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PARALLEL LLL-REDUCTION FOR BOUNDING THE INTEGRAL
SOLUTIONS OF ELLIPTIC DIOPHANTINE EQUATIONS

L. HAJDU AND T. KOVÁCS

In this file we provide some extra examples for the paper. For the notation and
background theory, see the paper.

Example 1. This example is from [10]. The problem is to find the integral points
on the curve

C : 30u3 + 45u2 + 15u = v3 + 5v2 + 6v.

The curve is birationally equivalent to

E : y2 = x3 − 2041200x + 968403600.

The rank of E is r = 4, and an ST-basis of E (obtained by the method in [18]) is
given by

P1 = (−1080,−43740), P2 = (−540, 43740), P3 = (1080, 4860), P4 = (540, 4860).

The final bound obtained for the coordinates of the images of the integral points of
C on E is Nfinal = 8 in this basis (cf. [10]).

Strategy 1. Using the above explained methods, we get the following table.

i j bound for |10ni ± nj | bound for |ni|
1 2 (72,66) 6
2 1 (77,70) 7
3 4 (75,77) 7
4 3 (76,78) 7

Based upon the table, the improvement is given by

(2 · 6 + 1)(2 · 7 + 1)(2 · 7 + 1)(2 · 7 + 1)
(2 · 8 + 1)4

= 0.525316.

Strategy 2. The basis transformation matrices (with respect to the ST-basis) of the
best ten bases (obtained by the method of Stroeker and Tzanakis [18]) are given
by (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
0 0 1 0
1 0 −1 0
0 1 0 0
0 0 0 1

)
,

(
1 0 1 0
0 0 −1 0
0 1 0 0
0 0 0 1

)
,

(
1 0 0 0
0 1 0 0

−1 −1 1 0
0 0 0 1

)
,

(
1 0 −1 0
0 0 1 0

−1 1 1 0
0 0 0 1

)
,

Research supported in part by the Hungarian Academy of Sciences and by the OTKA grants
T48791 and K67580.

c©XXXX American Mathematical Society

1



2 L. HAJDU AND T. KOVÁCS

(
1 0 0 0
0 1 0 0

−1 −1 1 0
−1 −1 1 1

)
,

(
1 0 0 0
1 1 1 0

−1 0 −1 0
0 0 0 1

)
,

(
0 1 0 0
1 −1 0 0

−1 1 1 0
0 0 0 1

)
,

(
1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 1

)
,

(
0 0 1 0
1 1 −1 0
0 −1 0 0
0 0 0 1

)
.

The corresponding λ values are

0.428207, 0.399243, 0.388631, 0.330698, 0.309021,

0.280895, 0.279407, 0.278964, 0.278013, 0.277034,

and the final bounds Nfinal obtained after reduction are

8, 8, 8, 9, 10, 10, 10, 10, 10, 10,

respectively. Combining these data, using the notation (??) (with respect to the
ST-basis) we get the system of linear inequalities

(1)




−6
−7
−7
−7
−8
−9
−10
−10
−10
−10



≤




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 1 1 0
1 0 1 0
0 0 −1 1
0 1 1 0

−1 −1 0 1




(
n1
n2
n3
n4

)
≤




6
7
7
7
8
9
10
10
10
10


 .

Note that here we could already use the improved upper bounds obtained by Strat-
egy 1 for the |ni|. Using Latte [11], we get that the above inequality (1) has precisely
N∗ = 25825 integral solutions in (n1, n2, n3, n4). Hence the ”improvement ratio” is

N∗/(2Nfinal + 1)4 = 25825/(2 · 8 + 1)4 = 0.309204,

where Nfinal = 8 corresponds to the ST-basis P1, P2, P3, P4.

Example 2. This example is also from [10]. The problem is to determine the integral
points on the curve

C : 2u4 + 56u3 + 504u2 + 1440u = v2 + v.

The curve is birationally equivalent to

E : y2 = x3 − 4034x + 83056.

We have r = rank(E) = 4, and an ST-basis of E is

P1 = (−72, 16), P2 = (15,−161), P3 = (−38,−426), P4 = (24, 8).

The final bound obtained for the coordinates of the images of the integral points of
C on E is Nfinal = 7 in this basis (cf. [10]).

Strategy 1. We get the following table.

i j bound for |10ni ± nj | bound for |ni|
1 4 (56,57) 5
2 3 (63,71) 6
3 2 (70,76) 7
4 1 (66,66) 6

The improvement is given by

(2 · 5 + 1)(2 · 6 + 1)(2 · 7 + 1)(2 · 6 + 1)
(2 · 7 + 1)4

= 0.550815.
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Strategy 2. The basis transformation matrices of the best ten bases are
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
1 0 0 0
0 1 0 0
0 0 1 0
0 −1 1 1

)
,

(
1 0 0 0
0 1 1 1
0 1 0 0
0 0 0 −1

)
,

(
1 0 0 0
0 1 0 0
0 0 1 0

−1 −1 1 1

)
,

(
1 0 0 0
0 1 0 0
0 1 1 0
0 1 1 1

)
,

(
0 1 0 0

−1 0 1 1
0 0 1 1
0 0 1 0

)
,

(
1 0 0 0
0 1 0 0
0 1 1 1
0 0 1 0

)
,

(
0 0 0 1
1 0 0 −1
1 1 1 −1
0 1 0 0

)
,

(
1 0 0 0
0 1 0 0
1 1 1 0
0 0 0 1

)
,

(
1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

)
.

The corresponding λ values are

0.828603, 0.811000, 0.787555, 0.760924, 0.745728,

0.738958, 0.734586, 0.733220, 0.727657, 0.727082,

and the final bounds Nfinal obtained after reduction are

7, 8, 8, 8, 8, 8, 8, 8, 8, 8,

respectively. We get the system of linear inequalities



−5
−6
−7
−6
−8
−8
−8
−8
−8
−8



≤




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 −1 1
1 1 −1 1
0 −1 1 0
0 0 −1 1
1 1 0 0

−1 −1 1 0




(
n1
n2
n3
n4

)
≤




5
6
7
6
8
8
8
8
8
8


 .

By Latte [11] we get that the above system has N∗ = 14917 integral solutions in
(n1, n2, n3, n4). Hence the ”improvement ratio” is

14917/(2 · 7 + 1)4 = 0.294657.

Example 3. This example is from [20]. The problem is to find the integral points
on the curve

C : 35u4 − 350u3 + 945u2 − 630u + 11025 = v2.

The curve is birationally equivalent to

E : y2 = x3 − 1620675x + 385103250.

The rank of E is r = 5, and an ST-basis of E is given by

P1 = (105, 14700), P2 = (−4235/9, 872200/9), P3 = (−315,−29400),

P4 = (210, 7350), P5 = (−1365,−7350).

The final bound obtained for the coordinates of the images of the integral point of
C on E is Nfinal = 10 in this basis (cf. [20]).

Strategy 1. We obtain the following table.

i j bound for |10ni ± nj | bound for |ni|
1 2 (104,108) 10
2 1 (71,80) 7
3 2 (100,104) 10
4 5 (89,94) 9
5 4 (92,94) 9
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The improvement is given by

(2 · 10 + 1)(2 · 7 + 1)(2 · 10 + 1)(2 · 9 + 1)(2 · 9 + 1)
(2 · 10 + 1)5

= 0.584710.

Strategy 2. The basis transformation matrices of the best ten bases:
(

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 1 1
0 0 −1 −1 −1
0 1 1 1 1
0 0 0 0 −1
0 0 0 −1 0

)
,

(
1 0 1 1 1
0 0 −1 −1 −1
0 1 1 1 1
0 0 0 0 −1
0 0 0 −1 0

)
,

(
1 1 1 0 −1
0 −1 −1 0 1
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

)
,

(
1 0 0 1 0
0 0 0 −1 0
0 1 0 1 0
0 0 0 0 1
0 0 −1 0 0

)
,

(
1 0 −1 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 −1 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 1 −1

)
,

(
1 0 −1 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 1 1
0 0 0 0 −1

)
,

(
1 0 0 1 0
0 0 0 −1 0
0 1 0 1 0
0 0 0 0 1
0 0 1 −1 −1

)
,

(
1 0 0 0 1
0 0 0 0 −1
0 1 0 0 1
0 0 1 1 −1
0 0 0 −1 0

)
.

The corresponding λ values are

0.516652, 0.516646, 0.514401, 0.509521, 0.502631,

0.501732, 0.499272, 0.497399, 0.497375, 0.491591,

and the final bounds Nfinal obtained after reduction are

10, 10, 11, 11, 11, 11, 11, 11, 11, 11,

respectively. These yield the system of linear inequalities



−10
−7
−10
−9
−9
−10
−11
−11


 ≤




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 0 1 1
1 1 0 0 0
0 1 1 0 0




(
n1
n2
n3
n4
n5

)
≤




10
7
10
9
9
10
11
11


 .

Using Latte [11] we get that the above inequality has precisely N∗ = 1378657
integral solutions in (n1, n2, n3, n4, n5). Hence the ”improvement ratio” is

1378657/(2 · 10 + 1)5 = 0.337567.

Example 4. This example is from [18]. We would like to determine the integral
points on the curve

E : y2 = x3 − 203472x + 18487440.

The rank of E is r = 5, and an ST-basis of E is

P1 = (468, 5076), P2 = (−216, 7236), P3 = (432, 3348),

P4 = (−36, 5076), P5 = (36, 3348).
The final bound obtained for the coordinates of the integral points of E is Nfinal = 9
in this basis (see [18]).

Strategy 1. We get the table

i j bound for |10ni ± nj | bound for |ni|
1 4 (77,82) 7
2 1 (85,79) 8
3 5 (76,81) 7
4 5 (84,88) 8
5 1 (75,81) 7
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The improvement is

(2 · 7 + 1)(2 · 8 + 1)(2 · 7 + 1)(2 · 8 + 1)(2 · 7 + 1)
(2 · 9 + 1)5

= 0.393916.

Strategy 2. The basis transformation matrices of the best ten bases are(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−1 −1 1 1 1

)
,

(
1 1 1 1 1
0 0 0 0 −1
1 0 0 0 0
0 1 0 0 0
0 0 0 −1 0

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 −1 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 −1 1 0
1 1 −1 1 1

)
,

( 0 0 0 0 −1
−1 −1 1 1 2

0 −1 1 1 1
−1 0 1 1 1

0 0 1 0 0

)
,

(
0 0 0 0 1
1 0 0 0 −1
0 1 0 0 0
1 −1 1 0 0
1 −1 1 1 0

)
,

(
0 0 0 0 1
1 0 0 0 −1
1 1 1 1 0
0 0 −1 −1 0
0 0 0 −1 0

)
,

(
1 1 1 0 1
0 0 0 0 −1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

)
,

(
1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
0 0 0 −1 0
0 0 0 0 1

)
.

The corresponding λ values are

0.46493, 0.45844, 0.45792, 0.44837, 0.44736,

0.42425, 0.41358, 0.41295, 0.41229, 0.41173,

and the final bounds Nfinal obtained after the reduction are

9, 9, 9, 9, 9, 10, 10, 10, 10, 10,

respectively. Combining these data, we get



−7
−8
−7
−8
−7
−9
−9
−9
−10
−10
−10
−10



≤




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 −1 −1 1

−1 −1 1 1 0
0 0 0 −1 1

−1 −1 1 0 0
−1 −1 0 1 0

0 −1 1 1 −1
1 1 0 0 0




(
n1
n2
n3
n4
n5

)
≤




7
8
7
8
7
9
9
9
10
10
10
10




.

Latte [11] gives that the above system has N∗ = 396785 integral solutions in
(n1, n2, n3, n4, n5). Hence the ”improvement ratio” is

396785/(2 · 9 + 1)5 = 0.160246.

Example 5. This example is from [18]. The problem is to find the integral points
on the curve

E : y2 = x3 − 879984x + 319138704.

The rank of E is r = 5, and an ST-basis of E is given by

P1 = (468, 3132), P2 = (−684,−24516), P3 = (720,−7668),

P4 = (432,−4428), P5 = (540,−1188).
The final bound obtained for the coordinates of the integral points of E is Nfinal = 9
in this basis (cf. [18]).

Strategy 1. We obtain the table
Hence the improvement is given by

(2 · 8 + 1)(2 · 7 + 1)(2 · 7 + 1)(2 · 9 + 1)(2 · 7 + 1)
(2 · 9 + 1)5

= 0.440259.
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i j bound for |10ni ± nj | bound for |ni|
1 5 (83,79) 8
2 1 (76,82) 7
3 5 (77,78) 7
4 3 (94,89) 9
5 1 (79,77) 7

Strategy 2. The basis transformation matrices of the best ten bases:(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 1 1
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0
0 −1 0 0 0

)
,

(
1 1 1 1 0
0 0 0 0 1
1 0 0 0 0

−1 0 −1 −1 1
0 0 0 −1 0

)
,

(
0 1 0 0 0
0 0 0 1 0

−1 1 1 0 1
0 −1 0 1 −1
0 0 1 0 0

)
,

(
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

−1 0 1 1 −1
0 0 1 0 0

)
,

(
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 −1 0 1
0 0 0 1 0

)
,

(
0 1 0 0 0

−1 1 0 1 1
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

)
,

(
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 −1 1
1 1 1 −1 0

)
,

(
0 1 0 0 0
0 0 0 1 0
1 −1 0 1 1
0 0 0 0 −1
0 0 1 0 0

)
,

(
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 −1 0 1 −1
0 0 1 0 0

)
.

The corresponding λ values are

0.492063, 0.462853, 0.457636, 0.454803, 0.454749,

0.453727, 0.451024, 0.450503, 0.448775, 0.431040,

and the final bounds Nfinal obtained after reduction are

9, 9, 9, 9, 9, 9, 9, 9, 9, 9,

respectively. Thus we get the system of linear inequalities


−8
−7
−7
−9
−7
−9
−9
−9


 ≤




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 −1 1 1 0
1 −1 0 1 0
0 1 −1 −1 1




(
n1
n2
n3
n4
n5

)
≤




8
7
7
9
7
9
9
9


 .

By Latte [11] we obtain that the above inequality has precisely N∗ = 513939 integral
solutions in (n1, n2, n3, n4, n5). Hence the ”improvement ratio” is

513939/(2 · 9 + 1)5 = 0.207560.

Example 6. This example is from [10]. The original problem translates to find the
integral points on the curve

C : u4 + 14u3 + 63u2 + 90u = 315v2 + 630v.

The curve is birationally equivalent to

E : y2 = x3 − 1620675x + 385103250.

The rank of E is r = 5, and an ST-basis of E is

P1 = (−4235/9,−872200/27), P2 = (−315, 29400), P3 = (105,−14700),

P4 = (210, 7350), P5 = (−1365, 7350).
The final bound obtained for the coordinates of the images of the integral points of
C on E is Nfinal = 11 (see [10]).

Strategy 1. We get the following table:
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i j bound for |10ni ± nj | bound for |ni|
1 2 (85,79) 8
2 1 (114,109) 11
3 1 (117,110) 11
4 5 (99,106) 10
5 4 (101,110) 10

So the improvement in this case is given by
(2 · 8 + 1)(2 · 11 + 1)(2 · 11 + 1)(2 · 10 + 1)(2 · 10 + 1)

(2 · 11 + 1)5
= 0.616174.

Strategy 2. The basis transformation matrices (with respect to the ST-basis) of the
ten best basis:(

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
0 1 1 1 0

−1 0 0 0 0
0 0 0 0 1
0 −1 0 0 0
0 0 1 0 0

)
,

(
0 1 1 1 0
1 −1 −1 −1 0
0 −1 −1 −1 1
0 −1 0 0 0
0 0 1 0 0

)
,

(
0 1 1 1 0

−1 0 0 0 0
0 −1 −1 −1 1
0 −1 0 0 0
0 0 1 0 0

)
,

(
0 1 0 0 0
1 −1 0 0 0
0 −1 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0

−1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0

−1 0 1 0 0
0 0 0 1 0
1 0 0 1 1

)
,

(
1 0 0 0 0
0 1 0 0 0

−1 0 0 1 0
−1 0 1 0 1

0 0 1 0 0

)
,

(
0 1 0 0 0
1 −1 0 0 0
0 −1 1 0 0
0 0 0 1 0
0 1 0 1 1

)
,

(
0 1 0 0 0
1 −1 0 0 0
0 −1 0 1 0
0 −1 1 0 1
0 0 1 0 0

)
.

The corresponding λ values are

0.516652, 0.516646, 0.514401, 0.509521, 0.502631,

0.501732, 0.499272, 0.497399, 0.497375, 0.491591,

and the final bounds Nfinal obtained after reduction are

11, 12, 12, 12, 12, 12, 12, 12, 12, 12,

respectively. Hence we get the system of linear inequalities


−8
−11
−11
−10
−10
−11
−11
−11


 ≤




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 1 −1
1 1 0 0 0
1 0 1 0 0




(
n1
n2
n3
n4
n5

)
≤




8
11
11
10
10
11
11
11


 .

By Latte [11] we get that this inequality has N∗ = 2023095 integral solutions in
(n1, n2, n3, n4, n5). Thus the ”improvement ratio” is

2023095/(2 · 11 + 1)5 = 0.314324.

Example 7. This example is from [10]. The original problem is to find the integral
points on the curve

C : 2u3 + 3u2 + u = 6v3 + 60v2 + 144v.

The curve is birationally equivalent to

E : y2 = x3 − 1008x + 2985993.

The rank of E is r = 6, and an ST-basis of E is

P1 = (−36, 1725), P2 = (298, 5399), P3 = (243, 4134),

P4 = (−138,−705), P5 = (24, 1725), P6 = (−41, 1720).
The final bound obtained for the coordinates of the images of the integral points of
C on E is Nfinal = 7 in this basis (see [10]).
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Strategy 1. We get the table

i j bound for |10ni ± nj | bound for |ni|
1 3 (70,68) 6
2 6 (69,64) 6
3 4 (64,61) 6
4 3 (64,60) 6
5 6 (68,71) 6
6 5 (59,63) 6

Hence the improvement is given by

(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)
(2 · 7 + 1)6

= 0.423753.

Strategy 2. The basis transformation matrices of the best ten bases:



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 ,



−1 −2 1 −1 1 1

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 −1 0 0 1 0
0 −1 0 0 0 0


 ,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1

−1 0 0 0 1 0
−1 0 0 0 0 0


 ,



−1 −1 1 1 0 0

0 0 0 −1 1 0
0 0 0 0 0 1
1 0 −1 −1 1 −1
1 0 0 0 0 0
0 0 0 1 0 0


 ,




0 −1 1 1 1 0
−1 0 0 −1 −1 1

0 0 0 0 −1 0
0 0 0 −1 0 0
1 0 0 0 0 0
1 0 1 1 1 −1


 ,



−1 0 1 −1 1 1

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 1 0 0 0 0


 ,



−1 1 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 −1 1 1
0 0 1 0 0 0


 ,



−1 −1 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −1 1 −1 1 1
0 1 0 0 0 0


 ,




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 −1 1 1 1
0 0 0 0 0 −1


 ,




0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

−2 −1 1 −1 −1 −1
−1 0 0 0 −1 0
−1 0 0 0 0 0


 .

The corresponding λ values are

0.640325, 0.627020, 0.603695, 0.603010, 0.599688,

0.595452, 0.587593, 0.586898, 0.586647, 0.586371,

and the final bounds Nfinal obtained after reduction are

8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

respectively. So we get the following system of linear inequalities



−6
−6
−6
−6
−6
−6
−8
−8
−8
−8
−8
−8
−8




≤




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 1 −1 −1 1 1
0 0 0 0 1 −1

−1 1 −1 −1 0 1
0 1 −1 −1 1 0
0 1 0 0 0 1

−1 1 −1 −1 1 0
0 1 −1 −1 1 1







n1
n2
n3
n4
n5
n6


 ≤




6
6
6
6
6
6
8
8
8
8
8
8
8




.

Latte [11] gives that the above system has precisely N∗ = 1801039 integral solutions
in (n1, n2, n3, n4, n5, n6). Thus the ”improvement ratio” is

1801039/(2 · 7 + 1)6 = 0.158116.
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