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Summary. In this hapter we present an algebrai theory of patterns whih anbe applied in disrete tomography for any dimension. We use that the di�ereneof two suh patterns yields a on�guration with vanishing line sums. We show byintroduing generating polynomials and applying elementary properties of polyno-mials that suh so-alled swithing on�gurations form a linear spae. We give abasis of this linear spae in terms of the so-alled swithing atom, the smallest non-trivial swithing on�guration. We do so both in ase that the material does notabsorb light and absorbs light homogeneously. In the former ase we also show thata on�guration an be onstruted with the same line sums as the original and withentries of about the same size, and we provide a formula for the number of lineardependenies between the line sums. In the �nal setion we deal with the ase thatthe transmitted light does not follow straight lines.1 IntrodutionOne of the basi problems of disrete tomography is to reonstrut a funtionf : A ! f0; 1g where A is a �nite subset of Zn (n � 2), if the sums of thefuntion values (the so-alled X-rays) along all the lines in a �nite number ofdiretions are given. A related problem on emission tomography is to reon-strut f if it represents (radio-ative) material whih is emitting radiation. Iff(i) = 1 for some i 2 A, then there is a unit of radiating material at i, oth-erwise f(i) = 0 and there is no suh material at i. The radiation is partiallyabsorbed by the medium, suh that its intensity is redued by a fator � foreah unit line segment in the given diretion (with some real number � � 1).As an illustration we inlude an example. In Figure 1 the row sums off (the number of partiles in eah row, from top to bottom) are given by[4; 4; 2; 5; 1; 2℄, while the olumn sums (the number of partiles in eah ol-umn, from left to right) are [2; 3; 2; 1; 2; 3; 2; 3℄. Further, taking the line sumsof f in the diretion (1;�1), i.e. the sums of elements lying on the samelines of slope �1, we get (from the bottom-left orner to the top-right orner)
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      1 0 1 0 1 0 1 0
      0 1 0 1 0 1 0 1
      0 1 0 0 0 1 0 0
f :   1 1 1 0 1 0 1 0
      0 0 0 0 0 0 0 1
      0 0 0 0 0 1 0 1Fig. 1. The symbols � denote partiles on a grid whih are represented in the table fon the right by 1's. In the lassial ase the light is going horizontally and vertially,resulting in row and olumn sums. In the emission ase the partiles emit radiationwhih is partially absorbed by the material surrounding the partiles. The intensityof the radiation is measured by detetors, denoted by [ signs.[0; 0; 1; 1; 2; 3; 1; 3; 3; 2; 0; 2; 0℄. Finally, suppose that the partiles emit radia-tion in the diretions (�1; 0) and (0; 1). If � is the absorption oeÆient inthese diretions, i.e. the absorption on a line segment of unit length is propor-tional with �, then the "absorption row sums " (measured at the detetors)from top to bottom are[��1 + ��3 + ��5 + ��7; ��2 + ��4 + ��6 + ��8; ��2 + ��6;��1 + ��2 + ��3 + ��5 + ��7; ��8; ��6 + ��8℄ ;and the "absorption olumn sums " from left to right are given by[��1 + ��4; ��2 + ��3 + ��4; ��1 + ��4; ��2; ��1 + ��4;��2 + ��3 + ��6; ��1 + ��4; ��2 + ��5 + ��6℄ :In the past deade onsiderable attention has been given to this type ofproblems, see e.g. [6, 7, 15, 16℄, and espeially [19℄ for a historial overview.Many papers investigate the problem under whih irumstanes the line sumsdetermine the original set uniquely, see e.g. [1, 8, 9, 11, 25℄ for the non-absorption and [20, 21℄ for the absorption ase. However, in many ases thereare more than one on�guration yielding the same line sums. Observe that the"di�erene" of two on�gurations with equal line sums has zero line sums. Suha di�erene is alled a swithing on�guration. In the ase of row and olumnsums they were already studied by Ryser [23℄ in 1957. We refer to [17, 18℄for the ase of two general diretions and for the investigation of so-alledswithing hains. Shliferstein and Chien [25℄ studied swithing on�gurationsin situations with more than two diretions. Swithing on�gurations play arole in solution methods of e.g. [1, 13, 17, 18, 20, 21, 25℄. Already Ryser [23℄showed in the ase of row and olumn sums that every swithing on�gurationan be omposed of simple swithing omponents



Algebrai Disrete Tomography 3��1 11 �1� :An algebrai theory on their struture was developed by the authors [12, 14℄based on swithing omponents of minimal size, so-alled swithing atoms. Inorder to reonstrut the original itself, one an use additional known propertiesof the original objet to favour some inverse images above the others, suh asonvexity (see e.g. [1℄) or onnetedness (see e.g. [3, 4, 13℄). For an extensivestudy on the omputational omplexity of disrete tomographial problemssee [10℄.In this hapter we desribe a general algebrai framework for swithingon�gurations.We ollet and at ertain points generalize some of our previousresults. We show that our method an be applied to more general problemsthan only the lassial ones in disrete tomography. We mention that, thoughwe fous on Zn only, the results presented below an be generalized to anyintegral domain R suh that R[x1; : : : ; xn℄ is a unique fatorization domain.We reommend the book of Lang [22℄ as a general referene for algebra.To formulate the above problems in a preise way, we introdue somede�nitions and notation whih we use throughout this hapter without anyfurther referene. Let n be a positive integer. The j-th oordinate of a pointv 2 Zn will be denoted by vj (j = 1; : : : ; n), that is v = (v1; : : : ; vn). Let mj(j = 1; : : : ; n) denote positive integers, and putA = fi 2 Zn : 0 � ij < mj for j = 1; : : : ; ng :Let d be a positive integer, and suppose that k� are equivalene relations onA for k = 1; : : : ; d. (For example, points are equivalent if they are on a line insome diretion haraterized by k.) Let H(k)1 ; : : : ; H(k)tk denote the equivalenelasses of k�. Finally, let %k : A ! R>0 be so-alled weight funtions fork = 1; : : : ; d, and set % = dPk=1 %k. Now the above mentioned problems an beformulated in the following more general way.Problem 1. Let kl be given real numbers for k = 1; : : : ; d and l = 1; : : : ; tk.Construt a funtion g : A! f0; 1g (if it exists) suh thatXi2H(k)l g(i)%k(i) = kl (k = 1; : : : d; l = 1; : : : tk) : (1)It is important to note that equation (1) is ertainly underdetermined withrespet to funtions g : A! Z. Moreover, the same may be true for solutionsg : A! f0; 1g. For example, the funtion g given by



4 L. Hajdu and R. Tijdemang : 0 1 1 0 1 0 1 01 0 0 0 1 1 0 10 1 0 0 0 1 0 01 1 1 1 0 0 0 10 0 0 0 0 0 1 00 0 0 0 0 1 0 1has the same row and olumn sums as f from Figure 1. Consequently, h :=f�g has zero row and olumn sums. Vie versa, having a funtion h : A! Zwith zero line sums, the line sums of g + h will oinide with those of g. Itturns out that the study of swithing on�gurations over Z is muh simplerthan that over f0; 1g. It is therefore important to note that the solutions toProblem 1 an be haraterized as the solutions of the following optimizationproblem over Z.Problem 2. Construt a funtion g : A! Z (if it exists) suh that (1) holds,and Xi2A g(i)2%(i) is minimal :Remark 1. If g is a solution to Problem 1, then g is a solution to Problem 2.To show this, let f : A! Z be any other solution to (1). Then we haveXi2A g(i)2%(i) =Xi2A g(i)%(i) =Xi2A f(i)%(i) �Xi2A f(i)2%(i) :The idea used here, that a binary solution has small "length", has been usedin several papers, see e.g. [3, 4, 13℄.Remark 2. We also mention that when the equivalene relations k� mean thatthe orresponding points are on the same lines in given diretions, and theweight funtions %k are de�ned as ertain powers of some real numbers �k � 1then in view of Remark 1, our problems just redue to the lassial problemof emission tomography with absorption. In partiular, when �k = 1 (%k = 1for every k) we get bak the lassial problem on disrete tomography.As we indiated, we will study the struture of the set of integral solutionsof equation (1). It turns out that in ase of line sums there exists a minimalon�guration (the so-alled swithing atom) suh that every integral solutionof the homogenized equation (1) (i.e. with kl = 0) an be expressed as alinear ombination of shifts of one of the swithing atoms. For the ase of rowand olumn sums the swithing atom is��1 11 �1� :In this hapter we haraterize and derive properties of swithing on�gura-tions.



Algebrai Disrete Tomography 5The struture of this hapter is as follows. In the next setion we brieyoutline the main priniples of our method. In Setion 3 we give a ompletedesription of the set of integral solutions of (1) in ase of the lassial problemof disrete tomography, for arbitrary dimension (see Theorem 1). Theorem 2shows that if Problem 2 admits a solution, then a relatively small solution anbe found in polynomial time. In Setion 4 we derive similar results for the aseof emission tomography with absorption, also for any dimension n. Finally, inSetion 5 we onsider a new type of tomographial problems. Instead of lines,the X-rays (in Z2) are assumed to be parallel shifts of the graph of a funtionG : Z! Z. It turns out that our mahinery is appliable in this ase, as well.2 The main priniples of the methodIn this setion we summarize the main priniples of our approah. Our methodrelies on the following four fundamental observations.1) If both funtions f; g : A ! Z are solutions to equation (1), then thedi�erene h := f � g is a solution to (1) with kl = 0 for all k; l, that is toXi2H(k)l h(i)%k(i) = 0 (k = 1; : : : d; l = 1; : : : tk) : (2)So to haraterize the set of integral solutions of (1), it is suÆient to knowone partiular solution g together with all the solutions of (2).2) Suppose that H1; : : : ; Ht is a partition of A. Let f : A ! Z andfl : Hl ! Z (l = 1; : : : ; t) be given funtions and write �f (x) = Pi2A f(i)xi forthe generating polynomial of f . Suppose that �fl(x) = Pi2Hl fl(i)xi vanishesfor l = 1; : : : ; t, and that �f (x) = tPl=1�fl(x). Then �f (x) vanishes.3) If �f (x) is divisible by polynomials P1(x); : : : ; Ps(x) 2 Z[x℄, then �f (x)is divisible by lm(P1(x); : : : ; Ps(x)) in Z[x℄.4) Let f be a solution to equation (2). Then in the ases investigated inthis hapter we have �f (x) = P (x)Q(x), where P orresponds to a "minimal"solution M to (2), and Q indiates whih ombination of the translates of Myields f .To illustrate how these priniples work, we exhibit some examples.Example 1 (row sums). Let n = 2, A = f(i; j) : 0 � i < m1; 0 � j < m2gand Hl = f(i; l) : 0 � i < m1g for l = 0; : : : ;m2 � 1. Let f : A ! Z be agiven funtion. De�ne fl : Hl ! Z for l = 0; : : : ;m2 � 1 by fl(i; l) = f(i; l)(i = 0; : : : ;m1 � 1). Then�f (x; y) = m2�1Xl=0 �fl(x; y) and �fl(x; y) = yl m2�1Xl=0 fl(i; l)xi :



6 L. Hajdu and R. Tijdeman(i) Suppose m1�1Pi=0 f(i; l) = 0 for l = 0; : : : ;m2 � 1, so we have vanishingrow sums. Then�fl(1; y) = yl m1�1Xi=0 fl(i; l) = yl m1�1Xi=0 f(i; l) = 0 for l = 0; : : : ;m2 � 1 :Hene �fl(x; y) = X(i;j)2Hl fl(i; j)xiyj = yl m1�1Xi=0 fl(i; l)xiis divisible by x � 1 for l = 0; : : : ;m2 � 1. Thus �f (x; y) = m2�1Pl=0 �fl(x; y) isdivisible by x� 1.(ii) Let � 2 C , and suppose that m1�1Pi=0 f(i; l)�i = 0 for l = 0; : : : ;m2 � 1.Then�fl(�; y) = yl m1�1Xi=0 fl(i; l)�i = yl m1�1Xi=0 f(i; l)�i = 0 for l = 0; : : : ;m2 � 1 :Hene �fl(x; y) is divisible by x�� over C for l = 0; : : : ;m2�1. Then �f (x; y)is divisible by x� � over C . Sine �f (x; y) 2 Z[x; y℄, this implies that �f = 0if � is a transendental number and that �f (x; y) is divisible by the minimalde�ning polynomial of � if it is an algebrai number. The above argument anbe given for olumns, as well.Barui, Frosini and Rinaldi [2℄ treated the binary ase (i.e. only oeÆ-ients 0 or 1) where the row sums are measured into both diretions for theabsorption oeÆient � = (1+p5)=2. They proved that in that ase the rowsums determine the on�guration uniquely. Sine it is a good illustration of ourapproah we show how this onlusion follows from the above onsiderations.Suppose there are two distint binary solutions. Then the polynomial f , de-�ned as the di�erene of both harateristi polynomials, has only oeÆients1, 0 and �1 and vanishing row sums into both diretions. The polynomialm�1Pi=0 f(i; l)xi is therefore divisible by both the minimal polynomial x2 � x� 1of � and the minimal polynomial x2 + x � 1 of ��1 for all l. Hene bothm�1Pi=0 f(i; l)�i = 0 and m�1Pi=0 f(i; l)(��)i = 0. By addition and subtration we�nd that both Pi even f(i; l)�i = 0 and Pi odd f(i; l)�i = 0. Sine the non-zerooeÆients have modulus 1 and �2 > 2, the �rst non-zero term of eah ex-pression exeeds the sum of the remaining terms. We onlude that all theoeÆients of f are 0 so that the solution is unique.



Algebrai Disrete Tomography 7Example 2 (row and olumn sums). On ombining Example 1 with �1 to therow sums and with �2 to the olumn sums we obtain that if m1�1Pi=0 f(i; l)�i1 = 0for l = 0; : : : ;m2�1 and m2�1Pj=0 f(l; j)�j2 = 0 for l = 0; : : : ;m1�1 then �f = 0 if�1 or �2 is transendental and that otherwise �f is divisible by the produt ofthe minimal de�ning polynomials P1(x; 1) of �1 and P2(1; y) of �2 (as P1(x; 1)and P2(1; y) are oprime).Kuba and Nivat [20℄ studied the speial ase of row and olumn sums for�1 = �2 = (1+p5)=2 (f. Example 4 in Setion 4.1). The situation of havingdi�erent absorption oeÆients in di�erent diretions was studied by Zopf andKuba [26℄ in another ontext.Example 3 (line sums). Let n and A be as in Example 1 and a; b 2 Z.Withoutloss of generality we may assume that a > 0. Suppose �rst that we have b � 0.Put Hl = f(i; j) : aj = bi+lg for l = 0; : : : ;m with m = (m1�1)b+(m2�1)a.Hene A is the disjoint union of the Hl. De�ne the funtions fl : Hl ! Z forthe above values of l by fl(i; j) = f(i; j) ((i; j) 2 Hl), where f : A ! Z is agiven funtion. Then�f (x; y) = mXl=0 �fl(x; y) where �fl(x; y) = X(i;j)2Hl fl(i; j)xiyj :Let � 2 C , and suppose that P(i;j)2Hl fl(i; j)�i = 0 for l = 0; : : : ;m. Then�fl(x; y) = X(i;j)2Hl fl(i; j)xiy(bi+l)=a = yl=a X(i;j)2Hl fl(i; j)(xyb=a)i = 0for x = �y�b=a and l = 0; : : : ;m. It follows that �f (�y�b=a; y) � 0. Equiv-alently, �f (�y�b; ya) = 0. We onlude that �f = 0 if � is transenden-tal and that otherwise �f is divisible by the minimal de�ning polynomial ofxa=d � �a=dy�b=d where d = gd(a; b) if � is algebrai. Similarly we �nd inase b > 0 that �f is divisible by the minimal polynomial of xa=dyb=d � �a=d.Combine Example 1 with � = �1 and Example 3 with a = 1, b = �1, � =�p21 . Suppose m1�1Pi=0 f(i; l)�i1 = 0 for l = 0; : : : ;m2�1 and Pj=�i+l f(i; j)�p2i1 =0 for l = 0; : : : ;m1+m2� 2. Then �f is divisible by both polynomials x��1and x � �p21 y over C . By the theorem of Gelfond-Shneider we know that if�1 6= 0; 1, then �p21 is transendental if �1 is algebrai. Hene either �1 = 0and �f is divisible by x, or �1 = 1 and �f is divisible by (x � 1)(x � y), or�f = 0.Combine Example 3 with a = 1, b = �1, � 6= 0 arbitrary and Example3 with a = b = 1, and ��1 in plae of �. Suppose Pj=�i+l f(i; j)�i = 0 for



8 L. Hajdu and R. Tijdemanl = 0; : : : ;m1 +m2 � 2 and Pj=i+l f(i; j)��i = 0 for l = �m1 + 1; : : : ;m2 � 1.Then �f is divisible by both polynomials x��y and xy���1 over C . Hene �fis identially zero if � is transendental. If � is algebrai, then �f is divisibleby the produt of the minimal polynomials of x� �y and xy � ��1.Finally, ombine Example 3 with a = 1, b = �1, � 6= 0 arbitrary andExample 3 with a = 1, b = �1, ��1 in plae of �. (The latter ondi-tion is equivalent with a = �1, b = 1, absorption oeÆient �.) SupposePj=�i+l f(i; j)�i = Pj=�i+l f(i; j)��i = 0 for l = 0; : : : ;m1 + m2 � 2. Then�f = 0 if � is transendental. If � is algebrai then �f (x; y) is divisible bythe minimal polynomial of xy � �, and, if the minimal polynomial of � isnon-reiproal, even by the produt of the minimal polynomials of x��y andx� ��1y.3 Disrete tomography in nDIn [12℄ we developed a theory on swithing on�gurations in ase n = 2. Inthis setion we generalize it to arbitrary n.3.1 Some notationLet a 2 Zn with gd(a1; : : : ; an) = 1, suh that a 6= 0, and for the smallestj with aj 6= 0 we have aj > 0. We all a a diretion. By lines with diretiona we mean lines of the form b + ta (b 2 Rn , t 2 R) in Rn . Let A be as inthe Introdution. By the help of a diretion a we an de�ne an equivalenerelation on A as follows. We all two elements of A equivalent if they are onthe same line with diretion a. If g : A ! Q is a funtion, then the linesum of g along the line T = b + ta is de�ned as Pi2A\T g(i). Note that theline sums are in fat the "lass sums" from (1), orresponding to the abovede�ned equivalene.We will work with polynomials F 2 Q[x1 ; : : : ; xn℄. For brevity we writex = (x1; : : : ; xn) and xi = nQj=1 xijj (i 2 Zn). The generating polynomial of afuntion g : A! Q is de�ned as�g(x) =Xi2A g(i)xi :A set S = fakgdk=1 of diretions is alled valid for A, if dPk=1 jakj j < mj forany j = 1; : : : ; n. Suppose that S is a valid set of diretions for A. For a 2 Sput fa(x) = (xa � 1) Qaj<0x�ajj and set FS(x) = dQk=1 fak (x). Let



Algebrai Disrete Tomography 9U = fu : 0 � uj < mj � dXk=1 jakj j (j = 1; : : : ; n)g :For u 2 U put F(u;S)(x) = xuFS(x) and de�ne the funtions M(u;S) : A! Zby M(u;S)(i) = oe�(xi) in F(u;S)(x) for i 2 A :The M(u;S)'s are alled the swithing atoms orresponding to the diretionset S. By the minimal orner of the swithing atom M(0;S) we mean theelement i� 2 A for whih M(0;S)(i�) 6= 0, but M(0;S)(i) = 0, whenever i 2 Alexiographially preedes i�. That is, i� is lexiographially the �rst elementof A for whih the funtion value of M(0;S) is non-zero. It follows from thede�nitions of fa and FS that M(0;S)(i�) = �1 :Sine it orresponds with the minimal orner of M(0;S), for every u 2 U wede�ne the minimal orner of M(u;S) as i� + u. Again, the minimal orner ofM(u;S) is lexiographially the �rst element of A for whih the funtion valueof M(u;S) is non-zero, and we also haveM(u;S)(i� + u) = �1 :It is lear that a funtion g de�ned on A an be onsidered as a vetor (anQj=1mj-tuple). If we want to emphasize this, we write g instead of g. We alwaysassume that the entries of these vetors are arranged aording to elements ofA in lexiographial order. The length of g (or g) is jgj = jgj =rPi2A g(i)2.3.2 The struture of the swithing on�gurationsOur main result shows that every swithing on�guration is a linear ombi-nation of translates of the swithing atom M(0;S).Theorem 1. Let A be as before, S = fakgdk=1 a valid set of diretions for A,and let R be one of Z or Q. Then any funtion g : A ! R with zero linesums along the lines orresponding to S an be uniquely written in the formg = Xu2U uM(u;S)with some u 2 R (u 2 U). Moreover, every suh funtion g has zero linesums along the lines orresponding to S.Remark 3. As one an easily see from the proofs, if S is not valid for A, thenthe only funtion having all its line sums zero is the identially zero funtionon A.



10 L. Hajdu and R. TijdemanTo prove the theorem, we need the following lemma.Lemma 1. Assume that a is a valid diretion for A, and let R be one of Zor Q. Then a funtion g : A ! R has zero line sums along the lines withdiretion a if and only if fa(x) divides �g(x) in R[x℄.Proof. We give the proof only when aj > 0 (j = 1; : : : ; n), the proof is similarin all the other ases. Put B = fb : : b 2 A; b � a 62 Ag, and for b 2 B setIb = maxft 2 Z : b+ ta 2 Ag. Observe that we an write�g(x) =Xb2B IbXt=0 g(b+ ta)xb+ta =Xb2B xb IbXt=0 g(b+ ta)xta == (xa � 1)Xb2B xb IbXt=0 g(b+ ta) t�1Xs=0 xsa +Xb2B xb IbXt=0 g(b+ ta) :As fa(x) = xa � 1 and the line sums of g in the diretion a are given byIbPt=0 g(b+ ta), the lemma follows. utProof (of Theorem 1). By de�nition, for every u 2 U the funtion F(u;S) isdivisible by fak for any k with 1 � k � d. Hene by Lemma 1, M(u;S) haszero line sums along all the lines orresponding to S. This proves the seondstatement of Theorem 1.Let nowH = ff : A! R j f has zero line sums orresponding to Sg :We �rst prove that the swithing atoms generate H . Suppose that g 2 H .Lemma 3 (from Setion 4) implies that the polynomials fak(x) are pairwisenon-assoiated irreduible elements of the unique fatorization domain R[x℄.Hene by Lemma 1 we obtainFS(x) j �g(x) in R[x℄ :Hene there exists a polynomial h(x) = Pu2U uxu in R[x℄ suh that �g(x) =h(x)FS(x). We rewrite this equation as�g(x) = Xu2U uF(u;S)(x) :Now by the de�nitions of �g(x) and the swithing atoms M(u;S) we immedi-ately obtain g = Xu2U uM(u;S) ;



Algebrai Disrete Tomography 11whih proves that the funtions M(u;S) generate H .Suppose now that for some oeÆients lu 2 R (u 2 U) we haveXu2U luM(u;S)(i) = 0 for all i 2 A :By the de�nitions of the swithing atoms, at the minimal orner of M(0;S) allthe other swithing atoms vanish. This immediately implies l0 = 0. Runningthrough the swithing atoms M(u;S) with u 2 U in inreasing lexiographialorder, we onlude that all the oeÆients lu are zero. This shows that theswithing atoms are linearly independent, whih ompletes the proof of thetheorem. utThe following result is a onsequene of Theorem 1.Corollary 1. Let A, S and R be as in Theorem 1. Let C be the set of thoseelements of A whih are the minimal orners of the swithing atoms. Then forany f : A ! R and for any presribed values from R for the elements of C,there exists a unique g : A! R having the presribed values at the elementsof C and having the same line sums as f along the lines orresponding to S.Proof. As every swithing atom takes value �1 at its minimal orner, weobtain that there are unique oeÆients u 2 R (u 2 U) suh thatg := f +Xu2U uM(u;S)has the presribed values at the element of C. By the seond statement ofTheorem 1 the line sums of f and g orresponding to S oinide. ut3.3 Existene of "small" solutionsWe provide a polynomial-time algorithm for �nding an approximation to fhaving the required line sums. We �rst ompute a funtion q : A! Q havingthe same line sums as f in the given diretions by solving a system of linearequations. Subsequently we use the struture of swithing on�gurations to�nd a funtion g : A ! Z whih is not far from q and f . The general resultis given in Theorem 2. It follows that in ase when f has f0; 1g values thealgorithm provides a solution g : A! Z satisfying (1) with jg(i)j � 2d�1+1 onaverage, where d is the number of diretions involved. The funtion obtainedby replaing all funtion values of q whih are greater than 1=2 by 1 and allothers by 0 provides a good �rst approximation to f in pratie. In [13℄ analgorithm is given, relying on this priniple.Theorem 2. Let A, d and S be as in Theorem 1. Let all the line sums in thediretions of S of some unknown funtion f : A ! Z be given. Then there



12 L. Hajdu and R. Tijdemanexists an algorithm whih is polynomial in maxj=1;:::;nfmjg, providing a funtiong : A ! Z suh that f and g have the same line sums orresponding to S,moreover jgj � jf j+ 2d�1vuut nYj=1mj : (3)Proof. Put Nj = dPk=1 jakj j for j = 1; : : : ; n. First, ompute some funtionq : A ! Q having the same line sums as f . It an be done by solving thesystem of linear equations provided by the line sums. This step is known tobe polynomial in maxj=1;:::;nfmjg (see e.g. [5℄, p. 48). We onstrut a funtions : A ! Z with the same line sums as f . We follow the proedure used inthe seond part of the proof of Theorem 1 and start with the minimal orneri� of M(0;S). With an appropriate rational oeÆient r0 with jr0j � 1=2, thevalue (q + r0M(0;S))(i�) will be an integer. We now ontinue in inreasinglexiographial order in i and hoose oeÆients ri subjet to jrij � 1=2 suhthat the value of (q+Pi0�i ri0M(i0;S))(i) is an integer. (Here� under theP refersto the lexiographial ordering.) Observe that the values at i0 (i0 < i) are nothanged in the i-th step. After exeuting this proedure for the whole set Cof the minimal orners of the swithing atoms, we obtain a funtion s havinginteger values on C. By a similar proess (taking the swithing atoms one-by-one, in inreasing lexiographial order) we get that there exist integers tu(u 2 U) suh that the values of f+ Pu2U tuM(u;S) and s oinide on C. As thesefuntions have the same line sums orresponding to S, applying Corollary 1with R = Q, we onlude that they are equal, hene s takes integer valueson the whole set A. Clearly, this onstrution of s needs only a polynomialnumber of steps in maxj=1;:::;nfmjg.Consider now all the funtions as vetors ( nQj=1mj-tuples), and solve overQ the following system of linear equations(s;M(v;S)) = Xu2U �u(M(u;S);M(v;S))in �u, where (:; :) denotes the inner produt of vetors and v runs throughthe elements of U . As the swithing atoms are linearly independent aordingto Theorem 1, this system of equations has a unique solution. This an beomputed again in time whih is polynomial in maxj=1;:::;nfmjg. Put g = s �Pu2U jj�ujjM(u;S), where jj�jj denotes the nearest integer to �. Observe thats � Pu2U �uM(u;S) is just the projetion of f (but also of q and s) onto the



Algebrai Disrete Tomography 13orthogonal omplement of the linear subspae generated by the swithingatoms. This implies jgj � jf j+ ������Xu2U(�u � jj�ujj)M(u;S)������ :There are at most 2d swithing atoms whih ontribute to the value of any�xed point, eah with a ontribution at most 1=2 in absolute value in theabove equation. Thus we may onlude jgj � jf j+ 2d�1s nQj=1mj .Finally, notie that all the steps of the above algorithm are polynomial inmaxj=1;:::;nfmjg. Thus the proof of Theorem 2 is omplete. utRemark 4. We mention that if we know that Problem 1 admits a solution,i.e. f has f0; 1g values in the above theorem, then jf j = s tkPl=1 kl (for anyk = 1; : : : ; d), whene we get jgj � (2d�1 + 1)s nQj=1mj . Moreover, as noted inthe proof of Theorem 2 we an replae jf j with jqj (or with jsj) in the upperbound (3). Therefore an upper bound for jgj an be given whih only dependson the line sums and the diretions.3.4 Dependenies among the line sumsObviously, the sum of all row sums of a funtion f : A ! Z oinides withthe sum of all olumn sums of f . In this subsetion we give a simple formulafor the number of dependenies among the line sums orresponding to S.Let A, S and FS(x) be as above, and write Nj for the degree of FS inxj (j = 1; : : : ; n). Then by Theorem 1 the swithing atoms form a basisof a module of dimension nQj=1(mj � Nj) over Z. Suppose that LS denotesthe number of line sums for A orresponding to the diretions in S, and letDS denote the number of dependenies among these line sums. Then as thenumber of unknowns is nQj=1mj , elementary linear algebra tells us thatDS = LS + nYj=1(mj �Nj)� nYj=1mj :In partiular, if n = 2 then there are akm2+jbkjm1�akjbkj line sums belongingto a diretion (ak; bk) 2 S. Hene in this ase as ak � 0 we have



14 L. Hajdu and R. TijdemanDS = m2 dXk=1 ak +m1 dXk=1 jbkj � dXk=1 akjbkj++ m1 � dXk=1 ak! m2 � dXk=1 jbkj!�m1m2 = dXk=1 ak dXk=1 jbkj � dXk=1 akjbkj :4 Emission tomography with absorptionIn this hapter we generalize the results from [14℄ whih were presented fordimension 2 to the ase of general dimension.To model the physial bakground of emission tomography with absorp-tion, onsider a ray (suh as light or X-ray) transmitting through homogeneousmaterial. Let I0 and I denote the initial and the deteted intensities of theray. Then I = I0 � e��x ;where � � 0 denotes the absorption oeÆient of the material, and x is thelength of the path of the ray in the material. We put � = e�, and we all � theexponential absorption oeÆient. We mention that as � � 0, we have � � 1.Note that by the absorption we have to work with direted line sums whih donot only depend on the line, but also on the diretion of the radiation throughthat line.We further assume that g represents (radio-ative) material whih is emit-ting radiation. If g(i) = 1, then there is a unit of radiating material at i,otherwise g(i) = 0 and there is no suh material at i.As we have absorption, we attah some absorption oeÆient to eah di-retion. Hene we slightly adjust our previous notation. Let d be a positiveinteger, and let S = f(ak; �k) : k = 1; : : : ; dg be a set, where ak 2 Zn withgd(ak1; : : : ; akn) = 1 for k = 1; : : : ; d, and for the real numbers �k we have�k � 1. For k = 1; : : : ; d put Bk = fb 2 A : b+ ak =2 Ag, and for any i 2 A lets(i;k) denote the integer for whih i = b� (s(i;k) � 1)ak with some b 2 Bk. Bythe direted absorption line sum of g along the line T = b�tak (b 2 Bk; t 2 Z)we mean Xi2T\A g(i)��s(i;k)k :(Here there is a hidden assumption on the shape of the absorbing material,but this is irrelevant for the swithing on�gurations.) In Figure 1 in theIntrodution we illustrated how direted absorption line sums are interpreted.Let i1 k� i2 for i1; i2 2 A and k = 1; : : : ; d if and only if i1 � i2 = tak forsome t 2 Z, and write H(k)1 ; : : : ; H(k)tk for the equivalene lasses of k�. Takingarbitrary real numbers kl (k = 1; : : : ; d; l = 1; : : : ; tk), equation (1) is justgiven by



Algebrai Disrete Tomography 15Xi2H(k)l g(i)��s(i;k)k = kl (k = 1; : : : d; l = 1; : : : tk) : (4)Thus in this ase Problem 1 is the standard problem in emission tomographywith absorption. (See also the DA2D(�) reonstrution problem in [20℄ for thetwo dimensional ase.)If the absorption is independent of the diretion, then �k = e�jaj, sine jajis the distane between onseutive lattie points on the line b� ta. However,we prefer to leave the possibility open that the absorption oeÆient dependson the diretion in whih the medium is passed. Our de�nition of s(i;k) makesit possible to distinguish between two opposite diretions. Thus b � ta andb� t(�a) represent the same line, but opposite diretions.Finally, we mention that in ase when �k = 1 (k = 1; : : : ; d) the problemredues to the lassial problem of disrete tomography.4.1 The struture of the swithing on�gurationsIn this setion we give a full desription of the set of solutions g : A ! Zto (4). First we onsider the ase when kl = 0 for all k = 1; : : : ; d andl = 1; : : : ; tk, that is when all the direted absorption line sums of g are zero.For this purpose we need some further notation.First we note that if any of the �k-s is transendental, then f is uniquelydetermined by its direted absorption line sums in the orresponding diretionak. Hene from this point on we assume that all the exponential absorptionoeÆients are algebrai.Let a 2 Zn be a diretion (i.e. gd(a1; : : : ; an) = 1). Let � be a non-zeroalgebrai number of degree r, and let P�(z) be the de�ning polynomial of �having oprime integral oeÆients. Putf(a;�)(x) = P�(xa) Yaj<0x�rajj :Hene f(a;�)(x) 2 Z[x℄.In the proof we shall make use of a fundamental orrespondene betweenfuntions g : A! Z and polynomials in n variables. Namely, to suh a funtiong we attah the polynomial �g(x) =Xi2A g(i)xi :Then into diretion a the line sums of g are the oeÆients of �g(x) "modulo"f(a;�). The polynomials are pairwise oprime exept for some well-desribedspeial ases, when they are onjugate. Therefore the polynomial FS de�nedbelow represents the least ommon multiple of the polynomials f(ak;�k). LetS = f(ak; �k) : k = 1; : : : ; dg be a set, where for eah k, ak is a diretion and�k is a real algebrai number with �k � 1 of degree rk. Two elements (ak; �k)



16 L. Hajdu and R. Tijdemanand (a; �) of S are equivalent, if ak = a and �k and � are algebraiallyonjugated elements, or ak = �a and �k and 1=� are algebraially onju-gated elements. Let S� be a subset of S ontaining exatly one element of Sfrom eah lass of this equivalene relation. PutFS(x) = Y(ak;�k)2S� f(ak;�k)(x) :We say that S is valid for A, if Nj := degxj (FS(x)) < mj (j = 1; : : : ; n).Put U = fu 2 Zn : 0 � uj < mj � Nj (j = 1; : : : ; n)g. For u 2 U setF(u;S)(x) = xuFS(x), and de�ne the funtions M(u;S) : A! Z byM(u;S)(i) = oe�(xi) in F(u;S)(x) for i 2 A :The funtions M(u;S) are alled the swithing atoms orresponding to the setS. By the minimal orner of the swithing atom M(0;S) we mean the elementi� whih is lexiographially the �rst element of A for whih the funtion valueof M(0;S) is non-zero. The minimal orner of M(u;S) is i� + u.Our main result in this setion shows that swithing on�gurations an beobtained as ombinations of shifts of the swithing atom M(0;S) also in thease of emission tomography.Theorem 3. Let A, S and M(u;S) be as above, with the assumption that S isvalid for A. Then any funtion g : A ! Z with zero direted absorption linesums orresponding to the pairs (ak; �k) of S an be uniquely written in theform g = Xu2U uM(u;S)with u 2 Z (u 2 U). Moreover, every suh funtion g has zero diretedabsorption line sums orresponding to the elements of S.Remark 5. Note that if S is not valid for A, then there is no non-trivial fhaving zero direted absorption line sums in the diretions given by S. Thisfat simply follows from the proof of Theorem 3.As an illustration, we give two examples (partly from [14℄).Example 4. First we onsider a similar situation as Kuba and Nivat do in[20℄, however, in Z3. Let S = f((�1; 0; 0); �); ((0; 1; 0); �); ((0; 0; 1); �)g, where� = (1 +p5)=2. Then we have P�(z) = z2 � z � 1 andf((�1;0;0);�)(x1; x2; x3) = �x21 � x1 + 1; f((0;1;0);�)(x1; x2; x3) = x22 � x2 � 1and f((0;0;1);�)(x1; x2; x3) = x23 � x3 � 1 :Thus we obtain



Algebrai Disrete Tomography 17FS(x1; x2; x3) = (x21x22�x21x2�x21+x1x22�x1x2�x1�x22+x2+1)(1+x3�x23)and N1 = N2 = N3 = 2. So if A is of type m1�m2�m3 with m1;m2;m3 � 3,then S is a valid set for A. Now M(0;S) is given by0 0 0 0 : : : 0... ... ... ... ... ...0 0 0 0 : : : 0�1 1 1 0 : : : 01 �1 �1 0 : : : 01 �1 �1 0 : : : 0
0 0 0 0 : : : 0... ... ... ... ... ...0 0 0 0 : : : 0�1 1 1 0 : : : 01 �1 �1 0 : : : 01 �1 �1 0 : : : 0

0 0 0 0 : : : 0... ... ... ... ... ...0 0 0 0 : : : 01 �1 �1 0 : : : 0�1 1 1 0 : : : 0�1 1 1 0 : : : 0where these tables represent the values ofM(0;S) on the "slies" orrespondingto the oeÆients of 1; x3; x23 in FS , respetively. (All the other values arezero.) The swithing atomsM(u;S) (u 2 U) form a basis of the set of funtionsg : A! Z having zero line sums orresponding to the three elements of S.Example 5. Now we onsider an example for n = 2 where both opposite di-retions and di�erent exponential absorption oeÆients our. LetS = f((�1; 0); �); ((1; 0); �); ((0;�1); ); ((0; 1); Æ)gwith � = (1+p5)=2,  = 2+p2 and Æ = =2. We obtain P�(z) = z2� z� 1,P(z) = z2 � 4z + 2 and PÆ(z) = 2z2 � 4z + 1. We havef((�1;0);�)(x1; x2) = �x21 � x1 + 1; f((1;0);�)(x1; x2) = x21 � x1 � 1and f((0;�1);)(x1; x2) = f((0;1);Æ)(x1; x2) = 2x22 � 4x2 + 1 ;as  and 1=Æ are assoiated elements. We getFS(x1; x2) = �2x41x22 + 4x41x2 � x41 + 6x21x22 � 12x21x2 + 3x21 � 2x22 + 4x2 � 1and N1 = 4, N2 = 2. So if A is of type m1 �m2 with m1 � 5 and m2 � 3,then S is a valid set for A. Now M(0;S) is given by0 0 0 0 0 0 : : : 0... ... ... ... ... ... ... ...0 0 0 0 0 0 : : : 0�2 0 6 0 �2 0 : : : 04 0 �12 0 4 0 : : : 0�1 0 3 0 �1 0 : : : 0and the swithing atoms M(u;S) (u 2 U) form a basis of the set of funtionsg : A! Z having zero line sums orresponding to the four elements of S.



18 L. Hajdu and R. TijdemanTo prove Theorem 3, we need several lemmas. To keep this expositionself-ontained, we inlude their proofs. Lemma 2 shows the orrespondenebetween zero line sums and division by polynomials. Note that line sums offuntions A! L are de�ned in the obvious way.Lemma 2. Let A be as before, a a diretion, and � a non-zero algebrai num-ber. Let L be some �eld ontaining the splitting �eld of P�(z). Put~f(a;�)(x) = (xa � �) Yaj<0x�ajj :Then a funtion g : A! L has zero line sums orresponding to the pair (a; �)if and only if ~f(a;�)(x) divides �g(x) in L[x℄.Proof. We prove the lemma only with aj > 0 (j = 1; : : : ; n), as the other asesan be treated similarly.Put B = fb 2 A : b+ a =2 Ag and let Ib be the number of the points of Aon the line b� ta (b 2 B; t 2 Z). Observe that we may write�g(x) =Xb2B Ib�1Xs=0 g(b� sa)xb�sa =Xb2B xb Ib�1Xs=0 g(b� sa)x�sa :If xa�� divides �g(x) in L[x℄, then after substituting x1  �1=a1 nQj=2 xaj=a1jthe polynomial �g(x) beomes identially zero. This yields that Ib�1Ps=0 g(b �sa)��s vanishes for every b 2 B, hene g has zero absorption line sums or-responding to (a; �). This proves the `if' part of the statement.To prove the `only if' part, suppose that all the line sumsIb�1Xs=0 g(b� sa)��s�1 = ��Ib Ib�1Xs=0 g(b� (Ib � s� 1)a)�s (b 2 B)of g orresponding to (a; �) vanish. This means that � is a root of the polyno-mial Qb(z) := Ib�1Ps=0 g(b� (Ib � s� 1)a)zs for eah b 2 B. Thus for every b 2 Bthe polynomial Qb(xa) is divisible by xa � � over L. Hene xa � � divides�g(x) = Pb2B xb+(1�Ib)aQb(xa) in L[x℄, and the lemma follows. utLemma 3. Using the notation of Lemma 2, write r for the degree and �()(1 �  � r) for the onjugates of �. Then the polynomials ~f(a;�())(x) (1 � � r) de�ned in Lemma 2 are pairwise non-assoiated irreduible elementsin L[x℄.



Algebrai Disrete Tomography 19Proof. As gd(a1; : : : ; an) = 1, the irreduibility of these polynomials is asimple onsequene of Corollary 2 of [24℄ p. 103. The statement that thepolynomials are pairwise non-assoiated, is trivial. utCorollary 2. The polynomials P�(xa) Qaj<0x�rajj are irreduible in Z[x℄.Proof. We prove the statement only for aj > 0 (j = 1; : : : ; n), the other asesare similar.Let �() (1 �  � r) be the onjugates of �, and let L be the splitting �eldof P� over Q. Then, in view ofP�(xa) = 0 rY=1(xa � �())where 0 is the leading oeÆient of P� , the statement immediately followsfrom Lemma 3. utIn the next lemma we show that the divisibility property of �g over L inLemma 2 implies a stronger property over Z.Lemma 4. Let a and � be as in Lemma 2. Using the previous notation, afuntion g : A! Z has zero line sums orresponding to the pair (a; �) if andonly if P�(xa) Qaj<0x�rajj divides �g(x) in Z[x℄.Proof. The `if' part of the statement easily follows from Lemma 2. We provethe `only if' part only for aj > 0 (j = 1; : : : ; n), the other ases an be handledsimilarly. In this ase observe that by Lemma 2, xa�� divides �g(x) over any�eld L whih ontains the splitting �eld of P�(z). However, by onjugation,for every onjugate �() of �, xa � �() also divides �g(x) in L[x℄. By Lemma3 this assertion immediately implies the statement. utIt follows from Corollary 2 and the following Lemma 5 that the divisionpolynomials in non-parallel diretions are oprime, and in parallel diretionsare oprime or assoiated.Lemma 5. Let a; a� be diretions, and �; �� be non-zero algebrai numbersof degrees r and r�, respetively. Then the polynomials P�(xa) Qaj<0x�rajj andP��(xa�) Qa�j<0x�r�a�jj are assoiated in Z[x℄ if and only if either a = a� and �and �� are onjugated, or a = �a� and � and 1=�� are onjugated.Proof. The `if' part of the statement is trivial. Suppose that P�(xa) Qaj<0x�rajjand P��(xa�) Qa�j<0x�r�a�jj are assoiated. Then the degrees of � and �� must



20 L. Hajdu and R. Tijdemanbe equal, i.e. r = r�. For 1 �  � r let �() and ��() be the onjugates of �and ��, respetively. Let L be any �eld whih ontains the splitting �elds ofboth P� and P�� . Then we have the fatorizationsP�(xa) Yaj<0x�rajj = rY=1 ~f(a;�())(x)and P��(xa�) Ya�j<0x�r�a�jj = rY=1 ~f(a�;��())(x)in L[x℄, where the polynomials on the right hand sides are de�ned in Lemma2. By our assumption and Lemma 3 we obtain that for eah 1 with 1 �1 � r there exists a 2 also with 1 � 2 � r, suh that ~f(a;�(1))(x) and~f(a�;��(2))(x) are assoiated elements in L[x℄. By omparing the exponentsof xj (j = 1; : : : ; n) in these polynomials, we get that a = �a� holds, andfor the orresponding pairs (1; 2), �(1) = ��(2) or �(1)��(2) = 1 is valid,respetively. This yields that f�() : 1 �  � rg = f��() : 1 �  � rg orf�() : 1 �  � rg = f1=��() : 1 �  � rg, respetively, whih establishesthe `only if' part of the statement. The proof of the lemma is now omplete.utProof (of Theorem 3). By de�nition, for every u 2 U the funtion F(u;S) isdivisible by f(ak;�k) for any k with 1 � k � d. Hene by Lemma 2 M(u;S)has zero line sums orresponding to the pairs in S. This proves the seondstatement of the theorem.LetH = ff : A! Z j f has zero absorption line sums for the elements of Sg :We �rst prove that the swithing atoms M(u;S) (u 2 U) generate H . Combin-ing Corollary 2 and Lemmas 4 and 5, for any g 2 H we obtainFS(x) j �g(x) in Z[x℄ :Hene there exists a polynomial Q(x) = Pu2U uxu with u 2 Z (u 2 U) suhthat Q(x)FS(x) = �g(x). We rewrite this equation as�g(x) = Xu2U uF(u;S)(x) :Now by the de�nitions of �g(x) and the swithing atoms M(u;S) we immedi-ately obtain g = Xu2U uM(u;S) ;



Algebrai Disrete Tomography 21whih proves that the funtions M(u;S) generate H .Suppose now that for some oeÆients lu 2 Z we haveXu2U luM(u;S)(i) = 0 for i 2 A : (5)By the de�nitions of the swithing atoms, at the minimal orner of M(0;S) allthe other swithing atoms vanish. This immediately implies l0 = 0. Consid-ering now M(u;S) with u 2 U in inreasing lexiographial order, we onludethat all the oeÆients lu are zero in (5). This shows that the swithing atomsare linearly independent, whih ompletes the proof of the theorem. utRemark 6. Similarly as in ase of the lassial problem of disrete tomographyin Setion 3, it would be possible to provide an algorithm that produes a"small" integral solution to (1) in ase of emission tomography. We omit thedetails.5 Tomography on urvesIn this setion we illustrate that our method is rather exible in the sensethat variations to other sums than line sums are possible. In this more gen-eral ase there do not exist translation invariant swithing atoms. However,our polynomial method allows us to onstrut non-trivial on�gurations withvanishing sums and haraterize suh on�gurations in Theorems 4 and 5.We shall illustrate the method in two dimensions by examples where sumsare taken over sets of the shape Hk = f(i; j) 2 A : akj = bkG(i) + tgwhere G : Z ! Z, t 2 Z and the (ak; bk) are distint pairs of o-prime integers for k = 1; : : : ; d. The basi idea is that to the given funtiong : A ! Z we adjoin the "generating" polynomial P(i;j)2A g(i; j)xG(i)yj (in-stead of P(i;j)2A g(i; j)xiyj). Sine akj = bkG(i)+ t the exponent pairs (G(i); j)for (i; j) 2 Hk are on the lines aky = bkx + t. So the sums over Hk turn intoline sums and we an apply the preeding theory. Doing so we �nd swith-ing atoms. The problem is to return to the original situation, where there isno linear struture. However, by onstruting polynomials with exponents ofpresribed form whih are multiples of the swithing atom polynomial, we areable to onstrut on�gurations with vanishing sums for all given Hk. We givetwo examples.Example 6 (broken line sums). We onsider the situation where light (or X-ray) entering from the left along the haline ay = bx + t (x � 0) is brokenwhen reahing the y-axis and ontinues along the haline ay = bx+t (x > 0),where  is a given integer.To desribe this ase, we slightly need to adjust our previous settings. Letm1;m2 be positive integers and n1 a negative integer. Put



22 L. Hajdu and R. TijdemanA = f(i; j) 2 Z2 : n1 � i < m1; 0 � j < m2g ;and let ak; bk (k = 1; : : : ; d) and  be non-zero integers with gd(ak; bk) = 1and ak � 0 (k = 1; : : : ; d). SetTkt = f(i; j) 2 Z2 : i � 0; akj = bki+ tg[ f(i; j) 2 Z2 : i > 0; akj = bki+ tgfor k = 1; : : : ; d and t 2 Z. Let (i1; j1) k� (i2; j2) for (i1; j1); (i2; j2) 2 A andk = 1; : : : ; d if and only if these points belong to the same set Tkt for someinteger t. Write H(k)1 ; : : : ; H(k)tk for the equivalene lasses of k� on A. Theselasses are in fat the intersetions of the broken lines Tkt with A. By thebroken line sums orresponding to (ak; bk) of a given funtion g : A! Z wemean the expressionskl := X(i;j)2H(k)l g(i; j) for k = 1; : : : ; d; l = 1; : : : ; tk : (6)Note that (6) is a speial ase of equation (1), with unit weights %k = 1(k = 1; : : : ; d).With the above modi�ations we an apply our mahinery to the brokenline ase as well. First we introdue some further notation.Let S = f(ak; bk)gdk=1 with (ak; bk) as above, and write N1 = dPk=1 ak andN2 = dPk=1 jbkj. We say that S is valid for A, if N1 < m1 � n1 and N2 < m2.For k = 1; : : : ; d putfk(x; y) = (xakybk � 1; if bk � 0xak � y�bk ; if bk < 0 ;and set FS(x; y) = dQk=1 fk(x; y).In view of the broken lines, we de�ne�g(x; y) = x�n1 0� 0Xi=n1 m2�1Xj=0 g(i; j)xiyj + m1�1Xi=1 m2�1Xj=0 g(i; j)xiyj1A :as the "generating" polynomial of g : A ! Z. Note that the fator x�n1 isintrodued only to keep the exposition inside Z[x; y℄.For the solutions of (6) we have the followingTheorem 4. Let A and S be as above, with the assumption that S is validfor A. Then a funtion g : A ! Z has zero broken line sums orrespondingto S if and only if �g(x; y) is divisible by FS(x; y) in Z[x; y℄.



Algebrai Disrete Tomography 23Proof. Let g : A! Zbe an arbitrary funtion and let (a; b) 2 S. For simpliitywe assume that b � 0, the ase when b < 0 is similar. Observe that we anwrite�g(x; y) = x�n1Xt2Z0BB� 0Xi=n1 Xaj=bi+t0�j<m2g(i; j)xiyj + m1�1Xi=1 Xaj=bi+t0�j<m2 g(i; j)xiyj1CCA =x�n1 Xb2Zyt=a0BB� 0Xi=n1 Xaj=bi+t0�j<m2g(i; j)(xyb=a)i + m1�1Xi=1 Xaj=bi+t0�j<m2 g(i; j)(xyb=a)i1CCA :Now just as previously (see e.g. the proof of Theorem 1) we obtain that g haszero broken line sums orresponding to (a; b) 2 S if and only if xayb�1 divides�g(x; y) in Z[x; y℄. Observing that the polynomials fk(x; y) (k = 1; : : : ; d) arepairwise oprime (in fat prime) elements of Z[x; y℄, the theorem follows. utWe illustrate the above theory by the example when S = f(1; 1); (3; 1)gand  = 2. In this ase the broken line sums are alulated in aordane withFigure 2. Moreover, we have

3y=x+t2

y=x+t1
3y=2x+t2

y=2x+t1

x

y

Fig. 2. Broken lines orresponding to S = f(1; 1); (3; 1)g and  = 2.FS(x; y) = (xy � 1)(x3y � 1) = x4y2 � x3y � xy + 1 :Theorem 4 gives that g : A! Z has zero broken line sums orresponding to Sif and only if FS divides �g over Z. Hene to present a non-trivial example, weshould �nd a non-zero multiple of FS in whih all the exponents of x greater



24 L. Hajdu and R. Tijdemanthan some non-negative integer are even. For swithing on�gurations entirelyontained in f(x; y) : x � 0g or in f(x; y) : x > 0g the theory of Setion 3applies. Suppose we want a swithing on�guration with "minimal orner" at(�3; 0). Then all exponents of x in �g greater than 3 should be odd. We have(xy + 1)FS(x; y) = x5y3 � x3y � x2y2 + 1 = x3(x2y3 � y � x�1y2 � x�3) :Hene if n1 � �3, m1 � 3 and m2 � 4 then the funtion g : A ! Zrepresented by 0 : : : 0 0 0 0 0 0 0 : : : 0... ... ... ... ... ... ... ... ... ... ...0 : : : 0 0 0 0 0 0 0 : : : 00 : : : 0 0 0 0 0 1 0 : : : 00 : : : 0 0 0 �1 0 0 0 : : : 00 : : : 0 0 0 0 �1 0 0 : : : 00 : : : 0 1 0 0 0 0 0 : : : 0"has zero broken line sums along the orresponding broken lines. Here " indi-ates the y-axis.Example 7 (parabola sums). We onsider the situation when the X-rays (orlight) pass along parabolas ay = bx2 + t (x � 0).Let A be as before, and let ak; bk be oprime non-zero integers with ak � 0(k = 1; : : : ; d) . Let (i1; j1) k� (i2; j2) for (i1; j1); (i2; j2) 2 A and k = 1; : : : ; dif and only if bk(i21 � i22) = ak(j1 � j2) (i.e. for some integer tk we havebki21 = akj1 � tk and bki22 = akj2 � tk, that is, these points lay on the samevertial translate of the graph of the funtion aky = bkx2). Further, writeH(k)1 ; : : : ; H(k)tk for the equivalene lasses of k� on A. Let a funtion g : A! Zbe given. By the parabola sums of g orresponding to (ak; bk) we mean theexpressions kl := X(i;j)2H(k)l g(i; j) for k = 1; : : : ; d; l = 1; : : : ; tk : (7)Obviously, (7) is a speial ase of equation (1) with %k = 1 (k = 1; : : : ; d).As it will turn out, with the modi�ations indiated above we an applyour previous results to this ase. We need, however, some notation. Let S, N1,N2, fk(x; y) and FS(x; y) be de�ned as in ase of broken lines.We hoose �g(x; y) = X(i;j)2A g(i; j)xi2yjas the "generating" polynomial of g : A! Z.For the solutions of (7) we have the following



Algebrai Disrete Tomography 25Theorem 5. Let A and S be as above, with the assumption that S is validfor A. Then a funtion g : A ! Z has zero parabola sums orresponding toS if and only if �g(x; y) is divisible by FS(x; y) in Z[x; y℄.Proof. Let g : A! Zbe an arbitrary funtion and let (a; b) 2 S. For simpliitywe assume that b � 0, the ase when b < 0 is similar. Observe that we anwrite�g(x; y) =Xt2Z Xaj=bi2+t(i;j)2A g(i; j)xi2yj =Xt2Zyt=a Xaj=bi2+t(i;j)2A g(i; j)(xyb=a)i2 :Now similarly as e.g. in the proof of Theorem 1, one an easily verify that g haszero parabola sums orresponding to (a; b) 2 S if and only if xayb � 1 divides�g(x; y) in Z[x; y℄. As the polynomials fk(x; y) (k = 1; : : : ; d) are pairwiseoprime elements of Z[x; y℄, the theorem follows. utWe illustrate the example by analyzing two partiular ases. We start withS = f(1; 1); (1; 2)g, i.e. the parabolas are given by y = x2+t1 and y = 2x2+t2,respetively. In this ase we haveFS(x; y) = (xy � 1)(xy2 � 1) = x2y3 � xy2 � xy + 1 :Theorem 5 gives that g : A ! Z has zero parabola sums orresponding toS if and only if FS divides �g over Z. The problem, however, is to �nd somenon-zero multiple of FS suh that all the exponents of x are squares. Supposewe want a swithing on�guration with "minimal orner" at the origin. Onean readily verify that(x2y4+xy3+xy2+y2+y+1)FS(x; y) = x4y7�xy4�xy3�xy2�xy+y2+y+1 :Thus if m1 � 2 and m2 � 8 then the funtion g : A! Z represented by0 0 0 0 : : : 0... ... ... ... ... ...0 0 0 0 : : : 00 0 1 0 : : : 00 0 0 0 : : : 00 0 0 0 : : : 00 �1 0 0 : : : 00 �1 0 0 : : : 01 �1 0 0 : : : 01 �1 0 0 : : : 01 0 0 0 : : : 0"provides a non-trivial on�guration having zero parabola sums along theparabolas y = x2 + t1 and y = 2x2 + t1 for any t1; t2 2 Z.
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