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Abstract. In a previous paper the authors analysed the classical discrete tomogra-

phy problem to construct a 0−1-matrix with given line sums in some given directions.
One of the physical representations is that material at the lattice points correspond-

ing to 1’s emit units of radiation and that the radiation is measured along the given

lines. In the present paper they extend their approach to the case that the interme-
diate material is absorbing the radiation. They generalise results obtained by Kuba

and Nivat.

1. Introduction

Discrete tomography is a subject of current interest (see [2] for the most recent
progress). The main problem is to reconstruct a function f : A → {0, 1}, where
A is a finite subset of Zl (l ≥ 2), if the sums of the function values along all the
lines in a finite number of directions are known. In this paper we deal with the
mathematical problem of the reconstruction of the places from where radiation is
emitted in case the radiation is partially absorbed by the medium.

To model the physical background of emission tomography with absorption, con-
sider a ray (such as light or X-ray) transmitting through homogeneous material.
Let I0 and I denote the initial and the detected intensities of the ray. Then

I = I0 · e−µx,

where µ ≥ 0 denotes the absorption coefficient of the material, and x is the length
of the path of the ray in the material. We put β = eµ, and we call β the exponential
absorption coefficient. We mention that as µ ≥ 0, we have β ≥ 1. Note that by the
absorption we have to work with directed line sums which do not only depend on
the line, but also on the direction of the radiation through that line.

We further assume that f represents (radio-active) material which is emitting
radiation. If f(i, j) = 1, then there is a unit of radiating material at (i, j), otherwise
f(i, j) = 0 and there is no such material at (i, j). Mathematically, in emission
tomography with absorption for l = 2 we deal with a problem of the following type.
(See also the DA2D(β) reconstruction problem in [4].)

Key words and phrases. Discrete tomography, absorption, emission tomography, Chinese Re-
mainder Theorem.

Mathematics Subject Classification: 92C55 (15A36).

The research was supported in part by the Netherlands Organization for Scientific Research
(NWO). The first author was further supported by the Hungarian Academy of Sciences, by the

János Bolyai Research Fellowship, by grants F034981 and T029330 of the Hungarian National
Foundation for Scientific Research and by the FKFP grant 3272-13/066/2001.

Typeset by AMS-TEX

1



2 L. HAJDU AND R. TIJDEMAN

Problem 1. Let m,n,D be positive integers. Let A = {(i, j) ∈ Z2 : 0 ≤ i <
m, 0 ≤ j < n} and f : A→ {0, 1}. Let S = {(ad, bd, βd) : d = 1, . . . , D} be a set,
where the pairs of coprime integers (ad, bd) are distinct, and for the real numbers βd

we have βd ≥ 1. Let (i, j) be the s(i,j,d)-th point of A on the line ady−bdx = adj−bdi
counted with adi decreasing when ad 6= 0 and bdj decreasing otherwise. Suppose f
is unknown, but all the directed absorption line sums∑

adj=bdi+t

(i,j)∈A

f(i, j)β−s(i,j,d)

d

corresponding to the triples (ad, bd, βd) in S are given for d = 1, . . . , D and t ∈ Z.
Construct a function g : A→ {0, 1} such that

(1)
∑

adj=bdi+t

(i,j)∈A

f(i, j)
β

s(i,j,d)

d

=
∑

adj=bdi+t

(i,j)∈A

g(i, j)
β

s(i,j,d)

d

for d = 1, . . . , D and t ∈ Z.

If the absorption is independent of the direction, then βd = eµ
√

a2
d+b2d , since√

a2
d + b2

d is the distance between consecutive lattice points on the line ady = bdx+t.
However, we prefer to leave the possibility open that the absorption coefficient
depends on the direction in which the medium is passed. In order to distinguish
between two opposite directions, we assume that the points along the directed line
are counted with adi decreasing when ad 6= 0 and bdj decreasing otherwise. Thus
ady = bdx + t and (−ad)y = (−bd)x − t represent the same line, but opposite
directions.

Just as in [1], Problem 1 can be transformed into an extremal problem, i.e.
instead of finding a function g : A→ {0, 1} satisfying (1), we may find a “smallest”
solution of a related problem. To formulate this problem, for every (i, j) ∈ A put

ρS(i, j) =
D∑

d=1

β
−s(i,j,d)

d , where s(i,j,d) is defined as above.

Problem 2. Let m,n,D,A, S be as in Problem 1. Suppose f : A→ Z is unknown,
but all the directed absorption line sums∑

adj=bdi+t

(i,j)∈A

f(i, j)β−s(i,j,d)

d

corresponding to the triples in S are given for d = 1, . . . , D and t ∈ Z. Construct a
function g : A→ Z such that (1) holds and∑

(i,j)∈A

g(i, j)2ρS(i, j) is minimal.

In order to see that Problem 2 is more general than Problem 1, suppose f : A→
{0, 1}. Then for every function g : A→ Z∑

(i,j)∈A

f(i, j)2ρS(i, j) =
∑

(i,j)∈A

f(i, j)ρS(i, j) =

=
∑

(i,j)∈A

g(i, j)ρS(i, j) ≤
∑

(i,j)∈A

g(i, j)2ρS(i, j)
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with equality if and only if g : A → {0, 1}. Hence the minimum is realized if and
only if g is a solution to Problem 1. Thus it suffices to study Problem 2.

Note that ρS is a weight function: we associate the weight ρS(i, j) to the (i, j)-th
point of A. As clearly

|g| =
√ ∑

(i,j)∈A

g(i, j)2ρS(i, j)

is a norm function on the real vectorspace {g : A → R}, Problem 2 can be
considered as searching for a solution among the solutions of (1), which is shortest
with respect to this norm.

Kuba and Nivat in their papers [3] and [4] dealt with the special case S =
{(−1, 0, β), (0, 1, β)}, where β = (1 +

√
5)/2. They gave a characterization of the

solutions having the same directed line sums corresponding to the elements of S
in this case. Their approach is completely different from ours. In an example of
Section 4 we show how their case fits into our treatment.

In the present paper we extend our investigations in [1] to the case of absorption.
The functions f : A→ Z form a Z-module M , and the subset M0 consisting of the
functions having zero directed absorption line sums corresponding to any finite set
S, is a submodule of M . Thus the functions with the same directed absorption line
sums form a coset in the factor module M/M0. By determining a basis of M0, the
so-called switching elements, we describe the structure of the functions f : A→ Z
having the same directed absorption line sums, corresponding to any finite set S.

To illustrate our results, in Section 4 we work out a few examples. The above
problems could also be considered in higher dimensions, and our results would apply
in this more general case as well. However, for the convenience of the reader, we
work out the details only in the two dimensional case.

2. Definitions and notation

We note that if βd is transcendental, then f is uniquely determined by its directed
absorption line sums in the corresponding direction (ad, bd). Thus throughout the
paper we will work with algebraic exponential absorption coefficients.

In the presentation of our new results we use a more general setting than in the
introduction. It requires only very little extra work to formulate and prove our
theorem for an arbitrary unique factorization domain instead of Z. We introduce
some notation.

Let a, b ∈ Z with gcd(a, b) = 1. We call (a, b) a direction. From now on let R
denote a unique factorization domain, and K its quotient field. Let β be a nonzero
algebraic element over K of degree k, and let Pβ(z) be a defining polynomial of β
having coprime coefficients from R. Put

f(a,b,β)(x, y) = Pβ(xayb)xpyq with p = max{−ka, 0} and q = max{−kb, 0}.

Hence f(a,b,β)(x, y) ∈ R[x, y]. By directed lines into the direction (a, b) we mean
lines of the form ay = bx + t (t ∈ Z) in the (x, y) plane, passed through in the
direction of increasing ax (or if a = 0, of increasing by.).

Let m,n be positive integers and A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n}.
We call the elements of A points. If g : A → R is a function, then the directed
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absorption line sums (or briefly line sums) of g corresponding to the triple (a, b, β)
are defined as ∑

aj=bi+t

(i,j)∈A

g(i, j)β−s(i,j) (t ∈ Z),

where (i, j) is the s(i,j)-th point of A on the line ay− bx = aj − bi counted with ai
decreasing when a 6= 0 and bj decreasing otherwise.

The following figure shows how line sums are interpreted.

[ ←− • ◦ • ◦
[ ←− ◦ • ◦ •
[ ←− ◦ • ◦ ◦

g =

 1 0 1 0
0 1 0 1
0 1 0 0


Fig. 1. The symbols • denote particles emitting radiation, while ◦ show empty locations. The

detectors are denoted by [. They measure the radiation in the direction (−1,0). Further, g is the

corresponding function from A to Z. If β is the exponential absorption coefficient in the direction

(−1,0), then 1/β+1/β3, 1/β2+1/β4 and 1/β2 are the line sums (from top to bottom) corresponding

to (−1,0,β).

In the proof we shall make use of a fundamental correspondence between func-
tions f : A → R and polynomials in two variables. Namely, to such a function
f we attach the polynomial h(x, y) =

∑
(i,j)∈A

f(i, j)xiyj . Then into direction (a, b)

the line sums of f are the coefficients of h(x, y) modulo f(a,b,β). To combine the
various directions, we use the Chinese Remainder Theorem for polynomials. The
polynomials are pairwise coprime except for the case of opposite directions and
reciprocally conjugate exponential absorption coefficients, in which case they are
conjugate. Therefore the polynomial FS defined below represents the least common
multiple of the polynomials f(ad,bd,βd). The Chinese Remainder Theorem implies
that there is exactly one solution modulo the least common multiple of the poly-
nomials f(ad,bd,βd). More precisely, let S = {(ad, bd, βd) : d = 1, . . . , D} be a set,
where for each d, (ad, bd) is a direction and βd is a nonzero algebraic element of
degree kd over K. Let S∗ be the set of those triples (ad, bd, βd) of S with ad < 0
or (ad, bd) = (0,−1), for which there exists another triple (ac, bc, βc) ∈ S such that
(ad, bd) = (−ac,−bc), and βc and 1/βd are conjugated elements over K. Put

FS(x, y) =
k∏

d=1

f∗(ad,bd,βd)(x, y),

where

f∗(ad,bd,βd)(x, y) =
{

1, if (ad, bd, βd) ∈ S∗,

f(ad,bd,βd)(x, y), otherwise.

We say that S is valid for A, if Sx = degx(FS(x, y)) < m and Sy = degy(FS(x, y)) <
n. Throughout the paper we suppose that S is a valid set for A. For 0 ≤ u < m−Sx,
0 ≤ v < n−Sy set F(u,v,S)(x, y) = xuyvFS(x, y), and define the functions m(u,v,S) :
A→ R by

m(u,v,S)(i, j) = coeff(xiyj) in F(u,v,S)(x, y) for (i, j) ∈ A.
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The functions m(u,v,S) are called the switching elements corresponding to the set
S. By the bottom-left corner of the switching element m(0,0,S) we mean the point
(i∗, j∗) for which m(0,0,S)(i∗, j∗) 6= 0, but m(0,0,S)(i, j) = 0 whenever i < i∗, or
i = i∗ and j < j∗. Observe that (i∗, j∗) is lexicographically the first point of
A for which the function value of m(0,0,S) is nonzero. Since it corresponds with
the bottom-left corner of m(0,0,S), for every u and v we define the bottom-left
corner of m(u,v,S) as (i∗ + u, j∗ + v). Again, the bottom-left corner of m(u,v,S)

is lexicographically the first point of A for which the function value of m(u,v,S) is
nonzero.

3. New results

Theorem. Let m,n and D be positive integers, A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤
j < n} and S = {(ad, bd, βd) : d = 1, . . . , D} be a valid set for A. Let R be
an integral domain such that R[x, y] is a unique factorization domain. Then any
function g : A→ R with zero line sums corresponding to the triples (ad, bd, βd) of
S can be uniquely written in the form

g =
m−1−Sx∑

u=0

n−1−Sy∑
v=0

cuvm(u,v,S)

with cuv ∈ R. Moreover, every such function g has zero line sums corresponding to
the elements of S.

Remark 1. Let M be the R-module of the functions f : A → R. Then the func-
tions having zero line sums corresponding to some finite set S, form a submodule
M0 of M . The above theorem establishes that the switching elements m(u,v,S)

provide a basis of M0.
Remark 2. In the theorem R can be chosen as Z or any field.
Remark 3. As a simple consequence of the theorem we obtain that two functions
g1 : A→ R and g2 : A→ R have the same line sums corresponding to the elements
of S if and only if

g1 − g2 =
m−1−Sx∑

u=0

n−1−Sy∑
v=0

cuvm(u,v,S)

with some cuv ∈ R. This simple observation provides a complete description of the
structure of the functions having the same line sums.
Remark 4. If S is not a valid set for A, then the only function g : A→ R having
zero line sums corresponding to the elements of S is the identically zero function.
Remark 5. Using the weight function ρS(i, j) and the norm function corresponding
to it (see Problem 2), one could easily extend Theorem 2 of [1] to this more general
case. However, we do not work out the details here.

4. Examples

In this section we give three examples to illustrate our method. For the conve-
nience of the reader we restrict ourselves to functions with integer values and to
real algebraic exponential absorption coefficients which are greater than 1.
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Example 1. First we consider the same situation as Kuba and Nivat in [4]. Let
R = Z and S = {(−1, 0, β), (0, 1, β)}, where β = (1 +

√
5)/2. Using the notation of

Section 2 we have Pβ(z) = z2 − z − 1 and

f(−1,0,β)(x, y) = −x2 − x + 1 and f(0,1,β)(x, y) = y2 − y − 1.

Thus we obtain FS(x, y) = −x2y2 + x2y − xy2 + x2 + y2 + xy + x − y − 1 and
Sx = Sy = 2. So if A is of type m × n with m,n ≥ 3, then S is a valid set for A.
We have

m(0,0,S) =



0 0 0 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 0
1 −1 −1 0 . . . 0
−1 1 1 0 . . . 0
−1 1 1 0 . . . 0


and the switching elements m(u,v,S) (0 ≤ u ≤ m − 3, 0 ≤ v ≤ n − 3) form a basis
of the set of functions g : A → Z having zero line sums corresponding to the two
elements of S.

Example 2. Now we consider an example which is similar to the previous one, but
we include opposite directions and use different exponential absorption coefficients,
too. Let S = {(−1, 0, β), (1, 0, β), (0,−1, γ), (0, 1, δ)} with β = (1 +

√
5)/2, γ =

2 +
√

2 and δ = γ/2. Now we obtain Pβ(z) = z2 − z − 1, Pγ(z) = z2 − 4z + 2 and
Pδ(z) = 2z2 − 4z + 1. We have

f(−1,0,β)(x, y) = −x2 − x + 1, f(1,0,β)(x, y) = x2 − x− 1

and
f(0,−1,γ)(x, y) = f(0,1,δ)(x, y) = 2y2 − 4y + 1,

as γ and 1/δ are associated elements over Q. We get FS(x, y) = −2x4y2 + 4x4y −
x4 + 6x2y2 − 12x2y + 3x2 − 2y2 + 4y − 1 and Sx = 4, Sy = 2. So if A is of type
m× n with m ≥ 5 and n ≥ 3, then S is a valid set for A. We have

m(0,0,S) =



0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0
−2 0 6 0 −2 0 . . . 0
4 0 −12 0 4 0 . . . 0
−1 0 3 0 −1 0 . . . 0


and the switching elements m(u,v,S) (0 ≤ u ≤ m − 5, 0 ≤ v ≤ n − 3) form a basis
of the set of functions g : A → Z having zero line sums corresponding to the four
elements of S.

Example 3. Finally we give a somewhat more complicated example with |S| =
6. Let S = {(−1, 0, β), (0,−1,

√
2), (−1,−1, β), (1, 1,

√
3), (−1, 1, γ), (1,−1, δ)} with

the same β, γ, δ as in the previous example. Now for the new exponential absorption
coefficients we have P√2(z) = z2 − 2 and P√3(z) = z2 − 3, whence

f(−1,0,β)(x, y) = −x2 − x + 1, f(0,−1,
√

2)(x, y) = −2y2 + 1,
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f(−1,−1,β)(x, y) = −x2y2 − xy + 1, f(1,1,
√

3)(x, y) = x2y2 − 3,

and
f(−1,1,γ)(x, y) = f(1,−1,δ)(x, y) = 2x2 − 4xy + y2.

We obtain Sx = 8, Sy = 8, and if m ≥ 8, n ≥ 8, then

m(0,0,S) =



0 0 0 0 0 0 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0 . . . 0
0 0 0 0 2 −2 −2 0 0 0 . . . 0
0 0 0 2 −2 −10 8 8 0 0 . . . 0
0 0 −8 8 −1 9 13 −4 −4 0 . . . 0
0 −6 6 37 −31 −23 −8 −8 0 0 . . . 0
6 −6 22 −28 −40 12 10 2 2 0 . . . 0
0 −21 21 −7 28 26 2 2 0 0 . . . 0
−3 3 3 0 8 −8 −8 0 0 0 . . . 0
0 12 −12 −6 −6 −6 0 0 0 0 . . . 0
0 0 −6 6 6 0 0 0 0 0 . . . 0


and the switching elements m(u,v,S) (0 ≤ u ≤ m − 8, 0 ≤ v ≤ n − 8) form a basis
of the set of functions g : A → Z having zero line sums corresponding to the six
elements of S.

5. Proofs

To prove the theorem, we need some lemmas. Lemma 1 shows the correspondence
between zero line sums and division of polynomials.

Lemma 1. Let A be as in the theorem, a, b coprime integers, and β a nonzero
algebraic element over the quotient field K of R. Let L be any field containing the
splitting field of a defining polynomial of β over K. Put

f̃(a,b,β)(x, y) =


xayb − β, if a ≥ 0, b ≥ 0,

xa − βy−b, if a ≥ 0, b < 0,

yb − βx−a, if a < 0, b ≥ 0,

1− βx−ay−b, if a < 0, b < 0.

Then a function g : A→ L has zero line sums corresponding to the triple (a, b, β)
if and only if f̃(a,b,β)(x, y) divides

∑
(i,j)∈A

g(i, j)xiyj in L[x, y].

Proof. We prove the lemma only with a > 0, b > 0, all the other cases can be
treated similarly.

Let T = {t ∈ Z : aj = bi + t for some (i, j) ∈ A}. For every t ∈ T let (it, jt) be
the index pair of the first entry of A, which is on the directed line ax = by + t, and
let It be the number of the points of A on this line. Set

h(x, y) =
∑

(i,j)∈A

g(i, j)xiyj .
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Observe that we may write

h(x, y) =
∑
t∈T

It−1∑
s=0

ct(s)xit+sayjt+sb,

where ct(s) = g(it + sa, jt + sb). This equality can be reformulated as

h(x, y) =
∑
t∈T

xityjt

It−1∑
s=0

ct(s)(xayb)
s
.

If (xayb−β) divides h(x, y) in L[x, y], then after substituting xayb ← β, or more
precisely x← (βy−b)1/a, h(x, y) becomes identically zero. However, this yields that
It−1∑
s=0

ct(s)βs = βIt

It−1∑
s=0

ct(It − 1 − s)β−s−1 must vanish for every t ∈ T , i.e. g has

zero line sums corresponding to (a, b, β). This proves the ‘if’ part of the statement.
To prove the ‘only if’ part, suppose that all the line sums

It−1∑
s=0

ct(It − 1− s)β−s−1 = β−It

It−1∑
s=0

ct(s)βs (t ∈ T )

corresponding to (a, b, β) of g vanish. This means that β is a root of the polynomials

Pt(z) =
It−1∑
s=0

ct(s)zs for each t ∈ T . This yields that for every t ∈ T we have

Pt(xayb) = (xayb − β)Qt(x, y) for some Qt(x, y) ∈ L[x, y].

Hence (xayb−β) divides h(x, y) in L[x, y], and the lemma follows in case a > 0, b >
0. In the other cases the proofs are similar. �

Lemma 2. Use the notation of Lemma 1, and write k for the degree and β(r)

(1 ≤ r ≤ k) for the conjugates of β over K. Then the polynomials f̃(a,b,β(r))(x, y)
(1 ≤ r ≤ k) defined in Lemma 1 are pairwise non-associated irreducible elements
in L[x, y].

Proof. To prove the irreducibility of these polynomials, suppose that for some r
with 1 ≤ r ≤ k

f̃(a,b,β(r))(x, y) = Q1(x, y)Q2(x, y) with some Q1(x, y), Q2(x, y) ∈ L[x, y].

In this case under the substitution xayb ← β if a > 0, b > 0, or under a similar
substitution for the other choices of these parameters, one of the polynomials Q1, Q2

must identically vanish. However, by Lemma 1 this yields that either Q1 or Q2

is divisible by f̃(a,b,β(r))(x, y), so the latter polynomial is an irreducible element
in L[x, y]. The statement that the polynomials are pairwise non-associated, is
trivial. �

Lemma 3 shows that the coefficients of the quotients in Lemma 1 are from R.
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Lemma 3. Let a, b and β be as in Lemma 1. Using the notation of Section 2, a
function g : A → R has zero line sums corresponding to the triple (a, b, β) if and
only if Pβ(xayb)xpyq divides

∑
(i,j)∈A

g(i, j)xiyj in R[x, y].

Proof. The ‘if’ part of the statement easily follows from Lemma 1. We prove the
‘only if’ part only for a > 0, b > 0, the other cases can be handled similarly. In
this case observe that by Lemma 1, (xayb − β) divides h(x, y) =

∑
(i,j)∈A

g(i, j)xiyj

over any field L which contains the splitting field of Pβ(z) over K. However, by
conjugation, for every conjugate β(r) of β, (xayb − β(r)) also divides h(x, y) in
L[x, y]. By Lemma 2 this assertion immediately implies the statement. �

It follows from Lemmas 4 and 5 that the division polynomials in non-opposite
directions are coprime and in opposite directions are coprime or associated.

Lemma 4. The polynomials Pβ(xayb)xpyq are irreducible in R[x, y].

Proof. We prove the lemma only for a > 0, b > 0, the other cases are similar. In
this case we have p = q = 0.

Suppose the contrary, that is Pβ(xayb) is reducible. For 1 ≤ r ≤ k let β(r) be the
conjugates of β over K, and L any field containing β(r) (1 ≤ r ≤ k). By Lemma 2
there is a set N ⊆ {1, . . . , k} and a nonzero εN ∈ L such that the polynomial

QN (x, y) = εN

∏
r∈N

(xayb − β(r))

has coefficients from R. However, by conjugation, this yields that for every r with
1 ≤ r ≤ k, (xayb−β(r)) divides QN (x, y) over L. By Lemma 2 we immediately get
that QN and Pβ(xayb) are associated elements in R[x, y], and the lemma follows
for a > 0, b > 0. The proofs in the other cases are similar. �

Lemma 5. Let β and β∗ be nonzero algebraic elements over K, and (a, b) and
(a∗, b∗) two distinct pairs of coprime integers. Then the polynomials Pβ(xayb)xpyq

and Pβ∗(xa∗yb∗)xp∗yq∗ are associated in R[x, y] if and only if (a, b) = (−a∗,−b∗),
and β and 1/β∗ are conjugated elements over K.

Proof. The ‘if’ part of the statement is trivial. Suppose that Pβ(xayb)xpyq and
Pβ∗(xa∗yb∗)xp∗yq∗ are associated. Then the degrees of β and β∗ must be equal.
Denote by k this number, and for 1 ≤ r ≤ k let β(r) and β∗(r) be the conjugates
of β and β∗ over K, respectively. Let L be any field which contains the splitting
fields of both Pβ and Pβ∗ over K. Then we have the factorizations

Pβ(xayb)xpyq = B

k∏
r=1

f̃(a,b,β(r))(x, y)

and

Pβ∗(xa∗yb∗)xp∗yq∗ = B∗
k∏

r=1

f̃(a∗,b∗,β∗(r))(x, y)

in L[x, y], where the polynomials on the right hand sides are defined in Lemma 1,
and B and B∗ are the leading coefficients of Pβ(z) and Pβ∗(z), respectively. By
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our assumption and Lemma 2 we obtain that for each r1 with 1 ≤ r1 ≤ k there
exists an r2 also with 1 ≤ r2 ≤ k, such that f̃(a,b,β(r1))(x, y) and f̃(a∗,b∗,β∗(r2))(x, y)
are associated elements in L[x, y]. By comparing the exponents of x and y in these
polynomials, we get that (a, b) = (−a∗,−b∗) holds, and for the corresponding pairs
(r1, r2), β(r1)β∗(r2) = 1 must also be valid. This yields that the sets {β(r) : 1 ≤
r ≤ k} and {1/β∗(r) : 1 ≤ r ≤ k} coincide, which verifies the ‘only if’ part of the
statement. The proof of the lemma is now complete. �

Proof of the theorem. By definition, for every u and v the function F(u,v,S) is divis-
ible by f(ad,bd,βd) for any d with 1 ≤ d ≤ D. Hence by Lemma 1 m(u,v,S) has zero
line sums corresponding to the triples in S. This proves the second statement of
the theorem.

The first part of the theorem is now clearly equivalent to saying that the switching
elements

m(u,v,S) (0 ≤ u < m− Sx, 0 ≤ v < n− Sy)

form a basis of the module

M0 = {e : A→ R : e has zero line sums corresponding to the elements of S}
over R. To show this, we first prove that the switching elements generate M0.
Suppose g ∈M0 and put

h(x, y) =
∑

(i,j)∈A

g(i, j)xiyj .

Combining Lemmas 3, 4 and 5, we obtain

FS(x, y) | h(x, y) in R[x, y].

Hence there exists a polynomial Q(x, y) =
m−1−Sx∑

u=0

n−1−Sy∑
v=0

cuvxuyv in R[x, y] such

that Q(x, y)FS(x, y) = h(x, y). We rewrite this equation as

h(x, y) =
m−1−Sx∑

u=0

n−1−Sy∑
v=0

cuvF(u,v,S)(x, y).

Now by the definitions of h(x, y) and the switching elements m(u,v,S) we immedi-
ately obtain

g =
m−1−Sx∑

u=0

n−1−Sy∑
v=0

cuvm(u,v,S),

which proves that the functions m(u,v,S) generate M0.
Suppose now that for some coefficients cuv ∈ R we have

(2)
m−1−Sx∑

u=0

n−1−Sy∑
v=0

cuvm(u,v,S)(i, j) = 0 for 0 ≤ i < m, 0 ≤ j < n.

By the definitions of the switching elements, at the bottom-left corner of m(0,0,S) all
the other switching elements vanish. This immediately implies c00 = 0. Considering
now m(0,1,S) and using the same argument we obtain c01 = 0. Continuing this
process (taking the switching elements m(u,v,S) in increasing lexicographical order
in (u, v) for 0 ≤ u < m − Sx, 0 ≤ v < n − Sy), we easily conclude that all the
coefficients cuv must be zero in (2). This shows that the switching elements are
linearly independent, which completes the proof of the theorem. �
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6. Conclusion

In the present paper we extend our investigations in [1] to the case that there is a
homogeneous medium absorbing the emitted radiation. A complication compared
with [1] is that we have to distinguish opposite directions. The integer-valued
functions with the same directed absorption line sums form a coset in the factor
module M/M0, where M is the module of all integer-valued functions and M0 the
submodule of functions with vanishing line sums in the given directions. We show
in which sense the 0 − 1-solutions are the shortest vectors in the cosets. In the
Theorem we present a basis for M0, thereby characterizing the structure of the
coset. We add some examples to illustrate the theory.
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