic majority vote rule.
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Accuracy of the new algorithm q⊖ q⊕

p7 = 0.6 0.957 0.989
p7 = 0.9 0.975 0.995

TABLE IV
THE INTERVAL FOR THE OD DETECTOR ENSEMBLE ACCURACY IF A NEW

INDEPENDENT ALGORITHM IS ADDED TO A DEPENDENT SYSTEM.

D. On adding algorithms to the detector

In section V, we have laid the theoretical background to
extend the ensemble with adding a new algorithm. Namely,
we have formulated the ways of the calculation of ensemble
accuracy for the cases, when the new member is dependent
or independent from the ensemble, respectively. Besides the
simple ensemble accuracy, we have also explained how the
minimal and maximal accuracies of the ensemble would
change. Now, we adopt these results to our specific application
and investigate how our current OD detector ensemble is
going to behave if a new detector algorithm is added. Besides
the simple ensemble accuracy, we have also explained how
the minimal and maximal accuracies of the ensemble would
change.

To start our experimental discussion on this topic, we check
the behavior of our current OD detector ensemble during its
compilation. Namely, we measure the change of the ensemble
accuracy, when the sixth member is added to the ensemble of
five members. For this aim, we calculate the accuracy of each
ensemble of five individual algorithms with the corresponding
figures enclosed in Table III. Thus, Table III contains the
accuracies of the six possible ensembles of five members,
where in theith column theith member is excluded having
individual accuracypi, for i = 1, . . . , 6.

Index of excluded member 1 2 3 4 5 6
Ensemble accuracy (5 members)0.980 0.957 0.979 0.976 0.961 0.976

Ensemble accuracy (6 members) 0.981

TABLE III
CHANGE OF THE ENSEMBLE ACCURACY, WHEN THE SIXTH MEMBER IS

ADDED TO THE ENSEMBLE OF FIVE ALGORITHMS.

From Table III we can see that the largest increase in accu-
racy (from 0.957 to 0.981) is reached not by adding the most
accurate (p5 = 0.977) member, but a slightly less accurate
(p2 = 0.958) one. Similarly, the smallest improvement (from
0.980 to 0.981) is found not by adding the least accurate
(p3 = 0.315) member, but by adding an individually more
accurate (p1 = 0.767) one. To understand these results we
should realize that there are specific dependencies among
the members. Thus, in general, it is not sufficient to simply
compose an ensemble based on the individual accuracies.

Next, we adopt the results from section V to investigate how
our current OD detector ensemble consisting of six algorithms
is going to behave if a new detector algorithm is added. We
start with the case A.1 from section V, when the dependencies
of the current ensemble members are considered as known in
terms of a contingency table belonging to our experimental
test on the dataset MESSIDOR and the new algorithm is
considered to be independent from the ensemble. For this

case, through the solution of (22), we gain the numeric results
enclosed in Table IV. Note that, in this case we can check
the interval [q⊖, q⊕] introduced in (23) where the ensemble
accuracy will fall based on the lower and upper estimation
that can be derived forpn+1,k as given in (15).

From Table IV, we can see that in our application a new
(independent) algorithm with accuracy approximately0.9 is
highly expected to improve the current system accuracy given
in (27). The case A.1 in section V also includes the special
scenario, when the existing ensemble contains independent
members and we add an independent algorithm, as well. For
this scenario, we can investigate the minimal and maximal
accuracies of the new system by solving the problem in (22)
under the extra condition (12). In Table V, we enclosed the
respective accuracy figures regarding the lower and upper
estimations of the valuespn+1,k.

Accuracy of the new algorithm q⊖ q⊕

p7 = 0.6 0.975 0.997
p7 = 0.9 0.984 0.999

TABLE V
THE INTERVAL FOR THE OD DETECTOR ENSEMBLE ACCURACY IF A NEW

INDEPENDENT ALGORITHM IS ADDED TO AN INDEPENDENT SYSTEM.

By comparing Table IV with Table V, we can see that if
we assume total independency among the algorithms, we can
expect higher ensemble accuracy. Since the original ensemble
would lead to very high accuracy with independent algorithms
as given in (28), only in case of a very accurate new algorithm
we can expect improvement.

Next, we analyse the case A.2 from section V, when the
dependencies of the algorithms are still considered, but the
new algorithm should not be independent. In this setup, we
can determine the accuracy interval introduced in (20) for
the minimal (qmin) and maximal (qmax) ensemble accuracies,
respectively, based on the estimation for the valuespn+1,k as
given in (15). The corresponding figures presented in Table VI
can be determined by the solution of (16) under the conditions
(17), (18).

Accuracy of the new algorithm q⊖min q⊕min q⊖max q⊕max

p7 = 0.1 0.920 0.981 0.981 0.995
p7 = 0.7 0.920 0.981 0.981 0.995
p7 = 0.9 0.942 0.981 0.981 0.995

TABLE VI
THE INTERVAL FOR THE MINIMAL AND MAXIMAL OD DETECTOR

ENSEMBLE ACCURACY IF A NEW DEPENDENT ALGORITHM IS ADDED TO A

DEPENDENT SYSTEM.

Table VI shows that an individually very weak, but di-
verse algorithm could lead to a remarkable improvement of
the ensemble, however, this possibility is rather unrealistic.
Moreover, since the current ensemble is not optimal regarding
dependencies, even with a very diverse and accurate algorithm
we cannot reach accuracy100%. It is also visible from
Table VI that the original system accuracy (27) cannot be
outperformed with the lower estimation forpn+1,k, and cannot
be degraded with its upper estimation, either.
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Another point which is worth considering is that since
the retinal databases are quite heterogeneous, we cannot go
for sure regarding the dependencies of the algorithms of the
ensemble found for a specific (in our case for the MESSIDOR)
database. Thus, if we keep the individual accuracies of the
ensemble members, but drop the dependency relations, it
would be useful to know to what extent a new algorithm
may ruin or improve the ensemble accuracy. Consequently,
we investigate the case B in section V, when a new algorithm
with accuracyp7 is added to our current ensemble with no
constraints are given for the dependencies. In other words,we
check the intervals for the minimal and maximal accuracies of
the extended system regarding the lower and upper estimation
of the valuespn+1,k, respectively. The corresponding figures
enclosed in Table VII can be determined by the solution of
(16) under the conditions (17).

Accuracy of the new algorithm q⊖min q⊕min q⊖max q⊕max

p7 = 0.7 0.764 0.899 1 1
p7 = 0.9 0.908 0.934 1 1

TABLE VII
THE INTERVAL FOR THE MINIMAL AND MAXIMAL OD DETECTOR

ENSEMBLE ACCURACY IF A NEW DEPENDENT ALGORITHM IS ADDED TO A

SYSTEM WITH NO DEPENDENCY CONSTRAINTS.

Table VII indicates the natural fact that if the dependencies
are unknown, the minimal and maximal accuracy can highly
differ, and e.g. the ensemble performance can be worse than
that of some of its members. However, it is also worth
considering for our specific OD detector ensemble that a new
algorithm of accuracyp7 = 0.9 by all means will raise the
minimal system accuracy given in (26). A comparison with
Table VI shows that if we do not assume any dependencies
for the original ensemble, we can reach higher maximal and
lower minimal system accuracies.

For the strict majority voting approach, an ensemble with
even number of members is meaningless, since as it is also
known from classic theory [1] ensemble accuracy always drops
for even numberL of members regarding theL− 1 case. So
we have analyzed the change in accuracy, when the ensemble
containing five members is extended to seven members. First
of all, we have determined the most accurate ensemble with
seven members from all the implemented eight algorithms.
This ensemble includes the same six algorithms as listed be-
fore plus the one described in [30] having individual accuracy
p7 = 0.320. Then, we have selected the most/least accurate
ensembles with five members, respectively, and checked which
members were added to compile the ensemble with seven
members. The corresponding quantitative results are givenin
Table VIII.

Indices of excluded members 2,5 (lowest acc.)3,7 (highest acc.)
Ensemble accuracy (5 members) 0.626 0.944

Ensemble accuracy (7 members) 0.853

TABLE VIII
CHANGE OF THE ENSEMBLE ACCURACY FOR STRICT MAJORITY, WHEN

THE SIXTH AND SEVENTH MEMBER IS ADDED TO THE ENSEMBLE OF FIVE

ALGORITHMS.

The results of Table VIII are quite obvious, since two indi-
vidually highly accurate (p2, p5) and also two rather inaccurate
(p3, p7) algorithms are present. Thus, their joint removal leads
to a strong drop/increment regarding the ensemble accuracy,
respectively.

VII. D ISCUSSION AND CONCLUSIONS

In this paper, we have introduced a new model that enables
the investigation of majority voting systems in the spatial
domain. We have considered independent/dependent ensem-
bles composed by classifiers having not necessarily the same
individual accuracies. We have described how a constraint may
raise from shape characteristics, and presented an ensemble-
based system for optic disc detection in retinal images, where
the object has a circular anatomical geometry. The general
theory of ensemble-based systems describes several voting
methodologies. However, for spatial voting, corresponding
models have not been presented yet, and their adaptation is
rather challenging to this domain. For instance, the extension
of the approach proposed in this paper is currently under study
for weighted spatial majority voting, but for several cases(e.g.
dependent voters) it is far from being trivial. At this point, we
were able to show the superiority of our proposed method over
the strict version of majority voting (see section VI-C) which
is a simple, but rather unnatural and less efficient extension.

Our detailed experimental studies have been performed on
the image dataset MESSIDOR [24]. However, it is well-
known that we can expect high variance among retinal image
databases (see e.g. [31]), so tests on different datasets are
recommended. Thus, to validate more its efficiency, we have
tested the proposed ensemble-based approach on a database
containing 327 images provided by the Moorfields Eye Hos-
pital, London from a real mass screening process. The highest
accuracyq = 0.921 has been found for the ensemble contain-
ing the four members having individual accuraciesp1 = 0.798,
p3 = 0.150, p4 = 0.801, p5 = 0.835, respectively (for the
remaining three algorithms we have measuredp2 = 0.780,
p6 = 0.342, and p7 = 0.297, respectively). Similarly to
MESSIDOR, the ensemble performed better than any of its
members for the Moorfields dataset, as well. Moreover, we
can observe that the individual accuracies have been varied
more among the different datasets than that of the ensemble.
This observation suggests that we can expect a more stable
and calculable behavior if we work with ensembles.

Our approach can be extended to other detection problems
with keeping in mind that the presented results are suitable
to handle such shapes that can be described by set diameter.
To demonstrate the efficiency of our method, we considered
another detection problem: the localization of the macula,
which is the center of the sharp vision in the retina and
appears as a dark, disc-like object of diameter approximately
6mm. That is, we have a very similar scenario to that of the
OD detection problem. We have set up an ensemble of five
macula detectors [32], [33], [34], [35], [36] having individual
accuracies0.583, 0.870, 0.714, 0.624, 0.962, respectively. By
applying the proposed spatially constrained decision scheme,
we have found0.968 for the accuracy of the ensemble for
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the dataset MESSIDOR. From this result we can see that our
ensemble-based approach has led to improvement in this field,
as well.

APPENDIX

Proof of Proposition 3.1: Since by Lemma 3.1ξ is of
Bernoulli distribution with parameterq, we have:Eξ = q.
Thus, we just need to show thatq = p wheneverpn,k = k/n
(k = 0, 1, . . . , n). By our settings, from (4) we have:

q =

n
∑

k=0

k

n

(

n

k

)

pk(1− p)n−k =
1

n

n
∑

k=0

k

(

n

k

)

pk(1− p)n−k.

Observe that the last sum just expresses the expected valuenp
of a random variable of binomial distribution with parameters
(n, p). Thus, we haveq = p, and the statement follows.

Proof of Theorem 3.1:We can write:

q =

n
∑

k=0

pn,k

(

n

k

)

pk(1−p)n−k =

⌊n/2⌋
∑

k=0

(

pn,k

(

n

k

)

pk(1− p)n−k+

+pn,n−k

(

n

n− k

)

pn−k(1− p)k
)

+pn,n/2

(

n

n/2

)

pn/2(1−p)n/2.

Here ifn is odd, the last term should be considered to be zero.
Now by our assumptionsp ≥ 1/2, together with (i) and (ii),

using also the identities
(

n
k

)

=
(

n
n−k

)

andk/n+(n−k)/n = 1,
for any k with 0 ≤ k < n/2 we have:

pn,k

(

n

k

)

pk(1− p)n−k + pn,n−k

(

n

n− k

)

pn−k(1− p)k ≥

(1−pn,n−k)

(

n

k

)

pk(1−p)n−k+pn,n−k

(

n

n− k

)

pn−k(1−p)k =

=
k

n

(

n

k

)

pk(1− p)n−k +
n− k

n

(

n

n− k

)

pk(1− p)n−k+

+pn,n−k

(

n

n− k

)

(

pn−k(1− p)k − pk(1− p)n−k
)

≥

≥
k

n

(

n

k

)

pk(1− p)n−k +
n− k

n

(

n

n− k

)

pk(1− p)n−k+

+
n− k

n

(

n

n− k

)

(

pn−k(1− p)k − pk(1− p)n−k
)

=

=
k

n

(

n

k

)

pk(1− p)n−k +
n− k

n

(

n

n− k

)

pn−k(1− p)k.

In the last inequality, we use (ii) and the fact thatpn−k(1 −
p)k−pk(1−p)n−k is non-negative. Furthermore, ifn is even,
by (ii) we also have:

pn,n/2

(

n

n/2

)

pn/2(1− p)n/2 ≥
n/2

n

(

n

n/2

)

pn/2(1− p)n/2.

Thus, we obtain:

q ≥
n
∑

k=0

k

n

(

n

k

)

pk(1− p)n−k = p.

Here, the last equality follows from the proof of Proposition
3.1. SinceEξ = q, we have the inequalityEξ ≥ p.

Proof of Theorem 3.2: Let t and l be as given in the
statement. Then, we have:

P (ξ⊗t ≥ l) =
t

∑

k=l

(

t

k

)

qk(1− q)t−k,

P (η⊗t
1 ≥ l) =

t
∑

k=l

(

t

k

)

pk(1− p)t−k.

Thus, by Lemma 3.2, we obtain:

P (ξ⊗t ≥ l) ≥ P (η⊗t
1 ≥ l),

if and only if, q ≥ p, and the theorem follows.
Proof of Theorem 4.1: Using (8) and our assumption

pn,k1
/k1 ≥ pn,k/k for all k = 1, . . . , n, we get:

Eξ⊗t =
t

∑

j=1

pn,uj
=

t
∑

j=1

uj 6=0

ujpn,uj
/uj ≤

≤

t
∑

j=1

ujpn,k1
/k1 = (pn,k1

/k1)

t
∑

j=1

uj = nrpn,k1
/k1,

which implies the first part of the statement.
Assume now that we also havetk1 = nr. Fill in the n× t

tableT with zeros and ones arbitrarily, such that we haver
ones in each row. If there is a column containing less than
k1 ones, then bytk1 = nr there is another column with more
thank1 ones. Writej1 andj2 for the indices of these columns,
respectively. Then there exists a row say with indexi, such
thatT (i, j1) = 0 andT (i, j2) = 1. Change these zero and one
values, and continue this process as long as possible. Since
tk1 = nr, finally we end up with a tableT containingr ones
in each row andk1 ones in each column. Then, we have:

Eξ⊗t =

t
∑

j=1

pn,k1
= tpn,k1

= tk1pn,k1
/k1 = nrpn,k1

/k1,

and the theorem follows.
Proof of Theorem 4.3:Let T be an arbitrary table having

r ones in each row such thatT has no column consisting only
of zeros. Sincenr ≥ t, such aT exists (and can be easily
constructed). In view of the proof of Proposition 4.1, for the
correspondingξ⊗t we have:

P (ξ⊗t = t) = (1/nt)

t
∏

j=1

uj .

If for some indices1 ≤ j1, j2 ≤ t we haveuj1 − uj2 ≥ 2,
then(uj1 −1)(uj2 +1) > uj1uj2 clearly holds. Hence moving
a one from thej1-th column to thej2-th column (keeping its
row; just as at the end of the proof of Theorem 4.1), the new
value for P (ξ⊗t = t) will be larger than the previous one.
Continuing this process as long as possible, finally we obtain
a tableT , where for any indices1 ≤ j1, j2 ≤ t we have
|uj1 − uj2 | ≤ 1. Obviously, this is equivalent to:

⌊nr/t⌋ ≤ uj ≤ ⌈nr/t⌉ (1 ≤ j ≤ t).

Observing that for all such tablesT the valuesP (ξ⊗t = t)
coincide, and these tables differ from each other only by a
permutation of their columns, the theorem follows.
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Proof of Theorem 4.4:First, we have:

P (ξ⊗t = t) =
t
∏

j=1

pn,uj
= exp





t
∑

j=1

ln pn,uj



 .

On the other hand, by our assumption(ln pn,k0
)/k0 ≥

(ln pn,k)/k for all k = 1, . . . , n,

t
∑

j=1

ln pn,uj
=

t
∑

j=1

uj 6=0

uj ln pn,uj

uj
≤

t
∑

j=1

uj ln pn,k0

k0
=

=
ln pn,k0

k0

t
∑

j=1

uj =
nr ln pn,k0

k0

holds. Thus:
P (ξ⊗t = t) ≤ p

(nr/k0)
n,k0

,

which implies the first part of the statement. The second part
can be proved by following the argument at the end of the
proof of Theorem 4.1.
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11/1/KONV-2012-0001 supported by the European Union,
co-financed by the European Social Fund; the OTKA grant
NK101680; the project T́AMOP 4.2.1./B-09/1/KONV-2010-
0007 implemented through the New Hungary Development
Plan, co-financed by the European Social Fund and the Euro-
pean Regional Development Fund.

REFERENCES

[1] L. Lam and C.Y. Suen, ”Application of Majority Voting to Pattern
Recognition: An Analysis of Its Behavior and Performance,” IEEE Trans.
on Systems, Man, and Cybernetics, Part A: Systems and Humans, vol.
27, no. 5, pp. 553-568, Sep. 1997, doi:10.1109/3468.618255.

[2] L.K. Hansen and P. Salamon, ”Neural Network Ensembles,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 12, no. 10,pp. 993-1001,
Oct. 1990, 10.1109/34.58871.

[3] S. Cho and J. Kim, ”Combining Multiple Neural Networks by Fuzzy
Integral for Robust Classification,” IEEE Trans. Systems, Man and Cy-
bernetics, vol. 25, no. 2, pp. 380-384, Feb. 1995, doi:10.1109/21.364825.

[4] E.B. Kong and T. Diettrich, ”Error-Correcting Output Coding Corrects
Bias and Variance,” Proc. 12th International Conference onMachine
Learning (ICML 1995), pp. 313-321, 1995, doi:10.1.1.57.5909.

[5] K.M. Ali and M.J. Pazzani, ”Error Reduction Through Learning Multiple
Descriptions,” Machine Learning, vol. 24, no. 3, pp. 173-202, Sept. 1996,
doi:10.1023/A:1018249309965.

[6] T.K. Ho, J. Hull and S. Srihari, ”Decision Combination in Multiple
Classifier Systems,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 16, no. 1, pp. 66-75, Jan. 1994, doi:10.1109/34.273716.

[7] Y.S. Huang and C.Y. Suen, ”A Method of Combining Multiple Experts for
the Recognition of Unconstrained Handwritten Numerals,”, IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 17, no. 1, pp. 90-94, Jan.
1995, doi:10.1109/34.368145.

[8] L. Xu, A. Krzyzak and C.Y. Suen, ”Several Methods for Combining
Multiple Classifiers and Their Applications in HandwrittenCharacter
Recognition”, IEEE Trans. on System, Man and Cybernetics, vol. 22,
no. 3, pp. 418-435, May 1992, doi:10.1109/21.155943.

[9] K. Sirlantzis, S. Hoque, M.C. Fairhurst, ”Diversity in Multiple Classifier
Ensembles Based on Binary Feature Quantisation with Application to
Face Recognition”, Appl. Soft Comput., vol. 8, no. 1, pp. 437-445, Jan.
2008, doi:10.1016/j.asoc.2005.08.002.

[10] A. Perez-Rovira and E. Trucco, ”Robust Optic Disc Location via Com-
bination of Weak Detectors,” Proc. IEEE Engineering in Medicine and
Biology Society, 30th Annual International Conference (EMBS 2008),
pp. 3542-3545, Aug. 2008, doi:10.1109/IEMBS.2008.4649970.

[11] T.J. Fuchs, J. Haybaeck, P.J. Wild, M. Heikenwalder, H.Moch, A.
Aguzzi and J.M. Buhmann, ”Randomized Tree Ensembles for ObjectDe-
tection in Computational Pathology,” Proc. 5th International Symposium
on Advances in Visual Computing (ISVC 2009): Part I, pp. 367-378,
2009, doi:10.1007/978-3-642-10331-535.

[12] L.I. Kuncheva,Combining Pattern Classifiers, Methods and Algorithms,
New Jersey: John Wiley& Sons, Inc., 2004, doi:10.1002/0471660264.

[13] L.I. Kuncheva C.J. Whitaker and C.A. Shipp, ”Limits on theMajority
Vote Accuracy in Classifier Fusion,” Pattern Analysis and Applications,
vol. 6, no. 1, pp. 22-31, Apr. 2003, doi:10.1007/s10044-002-0173-7.

[14] N. Littlestone and M. Warmuth, ”The weighted majority algorithm,”
Proc. 30th Symposium on Foundations of Computer Science (SFCS), pp.
256-261, Nov. 1989, doi:10.1109/SFCS.1989.63487.

[15] J.Z. Kolter and M.A. Maloof, ”Dynamic weighted majority:An en-
semble method for drifting concepts” The Journal of Machine Learning
Research, vol. 8, pp. 2755-2790, Dec. 2007.

[16] B. Harangi, J.R. Qureshi, A. Csutak, T. Peto, A. Hajdu, ”Auto-
matic Detection of the Optic Disc Using Majority Voting in a Col-
lection of Optic Disc Detectors,” Proc. 7th IEEE International Sympo-
sium on Biomedical Imaging (ISBI 2010), pp. 1329-1332, Apr. 2010,
doi:10.1109/ISBI.2010.5490242.

[17] D. Gilat, ”Monotonicity of a Power Function: An Elementary Proba-
bilistic Proof,” The American Statistician, vol. 31, no. 2, pp. 91-93, May
1977, doi:10.2307/2683050.

[18] A. Buonocorea, E. Pirozzi and L. Caputo, ”A Note on the Sum of
Uniform Random Variables,” Statistics and Probability Letters, vol. 79,
no. 19, pp. 2092-2097, Oct. 2009, doi:10.1016/j.spl.2009.06.020.

[19] H. Altincay, ”On Naive Bayesian Fusion of Dependent Classifiers,”
Pattern Recognition Letters vol. 26, no. 15, pp. 2463-2473,Nov. 2005,
doi:10.1016/j.patrec.2005.05.003.

[20] X. Wang and N.J. Davidson, ”The Upper and Lower Bounds ofthe
Prediction Accuracies of Ensemble Methods for Binary Classification,”
Proc. 9th International Conference on Machine Learning andApplications
(ICMLA ’10), pp. 373-378, Dec. 2010, doi:10.1109/ICMLA.2010.62.

[21] O. Matan, ”On voting ensembles of classifiers,” Proc. AAAI-96 work-
shop on Integrating Multiple Learned Models, pp. 84-88, Apr. 1996.

[22] M.J. Appel and R.P. Russo, ”On the h-diameter of a Random Point Set,”
Technical Report 370, The University of Iowa, Jul. 2008.

[23] M.J. Appel, C.A. Najim and R.P. Russo, ”Limit Laws for theDiameter
of a Random Point Set,” Advances in Applied Probability, vol. 34, no. 1,
pp. 1-10, Mar. 2002, doi:10.1239/aap/1019160946.

[24] Dataset MESSIDOR provided by the Messidor program partners [On-
line]. Available: http://messidor.crihan.fr.

[25] M. Lalonde, M. Beaulieu and L. Gagnon, ”Fast and Robust Optic Disc
Detection Using Pyramidal Decomposition and Hausdorff-based Template
Matching,” IEEE Trans. Medical Imaging, vol. 20, no. 11, pp. 1193-1200,
Nov. 2001, doi:10.1109/42.963823.

[26] A. Sopharak, K. Thet New, Y. Aye Moe, M.N. Dailey and B. Uyyanon-
vara, ”Automatic Exudate Detection with a Naive Bayes Classifier,”
Proc. International Conference on Embedded Systems and Intelligent
Technology (ICESIT2008), pp. 139-142, Feb. 2008.

[27] M. Niemeijer, M.D. Abramoff and B. van Ginneken, ”Fast Detec-
tion of the Optic Disc and Fovea in Color Fundus Photographs,”
Medical Image Analysis, vol. 13, no. 6, pp. 859870, Sep. 2009,
doi:10.1016/j.media.2009.08.003.

[28] A. Hoover and M. Goldbaum, ”Locating the Optic Nerve in a Reti-
nal Image using the Fuzzy Convergence of the Blood Vessels,” IEEE
Trans. Medical Imaging, Vol. 22, no. 8, pp. 951-958, Aug. 2003,
doi:10.1109/TMI.2003.815900.

[29] S. Ravishankar, A. Jain and A. Mittal, ”Automated Feature Extraction
for Early Detection of Diabetic Retinopathy in Fundus Images,” Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2009), pp. 210-217, Jun. 2009, doi:10.1109/CVPR.2009.5206763.

[30] M. Lalonde, M. Beaulieu and L. Gagnon, ”Fast and robust optic
disc detection using pyramidal decomposition and Hausdorff-based tem-
plate matching,” IEEE Transactions on Medical Imaging, vol.20, no.11,
pp.1193-1200, Nov. 2001, doi: 10.1109/42.963823.

[31] B. Antal and A. Hajdu, ”An Ensemble-Based System for Microaneurysm
Detection and Diabetic Retinopathy Grading,” IEEE Transactions on
Biomedical Engineering, vol.59, no.6, pp.1720-1726, Jun. 2012, doi:
10.1109/TBME.2012.2193126.



SUBMITTED TO: IEEE TRANSACTIONS ON IMAGE PROCESSING 13

[32] T. Petsatodis, A. Diamantis and G.P. Syrcos, ”A Complete Algorithm
for Automatic Human Recognition based on Retina Vascular Network
Characteristics,” Proc. 1st International Scientific Conference e RA, pp.
41-46, Sep. 2004.

[33] S. Sekhar, W. Al-Nuaimy and A. K. Nandi, ”Automated localization
of optic disc and fovea in retinal fundus images,” Proc. 16th European
Signal Processing Conference (EUSIPCO), Aug. 2008.

[34] A.D. Fleming, S. Philip, K.A. Goatman, J.A. Olson and P.F.Sharp,
”Automated Assessment of Diabetic Retinal Image Quality Basedon
Clarity and Field Definition,” Investigative Ophthalmologyand Visual
Science, vol. 47, no. 3, pp. 1120-1125, Mar. 2006, doi: 10.1167/iovs.05-
1155.

[35] L. Kovacs, R.J. Qureshi, B. Nagy, B. Harangi and A. Hajdu, ”Graph
based detection of optic disc and fovea in retinal images,” Proc. 4th
International Workshop on Soft Computing Applications (SOFA), pp.
143-148, Jul. 2010, doi: 10.1109/SOFA.2010.5565610.

[36] F. Zana , I. Meunier and J.C. Klein, ”A region merging algorithm using
mathematical morphology: application to macula detection,” Proc. 4th In-
ternational Symposium on Mathematical Morphology and its Applications
to Image and Signal Processing, pp. 423-430, Jun. 1998.

Andras Hajdu received his MSc degree in Mathe-
matics from the Lajos Kossuth University, Hungary,
in 1996. He obtained his PhD degree in Mathe-
matics and Computer Science from the University
of Debrecen, Hungary, in 2003. From 2001 he
served as Assistant Lecturer, since 2003 he has
been an Assistant Professor, since 2009 an Associate
Professor, and since 2011 he has been the Head
of Department of Computer Graphics and Image
Processing at the Faculty of Informatics, University
of Debrecen. He is a member of the IEEE, the

Janos Bolyai Mathematical Society, John von Neumann Computer Society
(Hungary), Public Body of the Hungarian Academy of Sciences,member of
the steering committee the Hungarian Association for Image Analysis and
Pattern Recognition. He has authored or co-authored 26 journal papers and
88 conference papers. His main interest lies in discrete mathematics with
applications in digital image processing.

Lajos Hajdu received his MSc degree in Mathemat-
ics from the Lajos Kossuth University, Hungary, in
1992. He obtained his PhD degree in Mathematics
from the University of Debrecen, Hungary, in 1998.
In 2011 he obtained the Doctoral degree of the
Hungarian Academy of Sciences. From 1996 he
served as Assistant Lecturer, since 1999 he has been
an Assistant Professor and since 2003 an Associate
Professor of Department of Algebra and Number
Theory at the Faculty of Science and Technology
Informatics, University of Debrecen. He is a member

of the J́anos Bolyai Mathematical Society, and the Mathematical Committee
of the Hungarian Academy of Sciences. He has authored or co-authored
70 journal papers and 10 conference papers. His main interestlies in
diophantine number theory, discrete tomography and discretemathematics
with applications in digital image processing.

Agnes Jonasgraduated as an Applied Mathemati-
cian at the University of Debrecen, Faculty of Sci-
ence in 2010. Her main fields of interests are proba-
bility theory, statistics and bioinformatics. Currently,
she is a PhD student at the University of Veterinary
Medicine Vienna.



SUBMITTED TO: IEEE TRANSACTIONS ON IMAGE PROCESSING 14

Laszlo Kovacs received his MSc degree in Com-
puter Science from University of Debrecen, Hungary
in 2010. Currently, he is a PhD student at the Faculty
of Informatics, University of Debrecen, Hungary.
He is a student member of the IEEE and the John
von Neumann Computer Society (Hungary). He has
authored or co-authored 3 journal papers and 7
conference papers. His main interest lies in discrete
mathematics with applications in digital image pro-
cessing and high performance computing.

Henrietta Toman received her MSc degree in Math-
ematics from the University of Debrecen, Hungary in
2000. From 2001 she served as Assistant Lecturer,
since 2009 she has been an Assistant Professor at
the Department of Computer Graphics and Image
Processing, Faculty of Informatics, University of
Debrecen. She has authored or co-authored 5 journal
papers and 6 conference papers. Her main interest
lies in discrete mathematics and geometry.


