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Generalizing the majority voting scheme to spatiall
constrained voting

Andras Hajdd, Member, IEEELajos Hajdu,Agnes dnas, Laszb Kovacs, and Henrietta Toam

Abstract—Generating ensembles from multiple individual clas- results and applications of such systems (ensembleshdstro
sifiers is a popular approach to raise the accuracy of the decision. focus is set to the combination of votes of binary (correts#)
As a rule for decision making, majority voting is a usually 5 65 The related decision may take place based on simple

applied model. In this paper, we generalize classical majority . . - .
voting by incorporating probability terms p,. . to constrain the MOty [2], [12], [13], weighted majority [12], or usingosne

basic framework. These terms control whether a correct or Other variants [14], [15].

false decision is made ifk correct votes are present among the  In the research of majority voting, a cardinal issue is the as
total number of n. This generalization is motivated by object sumptions on the dependency of the voters. Several resalts a
detection problems, where the members of the ensemble are,.hiayed for independent voters, and the minimal and mdxima

image processing algorithms giving their votes as pixels in the . f h iorit fi ¢ | tudied
image domain. In this scenario, the terms,, , can be specialized accuracies of such majority voting systems are also studie

by a geometric constraint. Namely, the votes should fall inside for the dependent case. In this paper, we investigate hotv suc

a region matching the size and shape of the object to vote voting systems behave if we apply some further constraints

together. We give several theoretical results in this new model on the votes. Namely, we generalize the classical majority

for both _dependent and_ independent classifiers, whose individual voting scheme by introducing real values< p,, , < 1 for the

accuracies may also differ. As a real world example, we present bability that d decision i de if ’ hay t

our ensemble-based system developed for the detection of thePr0DabIlty that a good decision Is ma (_a rwe e'orrgc

optic disc in retinal images. For this problem, experimental votes out of ther ones. In other words, in our case it will be

results are shown to demonstrate the characterization capability possible that a good decision is made even if the good votes

of this system. We also investigate how the generalized modelare in minority (less than half).

can help us to improve an ensemble with extending it by adding The creation of this new model is motivated by a retinal

a new algorithm. . . . o
image processing problem — the detection of the optic disc

_ Index Terms—generalized majority voting, classifier combina- (OD), which appears as a bright circular patch within the
tion, independence and dependence, pattern recognition, objec region of interest (ROI) in a retinal image (see Figure 1).

detection. . -
Namely, in a former work we observed that organizing more
EDICS Category: ARS-IVA, ARS-RBS, TEC-BIP, individual OD detector algorithms into an ensemble mayerais
SMR-SMD, SMR-REP detection accuracy [16]. In the voting system applied here,
each individual OD algorithm votes in terms of a single pixel
I. INTRODUCTION as its candidate for the OD center. The application of exgsti

majority voting models are not adequate here, since they

E NSEMBLE-BASED systems are rather popular to ra'S(‘?c‘nsider only the correctness of the votes, which concerns

diff thet decision ac;curac?/ byf.combénmg éhe resw;t)e(lnses f%ling into the true OD region in this scenario. However, in
merent sources (vo ers, classl lers). ~egarding patlecog- case, the spatial behavior of the votes is also impgrtant
nition, the idea of combining the decisions of multiple elas

o ) . since they vote together for a specific location of the OD,
sifiers has als_o been studied [1]. As Correspono_lmg exampl ﬁly if they fall within a region matching the OD geometry.
we can mention neural networks [2], [3], decision trees [4 onsequently, we should consider discs of diameter of the OD
sets of rules [5] and other models [6], [7], [8]. As a specilfi op € Rx( covering the candidates of the individual detector

application field, now we will focus on object detection irblgorithms as shown in Figure 1. The diameties;, can be

digital images which is a vivid field [9], [10], [11], as wel. derived by averaging the manual annotations made by clinica

A usual way for information fusion is to consider the ma'experts on a dataset and can be adjusted to the resolution of

jority of the votes of the classifiers as the basis of the datis the image. As a final decision, the disc having diameles
The current literature is quite rich regarding both theoast with maximal number of candidates included is chosen for the
Copyright (c) 2013 IEEE. Personal use of this material is peeghi OD.Ic.)catlon. |r.‘ this comblned.system, we can make a gOQd
However, permission to use this material for any other purposest be decision even if the false candidates have majority suclm as i
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a binary (correct/false) output value) and all classifiers a
independent and have the same classification accyraéy
correct class label is given by majority voting if at le@st/2]
classifiers give correct answers. The majority voting rule
with independent classifier decisions gives an overallemrr
classification accuracy calculated by the following foreaul

S (’;)pku—p)"-k. 1)

k=[n/2]
Dy — Several interesting results can be found in [1] applying
Correct OD Cand. o majority voting to pattern recognition tasks. This method

is guaranteed to give a higher accuracy than the individual

Fig. 1. The optic disc (OD) of diametelop in a retinal image and the classifiers if the classifiers are independent aned 0.5 holds
OD center candidates (3 correct, 5 false) of individual cietealgorithms. for their individual accuracies

Candidates inside the black circles can vote together fesipte OD locations.

) ) o [1l. GENERALIZATION TO CONSTRAINED VOTING
constraint, our generalized model can be specialized to beAs it has been discussed in the introduction, we generalize
applicable for the above detection scenario, as well. Ngmel ' 9

the corresponding values, . will be adjusted by requiring the classical majority voting approach by considering some

that the candidates should fall inside a disc of a fixed diamefconStrElIntS that must be also met by the yotes. TO gve a
dop to vote together. With the help of this model, we caliore general methodology beyond geometric considerations
| ' e model this type of constrained voting by introducing ealu

characterize our detector ensemble and gain information . . .
further improvability issues, as well. As a different apgeb, ?gn Pn.k < 1 describing the probability of making a good
%eusmn, when we have exactly good votes from then

it would be possible to require more than half of the votes Q ers. Then. in tion VI we will adopt thi neral model
fall inside such a disc. However, this strict majority vatirule oters. Then, n section Vi we witl adopt this general mode
to our practical problem with spatial constraints.

is rather unnatural in the spatial domain, which impressias . . . X
P P As we have summarized in the introduction, several the-

been also confirmed during our empirical studies. . ) . .

The rest of the paper is organized as follows. Section (?Iretlcal results are achieved for independent voters in the
recalls the basic concepts of classical majority votingiciwh curren;llteraturg, fr? we ?tart.W{tth gfe ner?hmtr) g them t;th
will provide fundamentals for our more general framework. |case. However, in the vast majorily ot applications, we cann
section IIl, we show how to incorporate the probability '[ermeXpeCt independency among algorithms trying to detect the

' qme object. Thus, later we extend the model to the case of

Dn,i 10 Cconstrain the basic formulation. We present theoretic . . . .
results for the case of independent voters. Since in apjulita ependent voters with generalizing such formerly invesed
gancepts that have high practical impact, as well.

independent detector algorithms can hardly be expected,
also generalize the method to the dependent case in section

IV. As a main focus, we investigate the possible lowe#. The independent case

and highest accuracy of constrained ensembles. Moreovenn our model, we consider a classifié); with accuracyp;
we both consider equal and different individual accuracieg a random variablg; of Bernoulli distribution, i.e.:

for the members of the ensemble. From a practical point of

view, the further improvability of an ensemble is of great £'(ni =1 =pi, Pni=0)=1—-p; (i=1,...,n).
importance, so in section V we give the theoretical backgtou ygre ;). — 1 means correct classification by;. In particular,

on how an ensemble behaves if a new classifier is added;j@ accuracy ofD; is just the expected value of;, that is
it. Section VI contains our empirical results regarding al f€Em, =p; (i=1,...,n).

world application (optic disc detection), where we applisth | ot Pui (k=0,1,...,n) be given real numbers with <
new model to characterize our current OD detector ensemble " '« ... <, <1, and let the random variable
and to analyse its further improvability by adding a newe sych that:

algorithm. In section VII, we discuss our results and draw

some conclusions regarding other test datasets and detecti ~ P({=1)=ppx and P({=0)=1—pny,

problems, and the improvability of the proposed method. wherek = [{i : 7; = 1}|. That is, ¢ represents the modified

II. MAJORITY VOTING majority voting of the classifier®y, ..., D, if k out of then
classifiers give a correct vote, then we make a good decision

Let D1, Ds,...,D, be a set of classifiers (votersh); : - . .

A—=Q (i=1,...,n), whereA can be any domain, ar is ("?\'I v;/e t:a\t/eg _thl) with Prlc’bab'“tyﬁ"”“'_

a set of finite class labels. The majority voting rule assigns ote that, In the special case, where.

the class label supported by the majority of the classifiers 1, if k>n/2,

Dy,...,D, to«a € A. Usually, ties (same number of different _ .

votesﬁ are broken randomly. Png =4 1/2, if k=n/2, @)
In [13] Kuncheva et al. discuss exhaustively the following 0, otherwise

special case. Let be odd, |©2] = 2 (each classifier has
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Thus, ifn is odd then by the particular choice (2) for the values
Por Dn.i, We getq = P, whereP is given in (1). In order to have
our generalized majority voting model be more accurate than
0 , the individual decisions, we have to guarantee thatp. The
0 k n next statement yields a guideline along this way.
Proposition 3.1:Let p, = k/n (k = 0,1,...,n). Then,
Fig. 3. The graph op,, , = k/n providingp = q. we haveq = p, and consequenth¢ = p.
Proof: See Appendix. [ ]
_ o _ Figure 3 also illustrates the special linear casepfor = k/n.
we get back the classical majority voting scheme. The above statement shows that if the probabilities,
The valuesp, j, as a function ofk corresponding t0 the j,.reaqe uniformly (linearly), then the ensemble has timeesa
classical majority voting can be observed in Figure 2 fohbot .., racy as the individual classifiers. As a trivial conseme

an odd and even, respectively. we obtain the following corollary.

; ; Corollary 3.1: Suppose that foralt = 0,1,...,n we have
pn.k > k/n. Theng > p, and consequentlgé > p.
Posys2 Pucp2 ° The next result helps us to compare our model constrained
12l " by p,, 1 with the classical majority voting scheme.
0 . | 0 ° | Theorem 3.1:Suppose thap > 1/2 and for anyk with
’ ’ 0 < k < n/2 we have:
(a) n is odd (b) n is even

(I) Dk +pn,n—k > 11
Fig. 2. The graph op,,  for classical majority voting for (a) an odd, and (i) Prnn—k = (n - k’)/n
(b) an even number of voters. Let ¢ be given by (4). Thery > p, and consequenth¢ > p.

The ensemble accuracy of the classical majority votin Proof: See Appendix. .
; . y . Jorty VOUNG pg 5 specific case, we obtain the following corollary con-
system is shown in Table | for different number of classifiers

s ) cerning the classical majority voting scheme [13].
n for some equal individual accuracipg(see also [12]). Corc?llary 3.9 Supposé thgh is ogc]id P> 1/2[ ar]1d for all

[ [ 7n=3 [ n=5 [ n=7 [ n=9 | k=0,1,...,n we have:
p=0.6 || 0.6480 ] 0.6826 | 0.7102 | 0.7334 :
»=0.7 || 0.7840 | 0.8369 | 0.8740 | 0.9012 Dok = L i k>mn/2,
p =08 || 0.8960 | 0.9421 | 0.9667 | 0.9804 " 0. otherwise
p =09 || 0.9720 | 0.9914 | 0.9973 | 0.9991 ’
TABLE | Then, g > p, and consequentlé > p.
ENSEMBLE ACCURACY FOR CLASSICAL MAJORITY VOTING Proof: Observing that by the above choice for the values

pn,i; DOth properties (i) and (ii) of Theorem 3.1 are satisfied,
i o the statement immediately follows from Theorem 3.1. ®m
_As the very first step of our generalization, we show that o particular interest is the case, when the ensemble makes
similarly to the individual voters§ is of Bernoulli distribution, exclusively good decisions aftérexecutions. That is, we are
as well. We also provide its corresponding parametethat  crious to know the conditions to have a system with accuracy
represents the accuracy of the_ ensemble in our m_od.el.. 100%. So write €2 for the random variable obtained by
Lemma 3.1:The random varmble; is of Bernoulli distri-  reneatinge independentlyt times, and counting the number
bution with parametey, where: of one values (correct decisions) received, wherés a
n positive integer. Then, as it is well-knows®* is a random
7= mek< Z Hpi H (1 _Pj)>~ (3)  variable of binomial distribution with parametefs ¢) with
k=0

IC{l,..,n} i€l je{l,...,n}\I g given by (4). Now we are interested in the probability
1=k P(£®t = t). In case of using an individual classifiér; (that
Proof: Since for anyk € {0,1,...,n} we have: is, a random variable,) with anyi = 1,...,n, we certainly

U have P(n?" = t) = p'. To make the ensemble better than the
P({i = m =1} =k) = Z 111’2 4 H (1-p;), individual classifiers, we need to choose the probabiljties
fe{l, n}i€l - je{l,.ni\ so thatP(¢%! = t) > pt. In fact, we can characterize a much

I|=k
. ) 7l o more general case. For this purpose we need the following
the statement immediately follows from the definitionsof® |0 uma due to Gilat [17].

The special case assuming equal accuracy for the cIassifierEemma 3.2:For any integerg and! with 1 < I < ¢ the
received strong attention in the literature, so we inveséig function: -
this case first. That is, in the rest of section Ill, we suppose to/y
thatp = p; = ... = p,. Then, (3) reads as: fl@)y=>" <k)$k(1 — )k

n k=l
n . _ . . . .
9= Pk (k)pk(l -p)" " (4) s strictly monotone increasing d, 1].
k=0
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Note that, for anyx € [0, 1] we obviously have: T'(i,j) of T we write 0 or 1, according to the actual value
. of nfj) (1 <i < n,1 < j < t) Our first result in this
Z (t>xk(1 —z)tk=1. interpretation concerns the case of linggry.
= \k Proposition 4.1:1f p,, , = k/nforallk =0,1,...,n, then

Qt _
As a simple consequence of Lemma 3.2, we obtain e =1 . .
following result Proof: Denote byw; the number of ones in thg-th
Theorem 3.2:Let ¢t and! be integers withl <[ < t. Then, coltjjr)nn of the rt]abl'eT for j = 1,...,t. Then, we have
P(£®t > 1) > P(nP* > 1), if and only if, ¢ > p, i.e. B¢®t > E¢Y) = uj/n. Thus:
tp. _ E¢® =B 4 4+ BEW —wy/n+ ... +u/n.  (6)
Proof: See Appendix. " o
Sinceu; + ...+ u; is just the total number of ones iR, we
IV. THE DEPENDENT CASE have:
. ) ) ) . UL+ ... +up = nr. @)
In this section, we investigate how dependencies among

the voters influence the accuracy of the ensemble; for @lat@ombining (6) and (7) we obtaif¢®* = r, and the statement
results, see e.g. [12], [19]. For this purpose, we generalifollows. [ |
some concepts that were introduced for classical majorityln view of the proof of Proposition 4.1, we see that in case
voting to measure the extremal behavior (minimal and maxif a general system,, , we have:

mal accuracies) of an ensemble. First we consjtern of .

successandpattern of failure[12] which are such realizations Ee®t = an’uj_ 8)

of the votes in a series of experiments that lead to the pessib =1

hlghest and_ lowest accuracy of the ensemble, respectMerSo to describe the pattern of success (highest accuracy) and
is worth noting that to define these measures, a rather serigu

restriction considering discretization of the model isdexzbto € pa?“?m. of failure (lowest ac_:curacy), we need to mavamiz
: i .. and minimize the above quantity, respectively.
be applied. Namely, not only the accuracies of the individua Our next result concerns the pattern of success. Here we
classifiers are given, but also the precise numbers of ssfttes . P ' .
o . : . consider the problem only under some further assumptions,
decisions during the experiment are fixed. E.qg. for a classifi , .~ .
. . . which in fact are not necessary to study and describe the
having accuracy = 0.6 we consider 6 correct votes in 10 .~ . L ; :
situation as it will be shown in section IV-B. However, on the

experimental runs. : . one hand, the statement together with its proof already show
Though there are some results in the literature for the “4Re basic idea for construction. On the other hand, former
of different accuracieg; of the classifiersD; (or, in other ) ’

words, for the cas&r; — p; (i = 1,...,n)), see e.g. [2], [20], results usually_con5|der thes_e _assgmptlons, SO in thls_\may o]
. model can be fitted to the existing literature, as well. Irtisac
[21] and the references there, the vast majority of the tesu . . .
i -B, we describe the general method, which works without
(such as e.g. in [13]) concern the case- p1 = ... = p,.

; . , , any technical restrictions.
So in section IV-A, we shall make the latter assumption, too. Theorem 4.1:Let the probabilities,. . be arbitrary, up to

However, in section IV-B, we give a much more general frame- ;
work which handles both dependencies without the resaricti?n:0 — - Leth1 7 0'be an 'ndeé(tSUCh that, s, /K1 = i /k
S : o . . foral k =1,...,n. Then, E¢®" < nrp, i, /ki. Further, if
considering discretization, and also different accusaaé . 1
" L L tk1 = nr then the maximum can be attained.
classifiers that makes the model realistic for applications

Proof: See Appendix. [ ]
Our next theorem describes the pattern of failure, in a
A. Pattern of success and pattern of failure similar fashion as the previous statement.

In this section, we suppose that the individual classifier Theorem 4.2:Let the probabilitieg,, ,, be arbitrary, up to
accuracies coincidep(= p; = ... = p,). Repeat the p, o = 0. Letky # 0 be an index such that, ., /k2 < pp1/k
experimentsys,...,n, t times, with some positive integer for all k& = 1,...,n. Then, EE®" > nrp, i, /ko. Further, if
and writen\?) for the j-th realization ofy; (j = 1,...,t). tk2 = nr then the minimum can be attained.

Suppose (as a rather strong, but standard assumption) ¢hat w Proof: Since the proof follows the same lines as that of
have: Theorem 4.1 (see Appendix), we omit the details. ]

) ) . Similarly to the independent case in section IlI-A, we also
{7 = m =1} =r foralli=1,....n ®) investigate the case, when only good decision is made by
Herer is a positive integer with- = np. We are interested the ensemble. In other words, we would like to describe the
in the behavior (accuracy) af repeatedt times, or in other Situation, where:
words in the valueF¢®t, under the condition (5). Writé(?) t
for the j-th realization of¢ (j = 1,...,t). Then, we clearly P(E® =t) = Hpn,uj
have B¢® = B¢ + ... + B¢, j=1

The number of one values is fixed fgf, however, their js maximal. Note that, in this case one can easily obtain a
positions can freely change. For simplicity, we shall dé&cr (gple 7 with P(£t = t) = 0. So now finding the minimum
the situation by a tabl@" of sizen x t: in the (i, j)-th entry  (j e investigating the pattern of failure) does not makesse
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For the special case qf, = k/n, we have the following  That is, the entries of the contingency table can be de-

result. termined by the probabilities,...,p,. In this case, the
Theorem 4.3:Let p,, ,, = k/n for all k = 0,1,...,n, and ensemble performancgis simply given by (3).

assume thanr > t. Then P(¢%t = t) is maximal for the

tablesT" in which: V. EXTENDING THE ENSEMBLE WITH ADDING A NEW
Lnr/t] < u; < (nr/ﬂ (1 <j< t), CLASSIFIER

whereu; denotes the number of ones in thieh column of From a practlcal. .pomt of VIEW, It is very |mportar.1t tq
- study the improvability of an existing ensemble regarditsg i

T. Further, all these tabl€B can be explicitly constructed. L . .

) . accuracy. To address this issue, we investigate to whantexte
Proof: See Appendix. e o .
the addition of a new classifiép,,; with accuracyp,,; may

Note that, ift > nr thenT necessarily has a column with. :
all zero entries, whenc®(¢®' — ) — 0 in this case. For improve the system. For this study, we observe both the &hang

general value®,, ;;, we have the following result. (;:.;hri;yztﬁ(;nnigcyr:gfysarget;e;ztcer;/:gqmi\’;l’oz’g“}r;g.rsg;e o
Theorem 4.4:Let the probabilitiesp,, ;, be arbitrary, up to Int Xl Y uracy. precisely, w

oo =0andp,, > 0 for 0 < k < n. Let ko # 0 be an index will consider the following cases:

such that(Inpy ,)/ko > (Inpny)/k for all k = 1,...,n. A we fix the individual accuracies and output of the
Then, P(¢¥t = ¢) < p(n}:/ko). Further, iftky = nr then the glgorlthms of the'current ensemble for an experiment
maximum can be attained. in terms of a contingency table, and:
Proof: See Appendix. u 1. add a new independent algorithm and check how
the ensemble accuracy)(changes,
B. Extremal accuracies by linear programming 2. add a new dependent algorithm and check how

In this section, we drop the condition (5), and give a com- the minimal ;) and maximal ¢.nq.) ensemble
pact tool based on linear programming to calculate the nahim accuracy change, respectively,
and maximal ensemble accuracies. We assumed earlier th&. We fix the individual accuracies, but ignore the output
the random variables; (i = 1,...,n) are independent. In of the algorithms of the current ensemble for an ex-
our application, we consider different algorithms detegti periment, add a new algorithm and check the minimal
the optic disc as voters. These algorithms cannot be assumed (¢min) and maximal ;,...) ensemble accuracy.
to be independent in all cases, because it can happen thaifter adding a new algorithm to the existing system, the
the operations of the algorithms are based on very similaew system accuracy depends not only on the accuracies
principles. In case of dependent algorithms, we have tadéecip:, . . ., pn+1, but also on the valuegs, . ;. As an estimation
how to measure the dependencies of the algorithms. For tfas p,1 x, from the definition ofp,, , we have:
aim, we can investigate the joint distribution of the ougpat
the algorithms. So let; Prk Z Ptk (13)

Cay,....an = P(nl =aly.-.yNn = an>7 (9) Pr.k < Pr+1k+1- (14)

wherea; € {0,1,%}. The star denotes any of the possibl&? (13), the added vote is supposed to be false, so the prob-
correctness values, that is, = 0 or 1. The probabilities ability of good decision after the extension cannot be great
Cay....a, Can be considered as the entries of the contingen@an in the e_xisting system. The estimation (14) describes t
table ofn., ... ,n,. The problem to determine the combinatiorfase of adding a correct vote to the system. To sum up (13)
of voters achieving the best/worst ensemble performance@Rd (14), we get the following properties fpf ., x:

equivalent to maximize/minimize the function: Prko1 < Potin < Dk (15)

q(Cay....a) = Z (pn,k Z Cal,...,an) (10) Applying inequalities (15), the values, .1 . can be estimated

E—0 a1+ tan=k from the valuesp,, .
under the following conditions: If a new member is added to an _existing ensemble, th_e
accuracy of the extended ensemble is affected by two main
Z Covane=pi (i=1,...,n) pr.operties of the new voter: i.ts'accuracy and its correfatio
o A R with the mgmbers _of the existing system. Ligit 1 be a
' (11) random variable withEn,+1 = p,+1. To determine the
Z Cay,an = 1, best/worst choice for the new member to achieve the best
0152090n (¢maz)Worst (g.:) performance for the extended ensemble
Caryoan = 0,0, €{0,1} (i=1,...,n), the following linear optimization problem has to be solved i
where En; = p; (i = 1,...,n) is the accuracy of the the general case B. Maximize/Minimize the function:
i-th detecting algorithm. Observe that this is just a linear n+1
programming problem for the variableg, . .., which can q(Car,.canis) = Z <pn+17k Z cn,h.__,anM) (16)
be solved by standard tools. k=0 artotan+
In the special case, whemy,...,n,) are totally indepen- Fans1=k

dent, we have:
Cayran =Pl =a1)... P(y = ay). (12)
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under the following conditions: For the improvability of the system, we have the following
proposition.
Z Coromainr.»=Di (i=1,...,n+1), Proposition 5.1: For the accuracy of the extended ensemble
ai=1 we have:
Y Conan = L, 17) q(Cay,..oanss) = d(Cay,..a )
a1yt if
Caryoanss =0, a; €{0,1} (i=1,...,n+1), n
where En; = p; (i = 1,...,n+ 1), so the accuracy of the ,EO (a1+_§an_k Corvesan (P p”“”“))
i-th classifier isp;. Pnt1 2
In case A.2., besides the objective function in (16) and the g:o <a1+ %:a _ Caan (Prt1,k+1 pn+1,k))

conditions in (17) are the same, we have an extra condition:
holds for the accuracy of the added member.

Car,enan = Caryenan,0 1 Caryisan 1 (18) Proof: First, note that the value of this fraction is non-
From the definition of,, .. given in (9) it follows that Negative, sincep,r > pni1k @Nd pny1k < Pogiktr-
the term containing,, ..., in (16) can be split as: Moreover, from (15) and (21) the statement follows. ®
In section VI-D, we will show some experimental results for
B the improvability of the accuracy of our OD detector ensesmbl
Z Caryosanss = with adding a new algorithm.
ar+...4any1=k
19)
Z Cay,...an,0 T Z Cay,...,an,1- VI. APPLICATION— OPTIC DISC DETECTION
a1 +...+an==k a1 +...+apn=k—1

Now we turn to show, how our generalized model supports
Without having any further information abowt, 1, We  real-world problems in a clinical field. Progressive eyedises
can give an interval fog,i, and ¢maz- Let q,.;,/45., @d  can be caused by diabetic retinopathy (DR) which can lead
Gninldna: D€ the minimal/maximal value of the objectivegyen to blindness. One of the first essential steps in automat
function (16) if we consider the estimatiops »—1 = pnt1,c  grading of the retinal images is to determine the exact iogat
andp, 1,k = Pn.k, respectively. From (15), we get: of the main anatomical features, such as the optic disc. The
(20) locations of these features play important role in making
diagnosis in the clinical protocol. In this section, for the
In the special case, whep,,, is totally independent from op detection task, we start with showing how the general
(m1, .-, 7mn), the entries of the extended contingency table cagrmulation considering the probabilitigs, ;. is restricted for
be determined by, ..o, andp,1: this specific challenge using geometric constraints defined
anatomic rules. Then, we present the accuracy of our current
(21) ensemble, characterize it by the achieved results and sfiscu

the possibilities of its further improvement.
Considering the equations (16), (19) and (21) we get that

the linear optimization problem can be solved by maximi
ing/minimizing the function:

q,?n-n S dmin S q,?im, and q?naa: S dmax S qf?,m

C‘lla-ueLLvnl = pn+1ca1 3eeny@n 0y

Cay,.can,0 = (1 = Pnt1)Cay,...an-

A, Constraining by shape characteristics
In our application, the votes are required to fall insidescdi

q(Car,ansr) = (22) of diameterdop to vote together. For the calculation of the
n+1 valuesp,, ;. for our proposed method, thiecorrect votes must
mel,k( > (L= pus1)Carant fall inside the true OD region, however, the— k false ones
k=0 ar+...+an=k can fall within discs with diameted,, anywhere else within
the ROI (region of interest in the image). That is, more false
+ Z pn+1ca1,__47an> regions are possible to be formed which gives the possibdit
a14-.Fa,=k—1 make a correct decision even if the true votes are in minority
under the conditions given in (11). Note that, a candidate of an algorithm is considered to be
If we consider that the entries of the contingency tabforrect if its distance from the manually selected OD center
of n1,...,n, remain the same after adding an independeinot larger thanio p/2. For this configuration, see Figure 5.

variabler,, 1 to the ensemble (case A.1.), the solution of the If we assume independency among the algorithms, for our
problem in (22) under the conditions (11) depends only diPplication the behavior of the valugs . as a function oft

D1 @Ndppy1 k. for a givenn is shown in Figure 4 fon =9 andp = 0.9.
In the same way as in (20), from (15) we get: This function has been determined empirically by dropping
o random pixels on the disc in a large number of experiments.
7 <qg=q, (23) Figure 4 shows thap, ; increases exponentially ik for a

where ¢© and ¢® denote the minimal/maximal value of thediven n. This fact is also suggested by the results in [22],
objective function (22) for a fixeg, ., if we consider the [23] saying that the probability that the diameter of a point
estimationsp,, x—1 = Pnt1.k ANdPyi1 x = Dok, respectively. Set is not less than a given constant decreases expongittiall
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constant for alli = 1,...,n. For better understanding, see
also Figure 5.

For the interpretation of the values, , for this case,
let us consider the decomposition of the number of false
candidates: — k = k1 + ...+ k;, where all the false votes are
covered by thé disjoint discs of diametedipp, andk; is the
cardinality of the false votes covered by thth disc. Without
the loss of generality, we may assume that> ... > k;.

To determine the values, ,, we introduce the probability

P(n,k,ki1,..., k) for the good decision in case of a concrete
realization of then votes:

Fig. 5. The geometric constraint applied to the candidateseofilgorithms: P(’ﬂ, kyki,..., kl) =

they should fall inside a disc of a fixed diamet&s» to vote together. nl

1 ...pe(l — L (1=pn)
il garPt Pl pesa) - (1= pn)
k k
1 T 1 T .
o T 7
" Applying the geometric constraint, false decision is madly o

o whenk; > k sop, = 0 for ky > k, while p,, , = 1 for
% | k > kq should hold. The cas&; = k is broken randomly.
k Based on these considerations and summing for the possible
distribution of then — k false votes among the discs, we can

Fig. 4. The graph o, ;. for a fixedn = 9 andp = 0.9 with our geometric calculate the corresponding valugs, as follows:
constraint to fall within a disc of diametelo p.

Pk = > P(nk ki, ... k)+
the number of points tends to infinity. Note that, this diagnet kit...+ki=n—kk>k1 (25)
corresponds again to the diametkyp of the OD. +} Z P(n, k, k1 k)
The ensemble accuracy for our spatially constrained system 2 Ty

i iri : kid...+ki=n—k,k=k
is measured empirically by the help of a set of test images. 1+ tki=n L

The obtained data are enclosed in Table Il for different nurihe valuesp, ;. calculated by (25) and the ones shown in
ber of independent classifiers)(for some equal individual Figure 4 slightly differ. The reason for this difference et

accuraciesy). in our geometric derivation to have the closed form (25), we
have considered only disjoint discs that completely fadide
l [ »=3 [ n=5 [ n=7 [ n=9 ] the ROI, as well. However, these differences are minor, and
p=0.6 || 0.6435] 0.9076 | 0.9654 | 0.9893 both approaches have exponential trends.
p=0.7| 0.7889| 0.9631 | 0.9938 | 0.9985 E the basi it q s introduced i .
» =08 09020 | 0.9906 | 0.9986 | 0.9997 rom the basic results and concepts introduced in section
p =00 || 0.0607 | 0.9994 | 1.0000 | 1.0000 I, strict majority voting scheme could be also applied as a
TABLE Il decision rule, which means that at le&sy2| +1 votes should

MEASURED ENSEMBLE ACCURACY UNDER THE GEOMETRIC consTRAINT fall within a disc of diameterlop to make a good decision.
However, this strict approach is much more unnatural than th

o ) roposed one confirmed by the experimental results prasente
From Table Il we can see a rapid increase in the ensembleine next sections. as well

accuracy. From trivial geometric considerations, it can be
also seen why an ensemble with few members (e.g 3)
performs bad. B. An ensemble-based OD detector

Now, to describe the spatially constrained case in detail, To take advantage of the theoretical foundations of the
let us assign the probabilityl — p;)s; with s; € [0,1] to previous sections for efficient OD detection, we have ctdiec
the i-th independent classifier. This probability means that ti&ght corresponding individual algorithms to create areems
i-th voter makes false individual decision (term- p;) and ble from. Then, with a brute force approach (i.e. checking
participates in making a false ensemble decision (te)mFor all the possible combinations) we select such an ensemble
the algorithmD; with accuracyp; giving a false candidate which maximizes the accuracy of the combined system. For
having coordinategz;,;) for the OD center, we considermeasuring the accuracy of both the individual algorithms
that the distribution ofz;, 3;) is uniform outside the true OD and the ensembles, we used the dataset MESSIDOR [24]

region for alli = 1,...,n. With this setup, we have: containing 1200 digital images, where the OD centers were
Ty manually labelled by clinical experts. The images are loss-

81 =...=8p = T_T, (24) lessly compressed with 43OV and of different resolutions

where T, and T are the area of the OD and the ROI,(144O x 960, 2240 x 1488, and2304 x 1536 pixels) that were

respectively, so in this case; is the same predetermined
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re-scaled tol500 x 1152 for normalization. For this specific where the accuracy of our current ensemble falls within this
resolution, we getdop = 184 pixels from averaging the interval, and can also check how it relates to a system which

manual annotations of clinical experts for this dataset.aAswould contain independent ensemble members.
result of brute force selection, we composed an ensembie fro In our application, the values, ;. for calculating the above
six OD-detectors. To have an impression about the sinigarit characterizing ensemble accuracies as a functiork dér
and differences between these approaches, next we giveta sho= 6 is calculated empirically and shown in Figure 6.
description for each of them. Each individual accurggy has Note that, though our system naturally contains dependsnci
been measured on the dataset MESSIDOR. among its members, the exponential behavior of the indepen-
. Based on pyramidal decompositiobalonde et al. [25] dent ensemble (see Figure 4) can be observed here, as well.
created an algorithm which generates a pyramid with
simple Haar-based discrete wavelet transform. The pixel .
with the highest intensity value in the low-resolution os
image (4th or 5th level of decomposition) is considered
as the center of the Op; = 0.767
o Based on edge detectioThis method [25] uses edge
detection algorithm which is based on Rayleight-based o -
CFAR threshold. Next, Hausdorff distance is calculated k
between the set of edge points and a circular template _ _
like the average OD. The pixel with the lowest distance?" & The graph opy,,i. for a fixedn = 6 in our OD detector ensemble.

value is selected for OD center, = 0.958 Using the li ing techni d ibed |
o Based on entropy measuremerBopharak et al. [26] .. sing the finear programming technique described In Sec-
tion 1IV-B, we have the following minimal and maximal

proposed this method which applies a median and S bl . tvely:
CLAHE filter on the retinal image. In a neighborhoomensem € accuracies, respectively:

of each pixel, the entropy of intensity is calculated; the Gmin = 0.899, Gmaz = 1 (26)
pixel with the largest entropy value is selected as the OD ) o ]
center.ps = 0.315 for the given individual accuracies.

. Based on kNN classificatiorNiemeijer et al. [27] ex- Based on our experimental tests, the ensemble accuracy for

tracted features (number, width, orientation and densig/" Systém has been found to be:
of ve§§els and .their combinatiop), and applied a kNN q = 0.981, (27)
classifier to decide whether a pixel belongs to the OD

region. The centroid of the largest component found W&hich is quite close to the possible maximal accurggy, =
considered as the OD centgr, = 0.759 1. However, if we calculate the system accuracy using (10)

o Based on fuzzy convergence of blood vessélsis under the conditions (11) and with the aSSUmption (12) on the
method [28] thins the vessel system and models ealfilependency of the detectors, we have:

line-shape segment with a fuzzy segment. A voting map o
. . - Gind = 0.998. (28)
of these fuzzy segments is created and the pixel receiving
the most votes is considered as OD center= 0.977 That is, an ensemble of independent algorithms with the

« Based on Hough transformation of vessé®avishankar given individual accuracieg,...,ps would lead to nearly
et al. [29] proposed to fit lines to the thinned vessel syperfect results regarding accuracy. On the other hand niotis
tem by Hough transformation. The intersection of thessurprising that our current system performs worse, sin¢eisn
lines results in a probability map. A weighting is alsspecific detection task it is quite challenging to find altjoris
applied considering the intensity values correspondiriised on different (independent/diverse) principles.
to the intersection points. The pixel having the highest Similarly to our proposed method, we have also determined
probability is considered as OD centgg. = 0.647 the highest ensemble accuracy regarding the strict mgjorit
As for the decision of the ensemble, we select the disc of tHgting scheme. In this case, the brute force search proviued
fixed diameterl,» containing the largest number of algorithrhighest accuracy for the ensemble of the five members having
candidates. Then, as the final OD center, we consider thgividual accuracies:, p2, ps, ps, andpg, respectively. The
centroid of these candidates. The final OD center is cogrecgnsemble accuracy measured by following the strict detisio
found, if it falls inside the disc aligned to the manuallyesged rule (at least three votes should fall within a disc of diaenet
OD center and having diametép, . dop) has been found to be:

C. Characterizing and comparing OD-ensemble accuracies Gstrict = 0-944. (29)

A natural question regarding the ensemble of the detectér§mparing (29) with (27) confirms that the proposed spatiall
is what accuracies we can expect as the best or worst ba§egstrained voting model leads to remarkably higher acyura
on the given individual detector accuracies. Then, we can d8an by simply extending the classic majority vote rule.
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i [S] <) . . .

[ Accuracy of trleongw algorithni] 0q957 [ 0q989 | case, through the solution of (22), we gain the numeric tesul
pr == . : enclosed in Table IV. Note that, in this case we can check
p7 =09 0.975 | 0.995 _ , :

TABLE IV the interval [¢®, ¢®] introduced in (23) where the ensemble
THE INTERVAL FOR THEOD DETECTOR ENSEMBLE ACCURACY IF A NEW aCCUraCy WI” fa” based on the I_O\Ner_ and upper estimation
INDEPENDENT ALGORITHM IS ADDED TO A DEPENDENT SYSTEM that can be derived fap,, 11 . as given in (15).

From Table IV, we can see that in our application a new
(independent) algorithm with accuracy approximatel9 is

. . highly expected to improve the current system accuracyngive
D. On adding algorithms to the detector in (27). The case A.1 in section V also includes the special

In section V, we have laid the theoretical background tecenario, when the existing ensemble contains independent
extend the ensemble with adding a new algorithm. Nameljwembers and we add an independent algorithm, as well. For
we have formulated the ways of the calculation of ensembieis scenario, we can investigate the minimal and maximal
accuracy for the cases, when the new member is dependerturacies of the new system by solving the problem in (22)
or independent from the ensemble, respectively. Besides tinder the extra condition (12). In Table V, we enclosed the
simple ensemble accuracy, we have also explained how tleepective accuracy figures regarding the lower and upper
minimal and maximal accuracies of the ensemble woukktimations of the valugs, i .
change. Now, we adopt these results to our specific apitati

and investigate how our current OD detector ensemble is [ Accuracy of the new algorithm{] ¢® [ ¢% |

going to behave if a new detector algorithm is added. Besides p7 =0.6 0.975 | 0.997

the simple ensemble accuracy, we have also explained how pr =09 0.984 | 0.999

the minimal and maximal accuracies of the ensemble would TABLE V

Cha.n e THE INTERVAL FOR THEOD DETECTOR ENSEMBLE ACCURACY IF A NEW
g ) INDEPENDENT ALGORITHM IS ADDED TO AN INDEPENDENT SYSTEM

To start our experimental discussion on this topic, we check
the behavior of our current OD detector ensemble during its
compilation. Namely, we measure the change of the ensembl@y comparing Table IV with Table V, we can see that if
accuracy, when the sixth member is added to the ensemblenef assume total independency among the algorithms, we can
five members. For this aim, we calculate the accuracy of eagkpect higher ensemble accuracy. Since the original erlsemb
ensemble of five individual algorithms with the correspaadi would lead to very high accuracy with independent algorghm
figures enclosed in Table Ill. Thus, Table Il contains thas given in (28), only in case of a very accurate new algorithm
accuracies of the six possible ensembles of five membesg can expect improvement.
where in theith column theith member is excluded having Next, we analyse the case A.2 from section V, when the
individual accuracyp;, fori=1,...,6. dependencies of the algorithms are still considered, beit th
T T T . O . T new algorithm should not be independent. In this setup, we
Ensemble aec)gijlrjace;/ (? Tmba §9800.057097909760.0610975  can determine the accuracy interval introduced in (20) for
[Ensemble accuracy (6 membefs) 5001 | the m|n!mal Gmin) and maxmql 4@1) ensemble accuracies,
TABLE I rgspegtlvely, based on the es.tlma.tlon for the vahug§17k as
CHANGE OF THE ENSEMBLE ACCURACYWHEN THE SIXTH MEMBER IS g|Ven In (15) The Correspondlng flgures presentEd n Table v
ADDED TO THE ENSEMBLE OF FIVE ALGORITHMS can be determined by the solution of (16) under the condition
(17), (18).

From Table Il we can see that the largest increase in acc{i-Accuracy of the new algorithr] ¢2. [ ¢, || oz | das |
racy (from 0.957 to 0.981) is reached not by adding the most pr = 0.1 0.920 | 0.981 || 0.981 | 0.995
accurate s = 0.977) member, but a slightly less accurate pr =0.7 0.920 | 0.981 || 0.981 | 0.995
(p2 = 0.958) one. Similarly, the smallest improvement (from pr =09 0.942 | 0.981 || 0.981 | 0.995
0.980 to 0981) s found not by addlng the I-eaSt accurate THE INTERVAL FOR THE MI-II\I—IAMB;:LEA\IGID MAXIMAL OD DETECTOR
(pg = 0315) member’ bUt by addlng an IndIVIdua”y rnoreENSEMBLE ACCURACY IF A NEW DEPENDENT ALGORITHM IS ADDED TO A
accurate §; = 0.767) one. To understand these results we DEPENDENT SYSTEM
should realize that there are specific dependencies among
the members. Thus, in general, it is not sufficient to simply
compose an ensemble based on the individual accuracies. Table VI shows that an individually very weak, but di-

Next, we adopt the results from section V to investigate hoverse algorithm could lead to a remarkable improvement of
our current OD detector ensemble consisting of six algorith the ensemble, however, this possibility is rather unréelis
is going to behave if a new detector algorithm is added. \Wéoreover, since the current ensemble is not optimal reggrdi
start with the case A.1 from section V, when the dependenciégpendencies, even with a very diverse and accurate dgorit
of the current ensemble members are considered as knowwi cannot reach accuracy00%. It is also visible from
terms of a contingency table belonging to our experimentdéble VI that the original system accuracy (27) cannot be
test on the dataset MESSIDOR and the new algorithm asitperformed with the lower estimation fpy,; », and cannot
considered to be independent from the ensemble. For thig degraded with its upper estimation, either.
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Another point which is worth considering is that since The results of Table VIII are quite obvious, since two indi-
the retinal databases are quite heterogeneous, we cannovigaally highly accurates, ps;) and also two rather inaccurate
for sure regarding the dependencies of the algorithms of theg, p;) algorithms are present. Thus, their joint removal leads
ensemble found for a specific (in our case for the MESSIDOR) a strong drop/increment regarding the ensemble accguracy
database. Thus, if we keep the individual accuracies of thespectively.
ensemble members, but drop the dependency relations, it
would be useful to know to what extent a new algorithm VIl. DISCUSSION AND CONCLUSIONS

may ruin'or improve the .ensem'ble accuracy. Consequgntly,ln this paper, we have introduced a new model that enables
w_ehmvestlgate th_e Cass E;'n section V, when a ng:/v alg?]”thfﬁ'e investigation of majority voting systems in the spatial
with accuracypy 1s af € htodour c(;;rrer_n er:semh € W'td NQomain. We have considered independent/dependent ensem-
constramtg are given for t € dependencies. In other Wawes, 1, o.q composed by classifiers having not necessarily the same
check the intervals for the minimal and maximal accuracfes fidividual accuracies. We have described how a constradyt m

the extended system regarding the lower and upper estimatig;se from shape characteristics, and presented an ersembl
of the valuesp,, 11k, respectively. The corresponding flgure%

losed | bl be d ined by th Ut ﬂf]ased system for optic disc detection in retinal imagesavhe
enclosed in Table V” can be determined by the solution gl object has a circular anatomical geometry. The general
(16) under the conditions (17).

theory of ensemble-based systems describes several voting
methodologies. However, for spatial voting, correspogdin
models have not been presented yet, and their adaptation is

[ Accuracy of the new algorithm]] ¢5. | ¢%. 1| ¢%ac | dhaz |
p7 = 0.7 0.764 | 0.899 1 1

p7 =09 0.008 | 0.934 1 1 rather challenging to this domain. For instance, the extens
TABLE VII of the approach proposed in this paper is currently undefystu
THE INTERVAL FOR THE MINIMAL AND MAXIMAL OD DETECTOR for weighted spatial majority voting, but for several cages.

ENSEMBLE ACCURACY IF A NEW DEPENDENT ALGORITHM IS ADDED TO A dependent voters) it is far from being trivial. At this pginte
SYSTEM WITH NO DEPENDENCY CONSTRAINTS were able to show the superiority of our proposed method over
the strict version of majority voting (see section VI-C) ki
is a simple, but rather unnatural and less efficient extensio

Table VII indicates the natural fact that if the dependescie Our detailed experimental studies have been performed on

are unknown, the minimal and maximal accuracy can high{xe image dataset MESSIDOR [24]. However, it is well-
differ, and e.g. the ensemble performance can be worse than ' '

that of some of its members. However, it is also Wortﬁnown that we can expect high variance among retinal image

e i atabases (see e.g. [31]), so tests on different datasets ar
considering for our specific OD detector ensemble that a new : : i
: . . recommended. Thus, to validate more its efficiency, we have
algorithm of accuracy; = 0.9 by all means will raise the
2 . ; ' . tested the proposed ensemble-based approach on a database
minimal system accuracy given in (26). A comparison wit

Table VI shows that if we do not assume any dependencft"a:omamlng 327 images provided by th_e Moorfields Eye HOS'
ifal, London from a real mass screening process. The highes

for the qr|.g|nal ensemble, we can reach higher maximal aaccuracyq = 0.921 has been found for the ensemble contain-
lower minimal system accuracies. ) U ;
: o . .ing the four members having individual accuragigs= 0.798,
For the strict majority voting approach, an ensemble with )
. : . e = 0.150, p, = 0.801, p5s = 0.835, respectively (for the
even number of members is meaningless, since as it is al3o

known from classic theory [1] ensemble accuracy alwayssir femaining three algorithms we have measuped= 0.780,

0 . .
for even numbeld. of members regarding the — 1 case. So 56 0.342, and pr 0.297, respectively). Similarly to .
: SSIDOR, the ensemble performed better than any of its
we have analyzed the change in accuracy, when the ensemple .
T : members for the Moorfields dataset, as well. Moreover, we
containing five members is extended to seven members. Firs L . .
. can observe that the individual accuracies have been varied
of all, we have determined the most accurate ensemble wit .
more among the different datasets than that of the ensemble.

seven members from all the implemented eight algorlthm'Fhis observation suggests that we can expect a more stable

This ensemble includes the same six algorithms as listed %%_d calculable behavior if we work with ensembles.

fore plus the one described in [30] having individual accyra Our approach can be extended to other detection problems

pr = 0.320. Then, we have selected the most/least accurattlath keeping in mind that the presented results are suitable

ensembles with five members, respectively, and checkedwhjt

 resp Y. . 0 handle such shapes that can be described by set diameter.
members were added to compile the ensemble with se\LFn L .
0 demonstrate the efficiency of our method, we considered

members. The corresponding quantitative results are IVeN nother detection problem: the localization of the macula,

Table Vill. which is the center of the sharp vision in the retina and
Indices of excluded memberd2,5 (lowest acc]B,7 (highest acc) appears as a dark, disc-like object of diameter approxigate

Ensemble accuracy (5 members)  0.626 0.944 6mm. That is, we have a very similar scenario to that of the
[Ensemble accuracy (7 membgfs) 0.853 | OD detection problem. We have set up an ensemble of five
TABLE VIII macula detectors [32], [33], [34], [35], [36] having indilial

CHANGE OF THE ENSEMBLE ACCURACY FOR STRICT MAJORITYWHEN aCCUI’aCieS)‘E)g?), 0870’ 0714' 0624’ 0962, respective|y. By
THE SIXTH AND SEVENTH MEMBER IS ADDED TO THE ENSEMBLE OF FIVE | . the ro Osed s atIaII Constrained deCiSion e
ALGORITHMS. applying prop p y Beh)
we have found0.968 for the accuracy of the ensemble for
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the dataset MESSIDOR. From this result we can see that our Proof of Theorem 3.2:Let ¢t and! be as given in the
ensemble-based approach has led to improvement in this fiedthtement. Then, we have:

as well. Loy
P =0 =3 (1 )ata - o,
APPENDIX k=l
. ) . . t

Proof of Proposition 3.1: Since by Lemma.S.Jg is of PO > 1) = Z t k(1 — pytk
Bernoulli distribution with parameteq, we have:E¢ = q. L= k
Thus, we just need to show that= p wheneverp,, = k/n =
(k=0,1,...,n). By our settings, from (4) we have: Thus, by Lemma 3.2, we obtain:

"k (n ) P(ES > 1) > P(f' > 1),

qZZ(k> "(1-p) Zk<> -p)" .

o if and only if, ¢ > p, and the theorem follows. |

Proof of Theorem 4.1: Using (8) and our assumption

Observe that the last sum just expresses the expectedwalue
J P b A /k1 > ppi/kforal k=1,...,n, we get:

of a random variable of binomial distribution with paranmste -1
(n,p). Thus, we have = p, and the statement follows. m
Proof of Theorem 3.1:We can write: B = an,uj = Z WP, /U <

J Jj=1
e | 3 s 20
q—me( ) (1-p)"* =" (pn,k(k>p (L=p)" "+ ¢ ¢
k=0 < Zujpn,kl/kl (Pn,ker /K1) Z | = NTPnk, /K1,

n n J= =
+Dn e n—k 1— k>+ o ( ) n/2 1— n/2. . - - .
Prn—k (n — k)p (1=p) Prny2 n/2 pr-p) which implies the first part of the statement.

Here ifn is odd, the last term should be considered to be zero ASSUMe now that we also have, = nr. Fill in the n x ¢
Now by our assumptions > 1/2, together with (i) and (ii), t@Ple 7" with zeros and ones arbitrarily, such that we have

using also the identitie§’) = ( ") andk/n+(n—k)/n =1, ©N€S in each row. If there is a column containing less than
for any k with 0 < k < n/2 Wg—h"é\,e: k1 ones, then byk, = nr there is another column with more

thank; ones. Writej; andjs for the indices of these columns,
Yk n—k n n—k k respectively. Then there exists a row say with indesuch
Pkl |p"(1—p +pn,n—k( )p (1-p)F=>
(k> ) n—k ) thatT' (i, 1) = 0 andT (i, j2) = 1. Change these zero and one
n\ Y n Y . values, and continue this process as long as possible. Since
(1=Pnn—k) <k>P (1=p)" " +Pnn—k (n B k)p” (1-p)" = tky = nr, finally we end up with a tablé containingr ones

in each row and:; ones in each column. Then, we have:
— ﬁ n k(l _ )n—k + n—k n k(l _ )n—k+
T n\k p p n n—k P p

t
E§®t = an,]ﬁ = tpn,kl = tklpn,kl/kl = nrpn,kl/kla

and the theorem follows. [ ]
Proof of Theorem 4.3Let T' be an arbitrary table having

+pn,n—k <n i k) (pn_k(l _ p)k _ pk(l _ p)n_k) >

> k (Z>pk(1 —p)"R ¢ n—k ( " k)pk(l 7p)n7k+ r ones in each row such th@thas no column consisting only

" no\n= of zeros. Sincenr > ¢, such a7l exists (and can be easily

n—k( n I 5k nek\ constructed). In view of the proof of Proposition 4.1, foeth
L (n _ k) (P (1 —p) (1—=p)"") = corresponding®* we have:

SE()ram e (1 e P(E® = 1) = (1/nt) Hug

In the last inequality, we use (ii) and the fact th&t*(1 —
p)* —p*(1—p)"~* is non-negative. Furthermore,sifis even,
by (ii) we also have:

If for some indicesl < ji,j2 <t we haveu;, — uj, > 2,

then(u;, —1)(uj, +1) > uj, uj, clearly holds. Hence moving

a one from thej;-th column to thejs-th column (keeping its

) n n/2(1 B )n/z - L/2 n "/2(1 B )n/2 row; just as at the end pf the proof of Theorem 4._1), the new

/2 9 )P Py = n/2)? P)"" value for P(¢®* = t) will be larger than the previous one.

Continuing this process as long as possible, finally we abtai
a tableT, where for any indiced < j;,j5> < t we have

>3 k <Z>pk(1 et luj, — uj,| < 1. Obviously, this is equivalent to:

=0 " lnr/t] <u; < [nr/t] (1<j<t).
Here, the last equality follows from the proof of Propositio Observing that for all such tableE the valuesP (¢t = ¢)

3.1. SinceE¢ = ¢, we have the inequalit’¢ > p. B coincide, and these tables differ from each other only by a
permutation of their columns, the theorem follows. [ ]

Thus, we obtain:
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