
AN ALGORITHM FOR DISCRETE TOMOGRAPHY

L. Hajdu and R. Tijdeman

There are many algorithms in the literature for the approximating reconstruction of

a binary matrix from its line sums. In this paper we provide an algorithm which

starts from the line sums of an unknown binary matrix f , and outputs an integer
matrix S with small entries in absolute values such that the line sums of f and S

coincide. We also give the results of some experiments with the algorithm.

1. Introduction

Binary tomography concerns the recovery of binary images from their projec-
tions. A binary image is a rectangular array of pixels, each of which is given the
value 0 (black) or 1 (white). A projection of a binary image in some direction is
defined as the set of line sums for all lines in that direction going through the cen-
ters of pixels. Hence it counts how many white pixels are intersected by that line.
It is typical for many applications that only a few projections are available (see
e.g. [2], [4], [6]). A standard choice for the directions is to consider only row sums,
column sums, diagonal sums and anti-diagonal sums. The problem of the recovery
of a binary image can be represented by a system of equations which in general is
very underdetermined and leads to a large class of solutions. Several authors have
made additional assumptions on the location of the white pixels in order to restrict
the set of solutions (see e.g. [1], [2], [5], [7] and the references given there).

The structure of the general solution set has been the subject of a study of the
authors [10]. They showed that the solution set of 0−1-solutions is precisely the set
of shortest vector solutions in the set of Z-solutions. Here the Z-solutions are the
functions on the rectangular array with the given line sums, where every pixel gets
an integral value, not necessarily 0 or 1. It is shown in [10] that the Z-solutions form
a multidimensional grid on a linear manifold in a linear vector space the dimension
of which is the number of pixels considered. Moreover, there is one basic structure,
the switching element, the translates of which generate the grid. A simple device
is given to derive the switching element from the set of directions.

There are many papers in the literature on algorithms which provide “approxi-
mating” results, i.e. which return 0− 1 matrices whose line sums are close, but not
necessarily equal to the original ones (see e.g. [8] and [9] and the references given

2000 Mathematics Subject Classification: 92C55 (15A36).

The research of the first author was supported in part by the Netherlands Organization for
the Advancement of Scientific Research (NWO), the Hungarian Academy of Sciences, by the

János Bolyai Research Fellowship and by Grants 023800 and T29330 of the Hungarian National
Foundation for Scientific Research.

Typeset by AMS-TEX

1

2 L. HAJDU AND R. TIJDEMAN

there). The present paper provides an algorithm for discrete tomography which
is based upon the structure analysis. For given line sums it leads to a Z-solution
with the correct line sums and pixel values (entries of a matrix) which are small in
absolute value. Of course, it also yields a 0−1-solution with approximately correct
line sums by replacing every positive entry by 1 and every negative entry by 0.

The structure of the paper is as follows. Notation and concepts are introduced
in Section 2. The next section contains a description of the algorithm. We start
from the orthogonal projection of the origin onto the (minimal) linear real manifold
which contains the Z-solutions. We use the procedure Mills to select an entry and
to assign a value to the entry which is meant to be fixed further on. If it is too risky
to fix a mill, we apply the procedure Projection to decrease the absolute values of
entries which are rather large, without changing the line sums. After having used
procedure Mills so often that all entries are fixed, the procedure Polishing is applied
to check that the constructed solution cannot be improved by a simple application
of a translate of the switching element. The algorithm is described in Section 4.
Some additional remarks are made in Section 5. We illustrate how our algorithm
works on a small example in Section 6. In the final section we report on some
numerical experiments with the algorithm.

The main purpose of the paper is to introduce new ideas for discrete tomography
which extend the ideas in the paper [10] such as the procedures Mills and Projection.
The algorithm and experiments show that these ideas can be used in practice to
reconstruct matrices with correct line sums. However, the new ideas can also be
applied in algorithms with other goals.

2. Notation and concepts

Let m and n be integers with m ≥ 4, n ≥ 4. Throughout the paper let Mm×n

denote the set of matrices of type m × n, having real elements. We suppress the
subscripts m,n if their values are obvious.

For A ∈ M the row sums, column sums, diagonal sums and anti-diagonal sums
of A are defined as

ri =
n∑

j=1

A(i, j) for i = 1, . . . ,m,

sj =
m∑

i=1

A(i, j) for j = 1, . . . , n,

tl =
∑

i+j=l

A(i, j) for l = 2, . . . ,m + n,

hl =
∑

i−j=l

A(i, j) for l = 1− n, . . . ,m− 1,

respectively. By a line sum of A we mean one of the above expressions. By the line
sums kl (l = 1, . . . , 3(m + n)− 2) we mean the line sums in this order. Throughout
the paper, b will be the column vector consisting of the kl’s, and B be the (3(m +
n) − 2) × mn matrix corresponding to the definition of the line sums of A. More
precisely for 1 ≤ l1 ≤ 3(m + n)− 2 and 1 ≤ l2 ≤ mn, B(l1, l2) is the coefficient of
A(i, j) in the definition of kl1 , with l2 = (i− 1)n + j.

AN ALGORITHM FOR DISCRETE TOMOGRAPHY 3

If A1, A2 ∈ M, then the inner product of A1 and A2 is defined as (A1, A2) =
m∑

i=1

n∑
j=1

A1(i, j)A2(i, j), and the length of A1 as |A1| =
√

(A1, A1), as usual. For

1 ≤ u ≤ m−3, 2 ≤ v ≤ n−2 define the mills (or switching components) mu,v ∈M
in the following way. Put

m1,2(i, j) =


1, if (i, j) ∈ {(1, 2), (2, 4), (3, 1), (4, 3)},
−1, if (i, j) ∈ {(1, 3), (2, 1), (3, 4), (4, 2)},
0, otherwise,

and for 1 ≤ u ≤ m− 3, 2 ≤ v ≤ n− 2 set

mu,v(u + i− 1, v + j − 2) =
{

m1,2(i, j), if m1,2(i, j) 6= 0,

0, otherwise.

By this definition we have

m1,2 =



0 1 −1 0 0 . . . 0
−1 0 0 1 0 . . . 0
1 0 0 −1 0 . . . 0
0 −1 1 0 0 . . . 0
0 0 0 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 0


and the other mills are just the translates of the patterns of 1’s and −1’s.

If A ∈ M, then the inner product value (A,mu,v) will be called the mill-value
of A at the mill mu,v. Let q ∈ R. We say that we turn the mill mu,v by q in A, if
we add the matrix q · mu,v to A. Moreover, we will say that the entry (i, j) is in
the mill mu,v, or that mu,v contains (i, j), if mu,v(i, j) 6= 0.

Define the matrix Fm×n ∈M in the following way. Let Fm×n(i, j) be the number
of the mills containing (i, j). Then Fm×n will be called the frequency-matrix. If m
and n are fixed, then we will abbreviate Fm×n as F .

We call A1, A2 ∈ M line-equivalent if the line sums of A1 and A2 coincide.
Note that two matrices are line-equivalent if one can be obtained from the other
by turning mills. Observe that this relation is an equivalence relation on M. The
equivalence class of the zero matrix will be called the switching class.

Let A ∈M and let a be an mn-tuple. We say that A and a correspond to each
other, if

A(i, j) = a((i− 1)n + j) for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Let A ∈M and let H be any set of entries of A. We will call x ∈ H an extremal
element of H, if |x− 1/2| ≥ |y − 1/2| for every y ∈ H. The element x is median in
H, if |x− 1/2| ≤ |y − 1/2| for every y ∈ H.

Finally, if x is an element of A, then write

r1(x) =


x− 1, if x > 1,

x, if x < 0,

0, otherwise,

4 L. HAJDU AND R. TIJDEMAN

and

r2(x) =


1− x, if 1/2 ≤ x ≤ 1,

x, if 0 ≤ x < 1/2,

0, otherwise.

We call r1(x) the excess of x.
Our algorithm is based on the following result from [10].

Theorem A. Using the above notation, the mills mu,v (1 ≤ u ≤ m − 3, 2 ≤ v ≤
n− 2) form a basis over R for the switching class.

3. Description of the algorithm

Our starting point is some unknown binary matrix f ∈ Mm∗×n∗ , having the
known line sums kl (l = 1, . . . , 3(m∗+n∗)−2). We would like to recover f from the
line sums kl. After a simple filtering procedure, we can get rid of the “margin”, i.e.
the constant outer rows and columns of f . If f has such an outer line, we delete
it. We modify the line sums accordingly and remove the line sums which refer to
a line which has now become empty. We also decrease the value of m∗ or n∗ by 1
according to whether we deleted a row or a column. In the ordered list peel we keep
track of what has changed. We repeat the procedure starting from the new f , until
f has no constant outer lines any more. In the rest of this chapter f will denote
the reduced matrix obtained from f after executing this “peeling” procedure, and
m× n its size.

We determine a real matrix S which is line-equivalent to f , then we make an
integer matrix from it by turning mills, hence not leaving the equivalence class of
f . By Theorem A we know that

f = S +
m−3∑
u=1

n−2∑
v=2

ru,vmu,v

holds with some real coefficients ru,v. In our algorithm we will “fix” the mills mu,v

one by one. Namely, at a step we choose an appropriate coefficient ru,v for a mill
mu,v, and then we consider mu,v to be fixed: we do not use that mill to modify S
any more. After fixing all the mills, the output matrix will be our final solution.

The input of the algorithm consists of the values of m∗ and n∗, the vector b
representing the line sums kl of the original f , and four positive parameter values:
p1, p2, p3 and p4. The output is a matrix in Mm∗×n∗ which is line-equivalent to
this f , and has integer coefficients.

In our algorithm we use several sets and matrices. We start with the following set-
tings. Let fixedmills = {}, and put fixedentries = {(1, 1), (1, n), (m, 1), (m,n)}.
We compute the original frequency-matrix F . We put the entries (i, j) for which
F (i, j) = 1 holds into the set border. We calculate the equivalence class of f : it
is the (linear) manifold L of real solutions of the linear equation B · x = b, and
determine the shortest vector P ∈ L, which is just the orthogonal projection of the
origin onto this manifold. It is well-known that the number of operations needed
to compute P is at most cubic in the size of B (see e.g. [11]), i.e. it is bounded
by c(mn)3 with some numerical positive constant c. As we work with relatively
small size, we do not need high precision. Hence the number c(mn)3 can also be

AN ALGORITHM FOR DISCRETE TOMOGRAPHY 5

considered as the (approximate) computational complexity of the determination of
P .

We take S ∈ Mm×n as the matrix corresponding to P . From now on S will be
the matrix we are working with.

The main parts of our algorithm are the procedures Mills and Projection. After
giving their descriptions, we also outline the post-procedure Polishing.

Mills.
Starting this procedure, we choose an extremal element x = S(i, j) of the set

border, and an extremal element y of S \ fixedentries. We take the unique mill
mu,v which does not belong to the set fixedmills and contains the element (i, j).
Let x0 be a median element of mu,v ∩ border. If |r1(y)|+2r2(x0) > p1 and we have
fixed a mill since calling Projection for the last time, then we execute Projection.

Otherwise we turn the mill mu,v such that the value of S(i, j) becomes 1 or 0,
according to x ≥ 1/2 or not. Then we move mu,v to the set fixedmills, modify
the frequency-matrix F by decreasing the value of F (i′, j′) by 1 for each (i′, j′)
belonging to mu,v, and refresh the set border: if the new value of F (i′, j′) has
become 1, then we put (i′, j′) into this set, and if F (i′, j′) has become 0, then we
move (i′, j′) from the set border to the set fixedentries. In this way we always
have

border = {(i, j) : F (i, j) = 1}

and
fixedentries = {(i, j) : F (i, j) = 0}.

Now we want to smoothen the new matrix S near the place where the values of S
changed by the mill turn. By smoothening we mean pushing the elements towards
the interval [0, 1]. We choose an extremal value in the matrix, x = S(i, j), say. Let
z be half of the excess of x, i.e. z = (x− 1)/2, if x > 1 and z = −x/2 if x < 0. (If
0 ≤ x ≤ 1, then all entries are between 0 and 1, and we skip the process of “local
smoothening”.) We distribute the value z among the mills which contain (i, j), in
the following way. First we calculate the mill-values of S at the mills involved, and
we turn each mill by −1/8 times its mill-value. Of course, the value of S at (i, j)
may have changed; put y = x′ − x, where x′ is the new value at (i, j). If the mills
m1, . . . ,ml are involved, then we turn mr by −mr(i, j)(z+y)/l for r = 1, . . . , l. We
repeat this “local smoothening” [p2] times. Then we repeat the whole procedure.
If all the mills are fixed, then Mills terminates.

Projection.
The procedure Projection is embedded into Mills. It is used to smoothen the

actual matrix S “globally”. We proceed as follows. Let locallyfixed be the union
of the set fixedentries and the set of all the entries (i, j) for which |S(i, j)−1/2| ≥
p3. We calculate the set of the solutions of the linear equation B · x = b which
have the already fixed values at the places corresponding to the entries in the set
fixedentries, and have the values 1 or 0 at the places belonging to the other
entries of the set locallyfixed, according to S(i, j) ≥ 1/2, or not. If there are no
such solutions, then Projection terminates, and we continue Mills. Otherwise for
the pairs (i, j) ∈ locallyfixed with (i, j) 6∈ fixedentries put

S(i, j) =
{

1, if S(i, j) ≥ 1/2,

0, otherwise.

6 L. HAJDU AND R. TIJDEMAN

Having calculated the set of solutions (which is a sub-manifold of the original one),
it is easy to calculate the orthogonal projection P ′ of the origin onto it. The matrix
corresponding to this projection will be the new S. More precisely, the entries
(i, j) ∈ locallyfixed will remain unchanged, and the other entries of S will be
the corresponding entries of P ′. If the extremal element z = S(i, j) of S satisfies
|z − 1/2| > p4, we repeat Projection.

Polishing.
After all the mills have been fixed, the matrix S has become an integral matrix

with small elements, but not necessarily only 0’s and 1’s. We use Polishing to try
to obtain an even better approximation of f . To do this, observe that in case of a
binary matrix, every mill-value can be at most 4 in absolute value. Therefore we
search for a mill, whose mill-value v (at S) is larger than 4 in absolute value, and
turn it by ±

[
|v|+3

8

]
in such a way that its new mill-value becomes at most 4 in

absolute value. We repeat this procedure as long as we can.
After Polishing is finished, we insert into S the constant rows and columns

deleted in the beginning. We output the matrix obtained as the approximation of
the original solution f .

4. The algorithm

We provide an algorithm, described in the previous section, to construct a solu-
tion with small integer entries and exact line sums, if the sums along rows, columns
and both diagonals of an unknown 0− 1-solution are given. The algorithm can be
downloaded from the internet page www.math.leidenuniv.nl/∼tengely. It is easy
to adjust the algorithm to the case of any finite set of directions. Below we use the
notation from Section 2 without any further reference.

In our algorithm we have two main procedures. Projection is embedded into
Mills. However, for the convenience of the reader, we present Projection separately.
Throughout the description of the algorithm, if we refer to i, j or (i, j), we always
mean that 1 ≤ i ≤ m and 1 ≤ j ≤ n.

AN ALGORITHM FOR DISCRETE TOMOGRAPHY 7

Program Construction of a matrix with correct line sums and small integer values

Input m∗, n∗: the size of the matrix f we work with
the parameter values p1, p2, p3, p4

the vector b giving the line sums of f

Pre-procedure Peeling

let peel = (), m = m∗, n = n∗, stillpeel=1
while stillpeel = 1 do

find the line sums bi1 , bi2 , bi3 , bi4 corresponding to the first row, the last row,
the first column, and the last column of f , respectively
let max(1) = max(2) = n, max(3) = max(4) = m

choose a bil
for which either bil

= 0 or bil
= max(l)

if there is no such bil
then let stillpeel = 0

else
append the pair (l, bil

) to peel

delete bil
and the entries of b belonging to the diagonal and antidiagonal

one-summand sums of the corners of f corresponding to bil

if l ∈ {1, 2} then let m = m− 1
else let n = n− 1
if bil

= max(l) then decrease the values of all entries of b which belong
to a line intersecting the line corresponding to bil

by 1

Initialisation

construct the set M = {mu,v : 1 ≤ u ≤ m− 3, 2 ≤ v ≤ n− 2} (defined in
Section 2), the (3(m + n)− 2)×mn matrix B of the system of linear equations
corresponding to the line sums and the frequency-matrix F by
F (i, j) := |{(u, v) : mu,v(i, j) 6= 0}|
let fixedmills = {}, fixedentries = {(1, 1), (1, n), (m, 1), (m,n)}, border =
{(i, j) : F (i, j) = 1}
calculate the manifold L := {x : B · x = b} by determining a basis of the
nullspace of B and a solution of B · x = b

compute the orthogonal projection P of the origin onto L

let S = (S(i, j))i=1,...,m
j=1,...,n

be the m by n matrix corresponding to P

8 L. HAJDU AND R. TIJDEMAN

Procedure Mills

while |fixedmills| < (m− 3)(n− 3) do
find an extremal border element x = S(i′, j′), the unique mill m̃ containing
(i′, j′), an extremal value y of S \ fixedentries and a median element x0

of m̃ ∩ border

if |r1(y)|+ 2r2(x0) > p1 and some F (i, j) has become 0 since the last call
of Projection then execute Projection
else

if x ≥ 1/2 then let t = 1− x

else let t = −x

let S = S + (tm̃(i′, j′)) · m̃
put the mill m̃ into fixedmills

for every (i, j) with m̃(i, j) 6= 0 do
let F (i, j) = F (i, j)− 1

for every entry (i, j) do
if F (i, j) has become 0 then move (i, j) from border to fixedentries

if F (i, j) has become 1 then put (i, j) into border

let counter = 0
while counter < p2 do

find an extremal value x = S(i′, j′) of S \ fixedentries

if |x− 1/2| > 1/2 then
let z = r1(x)/2
determine the mills m1, . . . ,ml which are not in fixedmills and
contain (i′, j′)
for r = 1, . . . , l do

compute the mill-value vr :=
∑

(i,j)∈A

S(i, j)mr(i, j)

let y = − 1
8

l∑
r=1

vrmr(i′, j′)

let S = S − 1
8

l∑
r=1

vrmr − 1
l (z + y)

l∑
r=1

mr(i′, j′) ·mr

let counter = counter + 1

AN ALGORITHM FOR DISCRETE TOMOGRAPHY 9

Post-procedure Polishing

let polish = 1

while polish = 1 do

find a mill m̃ whose mill-value vm̃ at S is larger than 4 in absolute value

if there is such a m̃ then let S = S − sign(vm̃)
[
|vm̃|+3

8

]
· m̃

else let polish = 0

Output

append successively to the sides of S the deleted rows and columns (use the
list peel)

output the matrix obtained

Procedure Projection

let locallyfixed = fixedentries, B′ = B, b′ = b, project = 1

while project = 1 do

put all the entries with |S(i′, j′)− 1/2| ≥ p3 into locallyfixed

delete all the columns of B′ corresponding to the entries in locallyfixed

for every (i, j) ∈ locallyfixed do

if S(i, j) ≥ 1/2 then decrease the value of the corresponding four entries
of b′ by one

calculate the manifold L′ := {x′ : B′ ·x′ = b′} by determining a basis of the
nullspace of B′ and a solution of B′ · x′ = b′

if L′ is empty then let project = 0

else

let P ′ be the projection of the origin onto L′

for every entry (i, j) which is not in fixedentries do

if (i, j) ∈ locallyfixed then

if S(i, j) ≥ 1/2 then let S(i, j) = 1

else let S(i, j) = 0

else let S(i, j) be the corresponding entry of P ′

calculate an extremal element x of S \ locallyfixed

if |x− 1/2| ≤ p4 then let project = 0

5. Some remarks

We give a few remarks on the technical details of the above algorithm.
By the help of Peeling we can get rid of the constant side lines of the original

matrix f . The motivation of it is that this “margin” of f can be rather large if
the matrix f corresponds to a binary image. In this way our algorithm becomes
independent of this “margin”.

When fixing mills we restrict ourselves to the border of S, since it is only possible
to guess the right mill value if a border element is involved. We note that the

10 L. HAJDU AND R. TIJDEMAN

coefficients in the inequality

|r1(y)|+ 2r2(x0) > p1

which is used to decide whether it is better to execute Projection or not, can be
considered as parameters as well.

By the local smoothening the extremal values S(i, j) become less extreme. Some-
times the more time-consuming Projection can so be delayed. If many mills are
fixed, the local smoothening looses its effectiveness.

As we know that the original equation has a 0− 1-solution, we can expect to get
a relatively smooth matrix after a few steps of Projection. From there we continue
Mills.

It is important that the running time of the algorithm is finite. Indeed, the
main loop of the procedure Mills is executed exactly (m − 3)(n − 3) times, since
(m − 3)(n − 3) mills have to be fixed. (Here m,n are the numbers obtained from
m∗, n∗ after executing Peeling.) In fact the steps outside the inner while-loop of
Mills are executed (m− 3)(n− 3) times, while steps inside the inner while-loop are
executed [p2](m − 3)(n − 3) times altogether. At every execution, Projection also
terminates, as the dimensions of the solution manifolds calculated here are strictly
decreasing, provided that p3 ≤ p4. (So it is worth to choose these parameters to
satisfy this inequality.) More precisely, the step outside the while-loop of Projection
is executed at most (m−3)(n−3) times. As the maximal number of columns of the
matrix B′ is mn, the steps inside the while-loop are executed at most (m− 3)(n−
3)mn times during the whole algorithm. Finally, it is easy to see that Polishing
also provides a finite procedure. Following the proof of Theorem 2 of [10] it is
possible to derive a polynomial upper bound for the absolute values of the entries
of the matrix S calculated in the Initialisation part of the algorithm. Hence one
could give an explicit polynomial upper bound in terms of m and n with constants
depending on the parameter values p1, p2, p3, p4 for the number of executions of the
steps of Polishing, too. However, as this post-procedure is the less important part
of the algorithm, we do not work out the details. Summarizing, the algorithm stops
after finitely many steps, and one can derive an upper bound depending only on m
and n for the number of these steps. The computational complexity of each step is
also polynomial (see the fourth paragraph of Section 3 for the most crucial part).
Thus one can derive an effective upper bound for the complexity of the algorithm
which is polynomial in m and n.

6. Illustration of the method

To illustrate how our algorithm works, we present a simple example of size 8×7.
Let the input be (p1, p2, p3, p4) = (0.6, 1, 0.5, 0.5) and the 43-tuple b consisting of
the 8 row sums, 7 column sums, 14 diagonal sums and 14 antidiagonal sums of the
matrix

A =


0 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 1 0 0

1 0 1 0 1 0 1

1 0 0 1 1 1 1

1 0 0 1 0 0 0

1 1 1 1 0 0 0

0 0 0 0 0 0 0

 .

AN ALGORITHM FOR DISCRETE TOMOGRAPHY 11

We get

bT = (0 2 4 4 5 2 4 0 6 3 3 3 3 1 2 0 1 2 2 2 2 2 3 3 3 1 0 0 0 0 0 0 1 2 2 3 4 2 2 2 2 1 0) ,

where bT is the transpose of b. During the pre-procedure Peeling, we successively get
rid of the first row sum, the last row sum and the first column sum of A. Meanwhile
we successively also remove the diagonal or antidiagonal sums corresponding to the
deleted corners. Practically, we delete the first and last rows and the first column
of the unknown matrix A. We are left with the 34 tuple b given by

bT = (1 3 3 4 1 3 3 3 3 3 1 2 1 1 1 1 1 3 3 3 1 0 0 0 0 1 2 2 3 3 1 1 1 1) ,

which belongs to the 6 row sums, 6 column sums, 11 diagonal sums and 11 antidi-
agonal sums of the matrix 

1 0 0 0 0 0

1 1 0 1 0 0

0 1 0 1 0 1

0 0 1 1 1 1

0 0 1 0 0 0

1 1 1 0 0 0

 .

After executing the Initialisation part of the algorithm, we obtain

B =



1 1 1 1 1 1 0

0 0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0 0 0 0

0 1 1 1 1 1 1

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

1 0

0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0



,

F =


0 1 2 2 1 0

1 2 3 3 2 1

2 3 4 4 3 2

2 3 4 4 3 2

1 2 3 3 2 1

0 1 2 2 1 0

 , S =


1.00 0.33 0.25 −0.08 −0.50 0.00

0.67 0.65 0.40 0.52 0.27 0.50

0.10 0.54 0.48 0.60 0.46 0.81

0.15 0.42 0.98 0.94 0.75 0.77

0.08 0.15 0.19 0.73 −0.06 −0.08

1.00 0.92 0.71 0.29 0.08 0.00

 ,

12 L. HAJDU AND R. TIJDEMAN

where the entries of S are calculated with two digit accuracy. At this stage we
clearly have

fixedentries = {(1, 1), (1, 6), (6, 1), (6, 6)}

and
border = {(1, 2), (1, 5), (2, 1), (2, 6), (5, 1), (5, 6), (6, 2), (6, 5)}.

Starting the procedure Mills, we find that x := S(1, 5) = −0.50 is an extremal
border element, and m̃ := m1,4 is the unique mill containing (1, 5). We also obtain

y := −0.50 and x0 := 0.50,

whence
|r1(y)|+ 2r2(x0) = 0.50 + 2 · 0.50 = 1.50 > 0.60 = p1.

Since we have not fixed a mill yet, we nevertheless continue Mills (without calling
Projection) and turn the mill m̃ by the coefficient −0.50. We get

S := S − 0.50 · m̃ =


1.00 0.33 0.25 −0.58 0.00 0.00

0.67 0.65 0.90 0.52 0.27 0.00

0.10 0.54 −0.02 0.60 0.46 1.31

0.15 0.42 0.98 1.44 0.25 0.77

0.08 0.15 0.19 0.73 −0.06 −0.08

1.00 0.92 0.71 0.29 0.08 0.00

 ,

fixedmills := {(1, 4)}, fixedentries := {(1, 1), (1, 5), (1, 6), (2, 6), (6, 1), (6, 6)}

and
border := {(1, 2), (1, 4), (2, 1), (3, 6), (5, 1), (5, 6), (6, 2), (6, 5)}.

For the extremal value x defined in the inner while-loop we get x := S(1, 4) = −0.58,
whence z := −0.29. The only non-fixed mill containing (1, 4) is m1 := m1,3. The
mill value of m1 is

v1 := 0.25 + 0.58 + 0.27− 0.46 + 1.44− 0.98 + 0.54− 0.65 = 0.99,

which yields y := 0.12. Hence we get

S := S − 0.12 ·m1 − 0.17 ·m1 =


1.00 0.33 −0.04 −0.29 0.00 0.00

0.67 0.94 0.90 0.52 −0.02 0.00

0.10 0.25 −0.02 0.60 0.75 1.31

0.15 0.42 1.27 1.15 0.25 0.77

0.08 0.15 0.19 0.73 −0.06 −0.08

1.00 0.92 0.71 0.29 0.08 0.00


and we repeat the outer while-loop. Now we find that x := S(5, 3) = 1.31 is an
extremal border element, and m̃ := m2,4 is the unique mill containing (5, 3). After
a similar calculation as above, we obtain

S := S − 0.31 · m̃ =


1.00 0.33 −0.04 −0.29 0.00 0.00

0.67 0.94 0.90 0.21 0.29 0.00

0.10 0.25 0.29 0.60 0.75 1.00

0.15 0.42 0.96 1.15 0.25 1.08

0.08 0.15 0.19 1.04 −0.37 −0.08

1.00 0.92 0.71 0.29 0.08 0.00

 ,

fixedmills := {(1, 4), (2, 4)},

AN ALGORITHM FOR DISCRETE TOMOGRAPHY 13

fixedentries := {(1, 1), (1, 5), (1, 6), (2, 6), (3, 6), (6, 1), (6, 6)}

and

border := {(1, 2), (1, 4), (2, 1), (2, 5), (4, 6), (5, 1), (5, 5), (5, 6), (6, 2), (6, 5)}.

For the extremal value x in the inner while-loop we now have x := S(5, 5) = −0.37,
whence z := −0.19. Executing a smoothening step as above, we get

S := S + 0.05 ·m1 − 0.24m1 =


1.00 0.33 −0.04 −0.29 0.00 0.00

0.67 0.94 0.90 0.21 0.29 0.00

0.10 0.25 0.10 0.79 0.75 1.00

0.15 0.61 0.96 1.15 0.06 1.08

0.08 −0.04 0.19 1.04 −0.18 −0.08

1.00 0.92 0.90 0.10 0.08 0.00


and we repeat the outer while-loop again. Now we find that x := S(1, 4) = −0.29
is an extremal border element, and m̃ := m1,3 is the unique mill containing (1, 4).
We have

y := −0.29 and x0 := 0.29,

whence
|r1(y)|+ 2r2(x0) = 0.29 + 2 · 0.29 = 0.87 > 0.60 = p1.

We execute Projection. As p3 = 0.5, we replace the negative elements of S by 0
and the elements exceeding 1 by 1. We obtain

1 x1 0 0 0 0

x2 x3 x4 x5 x6 0

x7 x8 x9 x10 x11 1

x12 x13 x14 1 x15 1

x16 0 x17 1 0 0

1 x18 x19 x20 x21 0

 ,

where the symbols xi (1 ≤ i ≤ 21) stand for the elements of S which are inside
(0, 1). Let B′ be the matrix of type 34 × 21 obtained from B by deleting the
15 columns of B corresponding to the 0-s and 1-s in the previous matrix. The
corresponding vector b′ is given by

b′
T = (0 3 2 2 1 2 1 3 3 2 1 0 0 1 1 1 1 2 2 2 0 0 0 0 0 0 1 2 1 3 1 1 1 0) ,

where b′
T is the transpose of b′. It turns out that equation B′ ·x′ = b′ has a unique

solution. Substituting the corresponding entries of this solution to the previous
matrix we obtain 

1 0 0 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 1 1 1 0 1

0 0 0 1 0 0

1 1 1 0 0 0

 .

Choosing this matrix as S, and returning to Mills, we just fix all the non-fixed mills
one by one, without changing the values of the previous matrix. (The mill which
is being fixed, is turned with the coefficient 0.) Finally, we have to “put back”

14 L. HAJDU AND R. TIJDEMAN

those rows and columns into this S, which were deleted in the beginning. So in the
present example the output will be

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 1 0 0 0

1 0 0 0 1 1 1

1 0 1 1 1 0 1

1 0 0 0 1 0 0

1 1 1 1 0 0 0

0 0 0 0 0 0 0

 .

Note that even in this simple case rounding of the entries of the initial matrix S
does not yield A.

7. The results of some experiments

To test our algorithm, we used various types and sizes of matrices. We start
with random examples, and finish with “tumor-type” examples, i.e. with matrices
consisting of a few connected “blocks” of ones, while the other elements are zeros.

By the result of some preliminary experiments, for the parameter values we chose
p1 = 0.6, p2 = max(m,n), p3 = 0.5, p4 = 0.5 in each case. To guarantee that the
algorithm terminates, we must have p4 ≥ p3 ≥ 0.5. The choices p3 = p4 = 0.5 are
natural, as they express that during Projection, we round only the numbers outside
[0, 1] towards 0 and 1, and we quit the procedure exactly when each entry is inside
[0, 1]. We found that the parameter value p1 = 0.6 gives a good balance between the
danger of fixing an entry wrongly and increasing the running time unnecessarily.
The number p2 of “local smoothening steps” should increase with the size of the
matrix, but the running time is not very sensitive to the precise choice. The above
value of p2 works well.

By the precious help of Szabolcs Tengely, our algorithm was implemented in the
linear algebraic program package MATLAB (see [12]). The program was run on a
Celeron 566 MHz PC.

Random examples.
We tested our algorithm on random binary matrices of various sizes and densities.

We summarize the result of our experiments in three tables, corresponding to the
densities 5%, 10% and 50% of ones, respectively. In each case we processed matrices
of size varying between 10 × 10 and 25 × 25. We note that all solutions have the
right line sums by construction.

In the tables below we indicate the following data:
numbers of cases when the outcome is a binary matrix (“# binary output”),
average numbers of entries different from 0 and 1 (“av. # bad entries”),
average numbers of lines containing such an element (“av. # bad lines”),
average numbers of places where the solution found differs from the original one
(“av. # diff. entries”),
average running times (“av. running time”).

After the average values, inside brackets we also give the corresponding percent-
age values, with respect to the size. In the columns of the tables we provide these
data separately for each size. In the head of the columns, the number after the size
stands for the number of experiments with that size (e.g. “25 × 25 (10)” means
that we made 10 experiments with size 25× 25.).

AN ALGORITHM FOR DISCRETE TOMOGRAPHY 15

10× 10 (40) 15× 15 (30) 20× 20 (20) 25× 25 (10)
binary output 40 (100%) 28 (93.33%) 18 (90%) 7 (70%)
av. # bad entries 0 (0%) 1.3 (0.58%) 2.45 (0.61%) 15.3 (2.45%)
av. # bad lines 0 (0%) 2.77 (3.15%) 4.55 (3.86%) 18.8 (12.7%)
av. # diff. entries 0 (0%) 2.43 (1.08%) 5.5 (1.38%) 30.8 (4.93%)
av. running time 2.84 sec 38.33 sec 180.75 sec 1312.4 sec

Table 1: experiments with density 5%

10× 10 (40) 15× 15 (30) 20× 20 (20) 25× 25 (10)
binary output 40 (100%) 29 (96.67%) 9 (45%) 4 (40%)
av. # bad entries 0 (0%) 0.27 (0.12%) 14.05 (3.51%) 9.7 (1.55%)
av. # bad lines 0 (0%) 0.8 (0.91%) 23 (19.49%) 18.5 (12.5%)
av. # diff. entries 0 (0%) 2.53 (1.12%) 42.95 (10.74%) 79.8 (12.77%)
av. running time 7.12 sec 57.46 sec 1076.6 sec 10661 sec

Table 2: experiments with density 10%

10× 10 (40) 15× 15 (30) 20× 20 (20) 25× 25 (10)
binary output 38 (95%) 29 (96.67%) 20 (100%) 10 (100%)
av. # bad entries 0.33 (0.33%) 0.03 (0.01%) 0 (0%) 0 (0%)
av. # bad lines 0.73 (1.26%) 0.13 (0.15%) 0 (0%) 0 (0%)
av. # diff. entries 17.13 (17.13%) 68.13 (30.28%) 136.1 (34.03%) 246.7 (39.47%)
av. running time 83.45 sec 1124.6 sec 4567.5 sec 12350 sec

Table 3: experiments with density 50%

Tumor-type examples.
In this subsection we give instances where the original matrices consist of blocks

of ones. Examples 4, 5 and 6 are taken from pages 291, 292 and 293 of [3], respec-
tively. Similarly to [3], our algorithm found the original matrix in Examples 4 and
5, and it provided a different 0 − 1 matrix with correct line sums in Example 6.
The method used in [3] is completely different from ours.

For each example, we provide the following data. We give our test matrix fi,
then the output matrix Si of our algorithm. We only used the line sums of fi

to obtain Si. As S1 is quite different from f1, we also indicate their “difference”
matrix D1, having the symbols · and ∗ as entries. Here · means that the original
matrix f1 and the output matrix S1 have the same entries at this point, while ∗
means that these values are different. Finally, tables containing the data are given.
By the number of differences in the tables we mean the number of places where fi

and Si are different.
We note that the average running time is much less than in case of random

examples. It is not surprising, because such matrices are orthogonal to “almost”
all mills. Hence they are relatively close to the shortest real solution of the original
equation system determined by the line sums.

16 L. HAJDU AND R. TIJDEMAN

f1 =



0 1 0 0 0 0 0 0 1 1 1 1 1 1 0

0 1 0 0 0 0 0 1 1 1 1 1 1 1 0

0 1 1 1 0 0 0 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 1 1

1 1 1 0 0 0 1 1 1 1 1 0 0 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 0 0 1 1 0 0 0 0 1

1 1 1 1 1 1 0 0 1 1 1 1 1 0 1

0 0 0 1 1 1 0 0 1 1 1 1 1 0 1

0 0 0 1 1 1 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0


S1 =



0 1 0 0 0 1 0 0 1 1 1 1 1 0 0

0 1 1 0 0 0 1 1 1 0 0 1 0 1 1

0 0 1 1 0 0 0 0 0 1 1 0 0 1 0

0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 0 0 0 0 1 1 1 0 0 0 1

1 0 0 1 1 1 0 1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1 1 0 1 0 0 1 1

1 1 0 1 0 0 0 0 1 0 0 0 0 0 1

1 1 1 0 0 0 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 0 0 1 1

0 1 1 1 1 1 0 0 1 1 1 1 1 1 1

0 1 1 1 1 0 0 0 0 1 1 1 1 0 1

0 0 0 0 1 1 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0



D1 =



· · · · · ∗ · · · · · · · ∗ ·
· · ∗ · · · ∗ · · ∗ ∗ · ∗ · ∗
· ∗ · · · · · ∗ ∗ ∗ ∗ · · ∗ ·
· · · ∗ · · · · · ∗ · · · · ·
· ∗ ∗ ∗ · · ∗ · · ∗ · · ∗ · ·
· ∗ · · · · ∗ ∗ · · · · · · ∗
∗ · · ∗ ∗ ∗ ∗ · · ∗ · · · ∗ ∗
· · · ∗ · · · · · ∗ · · · · ·
· · ∗ ∗ · · · · ∗ · · · · ∗ ·
· · · · · · · · ∗ · · · · · ∗
· · · · ∗ ∗ · · · · ∗ · · ∗ ·
∗ · · · · · · · · · · · · ∗ ·
· ∗ ∗ · · ∗ · · ∗ · · · · · ·
· · · ∗ · · · ∗ · · · · · · ·
· · · · · · · ∗ · · ∗ · · · ·



p1 p2 p3 p4

Parameters: 0.6 15 0.5 0.5

Size of f1: 15× 15
Number of differences: 56
Running time: 648.17 sec

Example 1.

AN ALGORITHM FOR DISCRETE TOMOGRAPHY 17

f2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 1 1 0

0 1 1 1 1 1 1 1 0 0 0 0 1 1 0

0 0 1 1 1 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



S2 = f2

p1 p2 p3 p4

Parameters: 0.6 14 0.5 0.5

Size of f2: 15× 15
Number of differences: 0
Running time: 16.2 sec

Example 2.

f3 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1



S3 = f3

p1 p2 p3 p4

Parameters: 0.6 30 0.5 0.5

Size of f3: 30× 30
Number of differences: 0
Running time: 411.56 sec

Example 3.

18 L. HAJDU AND R. TIJDEMAN

f4 =



0 0

0 0

0 1 1 0

0 1 1 1 1 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0

0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0

0 0 1 0 0 1 1 1 1 1 1 1 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 1 1 1 0

0 0

0 0



S4 = f4

p1 p2 p3 p4

Parameters: 0.6 34 0.5 0.5

Size of f4: 29× 46
Number of differences: 0
Running time: 462.8 sec

Example 4.

AN ALGORITHM FOR DISCRETE TOMOGRAPHY 19

f5 =



0 0

0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0

0 0 1 0 1 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0 0 0 0 0 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0



S5 = f5

p1 p2 p3 p4

Parameters: 0.6 30 0.5 0.5

Size of f5: 26× 41
Number of differences: 0
Running time: 267.27 sec

Example 5.

20 L. HAJDU AND R. TIJDEMAN

f6 =



0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0

0 0



The algorithm finds a solution S6, which differs from f6 only at

S6(5, 7) = S6(9, 22) = S6(20, 3) = S6(24, 18) = 1,

S6(5, 18) = S6(9, 3) = S6(20, 22) = S6(24, 7) = 0.

p1 p2 p3 p4

Parameters: 0.6 35 0.5 0.5

Size of f6: 36× 42
Number of differences: 8
Running time: 2901.1 sec

Example 6.

AN ALGORITHM FOR DISCRETE TOMOGRAPHY 21

8. Acknowledgement

The first author is grateful to Leiden University for its hospitality during this
research. The authors thank Szabolcs Tengely for implementing the algorithm in
the program package MATLAB, and the editors and referees for their valuable and
helpful remarks.

References

[1] E. Barucci, A. Del Lungo, M. Nivat, R. Pinzani, Reconstructing convex polynominoes from
horizontal and vertical projections, Theor. Computer Sc. 155 (1996), 321–347.

[2] B. M. Carvalho, G. T. Herman, S. Matej, C. Salzberg and E. Vardi, Binary Tomography for

Triplane Cardiography, IPMI’99 (A. Kuba, M.Samal and A. Todd-Pokropek, eds.), LNCS
1613, Springer-Verlag, Berlin Heidelberg, 1999, pp. 29–41.

[3] Y. Censor and S. Matej, Binary Steering of Nonbinary Iterative Algorithms, Discrete To-

mography: Foundations, Algorithms and Applications (G. T. Herman, A. Kuba, eds.), Appl.
Numer. Harmon. Anal., Birkhäuser, Boston, 1999, pp. 285–296.

[4] S.-K. Chang and C. K. Chow, The Reconstruction of Three-Dimensional Objects from Two

Orthogonal Projections and its Application to Cardic Cineangiography, IEEE Trans. on Com-
puters 22 (1973), 18–28.

[5] A. Del Lungo and M. Nivat, Reconstruction of connected sets from two projections, Discrete

Tomography: Foundations, Algorithms and Applications (G. T. Herman, A. Kuba, eds.),
Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 1999, pp. 163–188.

[6] P. Fishburn, P. Schwander, L. Schepp and R. J. Vanderbei, The Discrete Radon Transform
and its Approximate Inversion via Linear Programming, Discrete Applied Mathematics 75

(1997), 39–61.

[7] R. J. Gardner, P. Gritzmann, Discrete tomography: determination of finite sets by X-rays,
Trans. Amer. Math. Soc. 6 (1997), 2271–2295.

[8] P. Gritzmann, D. Prangenberg, S. de Vries, M. Wiegelmann, Success and failure of certain

reconstruction and uniqueness algorithms in discrete tomography, Int. J. Imaging Syst. and
Technol. 9 (1998), 101–109.

[9] P. Gritzmann, S. de Vries, M. Wiegelmann, Approximating binary images from discrete X-

rays, SIAM J. Optimization (to appear).
[10] L. Hajdu and R. Tijdeman, Algebraic aspects of discrete tomography, J. Reine Angew. Math.

534 (2001), 119–128.

[11] C. L. Lawson and R. J. Hanson, Solving least squares problems, Prentice-Hall Series in Au-
tomatic Computation, Prentice-Hall, New Jersey, 1974, pp. xii+340.

[12] Math Works, Student’s Edition of MATLAB Version 4.0 User’s Guide, Prentice-Hall, New
Jersey, 1995, pp. 834.

Lajos Hajdu

University of Debrecen

Institute of Mathematics and Informatics
P.O. Box 12

4010 Debrecen
Hungary

Robert Tijdeman

Leiden University
Mathematical Institute

P.O. Box 9512
2300 RA Leiden
The Netherlands

E-mail address:

hajdul@math.klte.hu

tijdeman@math.leidenuniv.nl

