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Abstract

In this paper we study Steiner triple systems S as extensions of Steiner normal subsystems N by the
quotient Steiner systems Q, by means of the associated Steiner loops LS (of projective type). On the one
hand, we deal with non-central extensions LS of normal subloops LN of index 2, which form projective
hyperplanes N of the Steiner triple systems S. On the other hand, we realize that the set of Veblen points
of a Steiner triple system S corresponds to the center of the Steiner loop LS and the loop LS is a Schreier
extension of its center by the quotient loop LQ, which is determined by a factor system f . For Schreier
extensions we provide in fact a small cohomology theory.

Introduction

Steiner triple systems S = (P, T ), where P is a set and T is a family of (unordered) triples (also called blocks
or lines) of elements of P such that any two distinct elements of P are contained in exactly one triple of T ,
are among the most acknowledged structures in combinatorics, often appearing at the very beginning in any
history of this discipline. Although it has been known since the 50’s of the last century ([15], [3]) that, for
any triple {a, b, c} in a Steiner triple system S, the operation a · b = c (together with a · a = Ω · Ω = Ω and
a · Ω = Ω · a = a, for a further element Ω not in S) gives in turn a commutative loop, an extension theory for
Steiner triple systems has not been explored.

Also it seems that the tools provided by loop theory have been underestimated, to the extent that, for
instance, a couple of notable results in [17], [22] can be, not only significantly simplified, but even strengthened
(see Remark 1.2).

In this paper we study Steiner triple systems by means of a classic algebraic technique, that is, by reducing
their structure to that of suitable normal subloops and the corresponding factor loops, leaving the classification
of simple Steiner loops to a future investigation. In this respect, we provide only one result, that is, Theorem
1.7, which connects our paper to [23].

In fact, subloops correspond to Steiner triple subsystems and normal subloops give in turn quotient loops
which are associated with quotient Steiner triple systems, as well.

We must remark, to this extent, that recursive methods for the construction of ”products” of Steiner triple
systems are very well known [9, Ch. 3], but among these methods only one coincides with the extension provided
by our construction, that is, the case where the factor loop corresponds to the degenerate STS with only one
point. This is, as well, the case of projective hyperplanes, which in turn were firstly studied by Teirlinck [24]
and later by Doyen, Hubaut, and Vandensavel [12].
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We distinguish the case where the normal subloop is central: after proving that central elements correspond
to Veblen points (see Def. 2.7), we introduce an extension theory which takes inspiration by the well-known
cohomology theory for commutative groups. This specific theory provides a constructive approach to describe
Steiner triple systems containing Veblen points. In particular, the set of Veblen points, being the center of the
loop, always gives a Steiner triple subsystem of size 2c − 1, which is a projective geometry over the field GF(2).
The whole Steiner loop, in this case, is a Schreier extension of its center by the quotient loop, which can be
described by a factor system f as in Lemma 2.13. In Section 2.3.1 we face with the problem of defining equivalent
and isomorphic extensions by means of coboundaries, because for loops it is not necessary nor sufficient, for a
function ϕ to be a coboundary, that δ2ϕ = 0. Surprisingly enough, we could still use some tools from group
theory to classify Steiner triple systems containing Veblen points (see Remark 2.9 and Example 2.18.1).

It is worthwhile to point out that the center of a Steiner loop LS which is not an elementary abelian 2-group
has index at least eight (see Theorem 2.14). This means that projective geometries over GF(2) are the only
Steiner triple systems of size v with more than ⌈ v

16⌉ Veblen points (see Corollary 2.15).
In the case of non-central extensions a significant place is held by extensions of subloops of index 2 (which

are normal, see Theorem 1.5): the corresponding subsystems are called projective hyperplanes in the pioneering
papers by L. Teirlink [24] and J. Doyen, X. Hubaut and by M. Vandensavel [12]. By means of Theorem 2.5
these extensions are thoroughly characterized by the projective hyperplane and a (further) suitable symmetric
Latin square on v−1

2 elements (see e.g. Example 2.6.1).

1 General facts

In this section we want to give some classic definitions and prove the basic properties of the main topic of this
work: Steiner loops.

We remind the reader that a loop is a set L equipped with a binary operation ◦ such that the equations
a ◦ x = b and y ◦ a = b have precisely one solution, for all a, b ∈ L, and having an identity element Ω ∈ L. The
operation of a loop does not need to be associative: when associativity holds, the loop turns out to be a group.
A subloop N ≤ L is normal if it is the kernel of a homomorphism or, equivalently, if the relations

x ◦N = N ◦ x, x ◦ (N ◦ y) = (x ◦N) ◦ y, x ◦ (y ◦N) = (x ◦ y) ◦N,

hold for any x, y ∈ L. If L is commutative (as it will always be in our case), normality conditions reduce to the
only x ◦ (y ◦N) = (x ◦ y) ◦N .

The left, middle and right nuclei of a loop L are, respectively, the subloops

Nλ = {x ∈ L | (x ◦ a) ◦ b = x ◦ (a ◦ b) for all a, b ∈ L},
Nµ = {x ∈ L | (a ◦ x) ◦ b = a ◦ (x ◦ b) for all a, b ∈ L},
Nρ = {x ∈ L | (a ◦ b) ◦ x = a ◦ (b ◦ x) for all a, b ∈ L}.

The intersection of the three nuclei N = Nλ ∩Nµ ∩Nρ is called the nucleus of L and the subloop

Z = {x ∈ N | x ◦ y = y ◦ x for all y ∈ L}

is the center of L. For a commutative loop, the center coincides with the nucleus.
In the introduction we have already given the definition of Steiner triple systems S = (P, T ), where any two

distinct elements of P are contained in exactly one triple of T . Throughout the paper we denote, for short, by
STS(v) a Steiner triple system of cardinality v. A STS(v) exists if, and only if, v ≡ 1, 3 mod 6 (in this cases
v is said to be admissible). We point out that in this definition we include the trivial case of the STS(1)
having one point and no triple.

Classic examples of Steiner triple systems are given by the point-line designs of projective geometries PG(d, 2)
over the field GF(2), or affine geometries AG(d, 3) over the field GF(3), for some d ≥ 0.

These two items, loops and Steiner triple systems, are closely related, as shown by the following definition.

Definition 1.1. Let S be a Steiner triple system and let Ω /∈ S be a further element. The set LS = S ∪ {Ω},
with the binary operation · defined by
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� for any distinct x, y ∈ S, x · y = z, where z is the third point in the triple of S containing x and y;

� for any x ∈ LS , x · x = Ω and x · Ω = Ω · x = x,

is called a Steiner loop of projective type.

Clearly, the equations ax = b and ya = b have the third point of the triple through a and b as the unique
solution, and Ω is the identity element of LS .

Remark 1.1. While the idea of a loop arising from a STS is classic, the name of projective type is new, and
we decided to adopt this terminology based on [13], in which the authors study a different loop, corresponding
to a given STS, which they call of affine type, and which was defined by Chein in [7], putting x + y + z = Ω
whenever {x, y, z} is a triple (here Ω is a fixed element of P and the triples {x,Ω,−x} through Ω define the
opposites). Moreover, in our case, the Steiner loop of projective type LS turns out to be a group (more precisely,
an elementary abelian 2-group) exactly when the STS S is a projective geometry PG(d, 2) over GF(2), as well
as the Steiner loop of affine type LS turns out to be a group (more precisely, an elementary abelian 3-group)
exactly when the STS S is an affine geometry AG(d, 3) over GF(3). On the contrary we report in passing that,
for k > 3, non-trivial Steiner k-tuple systems (that is, v-sets D admitting a family of k-subsets, called blocks,
such that any two elements belong to exactly one block) have been recently constructed in [6], with the following
property: D can be given the structure of a commutative group such that the sum of the elements in any block
is zero.

Remark 1.2. Here we want to support, with the following examples, our initial assertion that loop theory
turns out to be an effective tool for the study of Steiner triple systems.

On the one hand, it is very well known that, if any three non-collinear points determine always a Pasch
configuration, then the STS is a PG(d, 2). On the other hand, the same property can be formulated in terms
of lack of the anti-Pasch configuration C14.
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because the lack of the anti-Pasch configuration C14 is equivalent to the fact that any three non-collinear
points determine always a Pasch configuration.

If we translate the Pasch configuration in the setting of loop theory, it simply corresponds to the associativity
a(bc) = (ab)c:
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and this makes the two above characterizations much more direct. Moreover this fact will be sensibly
strengthened in Corollary 2.15.

Trying to find a corresponding characterization for AG(d, 3), M. Hall ended up discovering Hall triple
systems, which form a family of STS’s properly containing the affine geometries over GF(3), and for which in
fact any three points belong to an affine plane AG(2, 3). As shown by M. Pavone in [21], the corresponding
characterization for Steiner triple systems as affine geometries over GF(3) is that any four points belong to an
AG(3, 3), simply because the associated Steiner loop of affine type fulfills, for any three points (together with
the zero element) the associative law, hence being a group. In the same lecture, he noted that if the Steiner
loop of affine type associated to a Steiner triple system is not a group (equivalently, the Steiner triple system is
not an AG(d, 3)), then the three non associating elements form, together with zero, a C1

S configuration:

v v v
v v v
v v v

a b

a+ b
t

c

Ω b+ c

v v v
v v v
v v v

v
a b

a+ b
x

y

c

Ω b+ c

Grid C1
S

where −t = (a+ b) + c = a+ (b+ c), −x = a+ (b+ c), −y = (a+ b) + c.
This allowed him to strengthen a result by Kral et alii [17] characterizing affine geometries over GF(3) as

Steiner triple systems where the configurations C16, C
1
S and C2

S are missing, as well as Hall triple systems where
the configurations C1

S and C2
S are missing. In fact, he proved that the affine geometries over GF(3) are exactly

the Steiner triple systems where the configurations C16 and C1
S are missing, as well as the Hall triple systems

where the configuration C1
S is missing.

If S is a Steiner triple system, the resulting Steiner loop of projective type LS is a commutative loop of
exponent 2. Also, it satisfies the totally symmetric property, that is

x(xy) = y, for all x, y ∈ LS .

In fact, if {x, y, z} is a triple of S, then
x(xy) = xz = y.

The statement is clearly trivial when x = Ω or y = Ω.

Remark 1.3. In the case of Steiner loops of projective type, since LS fulfills the totally symmetric property, the
left, middle and right nuclei coincide, and because of commutativity one has trivially that the nucleus coincides
with the center Z of LS .

Proposition 1.2. Let L be a commutative loop of exponent 2. Then the following assertions are equivalent:

1. for all x, y ∈ L one has x(xy) = y;

2. for all x, y, z ∈ L one has that x(yz) = Ω if, and only if, (xy)z = Ω.

Proof. Assume that 1. is true. If x(yz) = Ω, then x = yz = zy, since L is commutative with exponent 2. We
compute

(xy)z = ((zy)y)z = zz = Ω.

If (xy)z = Ω with a similar computation we obtain that x(yz) = Ω, hence 2. holds.
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Assume now that 2. is true. For all x, y ∈ L, putting z = yx, we have that (yx)z = Ω, that is equivalent
to y(xz) = Ω. From the last equality we obtain that y = xz, that is, substituting z, y = x(xy). Hence 1.
holds.

This construction of a loop LS arising from a Steiner triple system S is reversible. Indeed, if L is a
commutative loop of exponent 2 fulfilling the totally symmetric property, then the set SL := L \ {Ω} has the
structure of a Steiner triple system where the triples {x, y, z} are defined by z := xy. It is a Steiner triple
system since the third point in the triple through x and z is y since xz = x(xy) = y. According to Proposition
1.2 the triples {x, y, z} of SL are characterized by the property that

xyz = Ω,

and we want to stress the fact that for any triple in SL the associative property holds.
Naturally we have that SLS = S and LSL = L.

Now we want to settle the basic correspondences between Steiner triple systems and their associated Steiner
loops of projective type.

Theorem 1.3. Let S be a Steiner triple system and LS the corresponding Steiner loop of projective type with
identity Ω.

i) L′ is a subloop of LS if, and only if, it holds L′ = LR, where R is the Steiner triple subsystem of S given
by L′ \ {Ω}.

ii) If LN is a normal subloop of LS , then each non-trivial coset xLN defines a subsystem N ∪ xLN of S
containing N .

iii) If LN is a normal subloop of LS , then the factor loop LS/LN = LQ, where Q is the Steiner triple system
consisting of the non-trivial cosets of LN .

Proof. i) L′ is a subloop of LS if, and only if, it is closed under the operation of LS , that is equivalent to
saying that if two distinct elements of S are contained in R := L′ \ {Ω}, then the third point z = xy of
the triple through x and y is in R as well.

ii) Let LN be a normal subloop of LS and x /∈ LN . Firstly we note that the cardinality of N ∪ xLN is
admissible: indeed, if w is the cardinality of N , then |N ∪ xLN | = |N | + |xLN | = w + w + 1 = 2w + 1,
and 2w + 1 ≡ 3 or 1 mod 6 whenever w ≡ 1 or 3 mod 6, respectively.

Now we want to show that through any two distinct points of N ∪ xLN there exists precisely one triple
of the STS S contained in N ∪ xLN .

Firstly, if xn1, xn2 are two distinct elements in the coset xLN , then (xn1) · (xn2) = n3 ∈ LN , since
(xLN ) · (xLN ) = LN , that is {xn1, xn2, n3} is a triple of S contained in N ∪ xLN .

If xn1 ∈ xLN , n2 ∈ N , then we have (xn1) · n2 = xn3 since (xLN ) · LN = xLN , that is {xn1, n2, xn3} is
a block S contained in N ∪ xLN .

Finally, if n1, n2 are two different elements inN , then trivially there exists precisely one triple {n1, n2, n1n2}
of N .

Hence the set N ∪ xLR is a subsystem of STS S.

iii) This follows from the fact that LS/LN is a commutative loop of exponent 2 with the totally symmetric
property.

If LN is a normal subloop of LS and LQ is the corresponding quotient loop, we say that N is a normal
subsystem of S and Q is the corresponding quotient STS.

Definition 1.4. Let v be the cardinality of a STS. We say that v + 1 = (u + 1)(w + 1) is an admissible
factorization if u and w are admissible in the sense of Steiner triple systems.
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Example 1.4.1. Since the factorization 14 = 2·7 is not admissible, we see that the two non-isomorphic STS(13)
cannot have normal subsystem, hence the corresponding Steiner loops of projective type are simple.

The next result is known in loop theory, but in this case of Steiner loops we want to give an alternative
proof from a more combinatorial point of view.

Theorem 1.5. If the index of a subloop LN of LS is two, then LN is normal.

Proof. Since LS is the disjoint union of LN and LS\LN = LN
C , for each x /∈ LN , the intersection xLN∩LN = ∅

because x · n /∈ LN for any n ∈ LN . Hence LN
C = xLN .

If x, y ∈ LN , then one has x · (yLN ) = x · LN = LN = (x · y)LN .
If x /∈ LN and y ∈ LN , then one has x · (yLN ) = xLN = LN

C and (x · y)LN = LN
C because x · y is not in

LN .
If x, y /∈ LN , then we prove that xy ∈ LN by the following counting argument. The triples {x, y, xy} with

x ∈ S ′, y /∈ S ′ (and necessarily xy /∈ S ′) are exactly( v+1
2

2

)
out of the b = v(v−1)

6 triples of S. Since the difference is equal to

v(v − 1)

6
−
( v+1

2

2

)
=

(v − 1)(v − 3)

24
,

which is the number of triples of N . Hence, the triples of S which are not triples of N have exactly one point in
N . This means that, if x, y /∈ LN , then xy ∈ LN , hence (x · y)LN = LN . Moreover, x · (yLN ) = xLN

C = LN
for the same reason.

We can conclude that LN is a normal subloop in LS .

The same statement is not true when we let the index rise to 4, as shown in the next example.

Example 1.5.1. Let S = {0, 1, . . . , 9, a, . . . , e} be the STS(15) with the triples given by the columns of the
following table:

0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
1 3 5 7 9 b d 3 4 7 8 b c 3 4 7 8 9 a 7 8 9 a 7 8 9 c 7 8 a b 7 8 9 a
2 4 6 8 a c e 5 6 9 a d e 6 5 b c d e e d c b a b e d d 9 c e c e b d

.

Any triple N of S gives a subloop LN < LS of index 4. Let N be, for instance, the triple {3, 9, c}. Normality
requires that for any x, y ∈ LS and any n1 ∈ LN , x(yn1) = (xy)n2 for some n2 ∈ LN . If we choose x = 5,
y = 7, n1 = 3, then

x(yn1) = 5(7 · 3) = 5 · e = b,

but the equation (5 · 7)n2 = b, being equivalent to d · n2 = b, leads to n2 = 1, that is not an element of LN .

The following Theorem characterizes normality in small cases.

Theorem 1.6. Let S be a Steiner triple system.

� If a sub-STS(1) N = {x} is normal, then any two different lines through it generate a Fano plane (so x
is a so-called Veblen point, see Definition 2.7).

� If a sub-STS(3) is normal, then any outer point generates with it a Fano plane.
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Proof. Let N = {x} be a normal subsystem of S. Then, from the condition

y(zLN ) = (yz)LN , for any y, z ∈ LS ,

it follows that y(zx) = (yz)x, that is, x associates with every other couple of elements of LS . Let ℓ1 = {x, a, xa}
and ℓ2 = {x, b, xb} be two triples through x with a ̸= b. Then

(bx)a = b(xa) = x(ab), and (ax)(bx) = ab,

hence x, ℓ1 and ℓ2 generate a Fano plane, as shown in the next figure:

x

ab

x(ab)

ax bx

a b

Let N = {a, b, ab} be a normal subsystem of S and x an outer point. From normality condition, we know
that the solutions n1, n2, n3 of the equations

x(ab) = (xa)n1, x(ba) = (xb)n2, (ax)(xb) = an3,

lie in LN . It is easy to check that the only possibilities which do not lead to any contradiction are n1 = b,
n2 = a and n3 = b, giving the identities

x(ab) = (xa)b, x(ba) = (xb)a, (ax)(xb) = ab.

This means that N and x generate a Fano plane, as shown in the next figure:

a

ax

x

ab bx

b (ab)x

Let LS1 and LS2 be two Steiner loops with identity Ω1 and Ω2 respectively. A homomorphism LS1 → LS2

is a map sending Ω1 to Ω2 and any triple of S1 into either a triple of S2 or into Ω2.
If S1 and S2 have the same cardinality, then the isomorphisms of loops LS1

→ LS2
corresponds exactly to

the isomorphisms of Steiner triple systems S1 → S2.
If M is a permutation matrix corresponding to an automorphism of a Steiner loop of projective type LS

with multiplication table T , then M tTM is the multiplication table of the image loop.
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Now we want to give some remarks about the multiplication group of a Steiner loop. In [23] it is proved
that if the order of any product of two different translations of a Steiner triple system S of size v > 3 is odd,
then Mult(LS) contains the alternating group of degree v + 1. In particular, the order of any product of two
different translations of a Hall triple system is three, a fact proved in [10]. They also remark that in the Steiner
triple systems constructed in [11] from a cyclic group the order of any product of two different translations is
odd, as well.

Theorem 1.7. Let S be a Steiner triple system with v points, and let LS be the associated Steiner loop of
projective type with identity Ω. Then each translation of LS has the form

λx = (Ω, x)(y1, y2)(y3, y4) · · · (yv−1, yn).

The multiplication group Mult(LS) is contained in the alternating group Av+1 if and only if v ≡ 3, or 7,
mod 12.

Proof. Each translation is products of transpositions because of the definition of Steiner loop of projective type.
Since v ≡ 1, 3, mod 6, then v ≡ 1, 3, 7, 9, mod 12. If v ≡ 3, 7, mod 12, then for the cardinality one has

|LS | ≡ 4, 8, mod 12. Therefore in both cases |LS | is divisible by 4. The number of transpositions in λx for all

x ̸= Ω is |LS |
2 which is even. Therefore the permutation λx is even. Hence the multiplication group Mult(LS)

is contained in the group Av+1. Conversely, if v ≡ 1, 9, mod 12, the cardinality of |LS | is not divisible by 4.
The number of transpositions in λx is odd. Hence the multiplication group Mult(LS) is not contained in the
group Av+1.

Theorem 1.8. Let S be a Steiner triple system containing a STS(9) and such that the Steiner loop LS is
simple. Then Mult(LS) is the alternating group or the symmetric group on v + 1 elements, according to the
cases where v is 3, 7 or 1, 9 mod 12.

Proof. Since LS is simple, Mult(LS) is primitive. Let R be the sub-STS(9) of S, then Mult(LS) contains
Mult(LR), which is the symmetric group on 10 elements [23]. In particular, Mult(LS) contains a 3-cycle, and
by Jordan’s theorem on primitive groups of permutations the assert is proved.

2 Extensions of Steiner loops of projective type

In this section we reduce the structure of Steiner loops of projective type to consecutive extensions of simple
ones. As one can expect, by considering that the number of Steiner triple systems with n elements increases

as
(
n/e2 + o(n)

)n2/6
(see [16]), this construction is very flexible, compared with the corresponding extension

theory for commutative groups.
We begin by recalling a standard result, which introduces the reader to the idea of studying extensions and

simple Steiner loops, that is the motivation of our paper.

Theorem 2.1. Any Steiner loop LS of projective type has a subnormal series

Ω� LS1 � · · ·� LSt = LS ,

where the factors LSi+1/LSi are simple Steiner loops of projective type.

In Theorem 2.16 we will characterize projective geometries over the field GF(2) in terms of subcentral series.

More generally, we want to study extensions of Steiner loops of projective type. Extensions of normal
subloops by (quotient) loops are much more relaxed than in the case of groups (cf. [2] and [4], [18]). For instance,
the only extension already considered for Steiner triple systems, that is, the case of a STS(v) S containing a
projective hyperplane, that is STS( v−1

2 ), is determined by any given 1-factorization of the complete graph K v+1
2

[9].

Definition 2.2. Let LN and LQ be Steiner loops of projective type of order n and m with identity elements
Ω′ and Ω̄ respectively, and let Sq(LN ) be the set of n× n Latin squares with coefficients in the set LN .

An operator Φ : LQ×LQ −→ Sq(LN ), which maps the pair (P,Q) to a Latin square ΦP,Q : LN×LN −→ LN ,
is called a Steiner operator of projective type if it fulfills the following conditions:
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i) the Latin square ΦΩ̄,Ω̄ is the (symmetric) multiplication table of LN ;

ii) ΦQ,P (y, x) = ΦP,Q(x, y), that is, ΦQ,P is the transpose of ΦP,Q;

iii) ΦP,P (x, x) = Ω′;

iv) ΦP,PQ(x,ΦP,Q(x, y)) = y

for all (P, x), (Q, y) ∈ LQ × LN .

Remark 2.1. With P = Q and x = y, conditions iii) and iv) yield

ΦP,Ω̄(x,Ω
′) = x.

Theorem 2.3. Let LN and LQ be two Steiner loops of projective type of order u+1, w+1 and with identities
Ω′, Ω̄, respectively. Let Φ : LQ × LQ −→ Sq(LN ) be a Steiner operator of projective type.

If we define on LS = LQ × LN the multiplication

(P, x) · (Q, y) =
(
PQ,ΦP,Q(x, y)

)
,

then LS is a Steiner loop of projective type of order v + 1 = (u + 1)(w + 1) with identity Ω = (Ω̄,Ω′). The
subloop

LN = {(Ω̄, x) | x ∈ LN }

is a normal subloop of LS isomorphic to LN , with corresponding quotient LS/LN isomorphic to LQ.
Conversely, any Steiner loop of projective type LS having a normal subloop LN with corresponding factor loop
LQ = LS/LN , is isomorphic, for some given Steiner operator Φ, to the above described construction.

Proof. Let LS be defined as above.
If (Q, y) and (R, z) are two given elements in LS , then the equation

(Q, y) · (P, x) = (R, z)

has a unique solution (P, x), where P is the solution of QP = R in LQ and x is the unique element in LN such
that ΦQ,QR(y, x) = z, that is, the column index of the element z in row y in the Latin square ΦQ,QR.
By Remark 2.1, the element (Ω̄,Ω′) is the identity of LS . By Definition 2.2, condition ii), the operation is
commutative, by condition iii) LS has exponent 2 and condition iv) yields that (P, x) ·

(
(P, x) · (Q, y)) = (Q, y),

that is, LS fulfills the totally symmetric property.
Thus LS is a Steiner loop of projective type. By Definition 2.2, condition i), the subloop

LN = {(Ω̄, x) | x ∈ LN }

is isomorphic to LN , and it is normal because both
(
(Q, y)(R, z)

)
LN and (Q, y)

(
(R, z)LN

)
coincide with the

set
{(PQ, x) : x ∈ N}.

Conversely, for any Steiner loop LS of projective type having a normal subloop LN and a corresponding
factor loop LQ = LS/LN , let π : LS −→ LQ be the canonical epimorphism and σ : LQ −→ LS be a section with
σ(LN ) = Ω and πσ = idLQ . Since for every π(X) ∈ LQ it holds π(X) = π(σ(π(X))), we have that

X = σ(π(X)) · x, (1)

with x ∈ LN . By normality of LN and using the fact that σ(π(X))σ(π(Y )) and σ(π(X)π(Y )) are in the same
coset, we obtain that

XY = (σ(π(X)) · x) (σ(π(Y )) · y) = (σ(π(X)π(Y ))) · Φπ(X),π(Y )(x, y)
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for a suitable element Φπ(X),π(Y )(x, y) of LN depending on π(X), π(Y ), x, y. Since LS is a loop, for any
π(X), π(Y ) ∈ LQ, Φπ(X),π(Y )(−,−) defines a Latin square with entries in LN and with rows and columns
indexed by LN as well. Thus we can define an operator Φ: LQ×LQ −→ Sq(LN ) such that Φ: (π(X), π(Y )) 7−→
Φπ(X),π(Y ). Up to renaming the elements of LQ, every x ∈ LS can be represented by the couple (P, x) defined
in (1), where P = π(X). With this representation, the operation of LS is given by

(P, x) · (Q, y) = (PQ,ΦP,Q(x, y)) .

The first condition of Definition 1.1 is trivially fulfilled since x = (Ω̄, x) for every x ∈ LN . Condition ii) holds
for commutativity, condition iii) comes from the exponent 2 and condition iv) reflects the totally symmetric
property.

In this case we say that LS is an extension of LN by LQ or, equivalently, that the short sequence

Ω′ → LN → LS → LQ → Ω̄ (2)

is exact.
The next theorem follows from well known facts (cf. [1], § 10 and 11).

Theorem 2.4. Let LS be an extension of LN by LQ. Then Mult(LN ) is a normal subgroup of Mult(LS) and
Mult(LQ) is isomorphic to Mult(LS)/Mult(LN ).

Theorem 2.5. Let
Ω′ → LN → LS → LQ → Ω̄

be an extension of Steiner loop of projective type with |LN | = u + 1 and |LQ| = w + 1. Then the (u + 1)(w +
1)× (u+ 1)(w + 1) multiplication table of LS is thoroughly determined by its w + 1 diagonal (u+ 1)× (u+ 1)

symmetric blocks and other w(w−1)
6 tables.

Proof. Since the multiplication of LS is given by

(P, x) · (Q, y) = (PQ,ΦP,Q(x, y))

for some Steiner operator Φ, the multiplication table of LS is described by the (w+1)2 (u+1)× (u+1) tables
corresponding to the Latin squares ΦP,Q, with P,Q ∈ LQ. Every Latin square ΦP,Q in the main diagonal
uniquely determines the Latin squares ΦΩ̄,P and ΦP,Ω̄. If P,Q,R ∈ LQ are such that PQ = R, then ΦP,Q

uniquely determines ΦP,R, ΦQ,R, and consequently ΦQ,P ,ΦR,P ,ΦR,Q. Hence, once the blocks on the main
diagonal are fixed, the remaining w(w − 1) blocks can be determined by specifying just 1

6 of them in detail.

Ω̄ . . . P . . . Q . . . R . . .
Ω̄ ΦΩ̄,Ω̄ ΦΩ̄,P ΦΩ̄,Q ΦΩ̄,R

...
. . .

P ΦP,Ω̄ ΦP,P ΦP,Q ΦP,R

...
. . .

Q ΦQ,Ω̄ ΦQ,P ΦQ,Q ΦQ,R

...
. . .

R ΦR,Ω̄ ΦR,P ΦR,Q ΦR,R

...
. . .

.
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2.1 Projective hyperplanes

A proper subsystem S ′ of S is called a projective hyperplane if every block of S has a non empty intersection
with S ′. Equivalently, a subsystem S ′ of an STS(v) is a projective hyperplane if, and only if, |S ′| = v−1

2 :
indeed, each of the v−1

2 blocks through a point x outside S ′ must have exactly one point in common with S ′.
By cardinality reasons, projective hyperplanes correspond exactly to subloops of index 2, which are normal by
Theorem 1.5.

Corollary 2.6. If LS is a simple loop, then S does not contain a projective hyperplane. If LS is not simple,
and LN is a proper normal subloop of LS , then N is a projective hyperplane of the subsystem M of S generated
by N and x, for any x ∈ S \ N .

Proof. The first assertion is trivial, and the second follows from the fact that LM turns out to be the union of
LN , xLN .

Remark 2.2. The problem of classification of STS(v) with a projective hyperplane reduces to the classification
of STS( v−1

2 ) together with the classification of symmetric Latin squares of v−1
2 letters, where one inserts Ω in

the main diagonal.

Example 2.6.1. Here we give an example of a STS(19) having a subsystem N (of order 9) as a projective
hyperplane, corresponding to a normal subloop LN of index 2 in a Steiner loop of projective type of order 20.
We can see N as the affine plane over the field GF(3) with the following configuration.

For LN we fix the following multiplication table:

LN :

· Ω′ 1 2 3 4 5 6 7 8 9
Ω′ Ω′ 1 2 3 4 5 6 7 8 9
1 1 Ω′ 6 7 8 9 2 3 4 5
2 2 6 Ω′ 9 7 8 1 4 5 3
3 3 7 9 Ω′ 5 4 8 1 6 2
4 4 8 7 5 Ω′ 3 9 2 1 6
5 5 9 8 4 3 Ω′ 7 6 2 1
6 6 2 1 8 9 7 Ω′ 5 3 4
7 7 3 4 1 2 6 5 Ω′ 9 8
8 8 4 5 6 1 2 3 9 Ω′ 7
9 9 5 3 2 6 1 4 8 7 Ω′

.

The factor loop LQ of order 2 has the multiplication table:

LQ :
· Ω̄ 1̄
Ω̄ Ω̄ 1̄
1̄ 1̄ Ω̄

.

The elements of LS will be represented by pairs (Px) in LQ × LN and the addition table of LS will be given
by the four 10× 10 block matrices ΦP,Q.

LS :
ΦΩ̄,Ω̄ Φ1̄,Ω̄

ΦΩ̄,1̄ Φ1̄,1̄
.
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Note that the Latin square ΦΩ̄,Ω̄ is the multiplication table of LN . The Latin square Φ1̄,1̄ is a symmetric table
such that the identity element Ω is in the main diagonal. We choose for Φ1̄,1̄ the table

Φ1̄,1̄ :

· Ω′ 1 2 3 4 5 6 7 8 9
Ω′ Ω′ 7 6 5 4 9 8 2 1 3
1 7 Ω′ 5 6 2 8 9 4 3 1
2 6 5 Ω′ 7 8 2 1 3 4 9
3 5 6 7 Ω′ 1 3 4 9 8 2
4 4 2 8 1 Ω′ 5 3 7 9 6
5 9 8 2 3 5 Ω′ 7 1 6 4
6 8 9 1 4 3 7 Ω′ 6 2 5
7 2 4 3 9 7 1 6 Ω′ 5 8
8 1 3 4 8 9 6 2 5 Ω′ 7
9 3 1 9 2 6 4 5 8 7 Ω′

.

Each of the 45 entries in the upper triangular matrix of Φ1̄,1̄ determines a triple of the STS(19), for instance
we can read from the table that (1̄, 4)+ (1̄, 1) = (Ω̄, 2) that is {(1̄, 4), (1̄, 1), (Ω̄, 2)} is a triple, we find 45 triples.
Each of the found triples gives two entries in the Latin square ΦΩ̄,1̄, as well as in Φ1̄,Ω̄ = Φt

Ω̄,1̄
, respectively, for

instance the {(1̄, 4), (1̄, 1), (Ω̄, 2)} triple gives the two entries ΦΩ̄,1̄(2, 4) = 1 and ΦΩ̄,1̄(2, 1) = 4. The entries in
ΦΩ̄,Ω̄ yields 12 triples of the STS(19). Hence we obtained all of the 57 triples. Therefore the Latin square ΦΩ̄,1̄

is thoroughly determined as follows

ΦΩ̄,1̄ :

· Ω′ 1 2 3 4 5 6 7 8 9
Ω′ Ω′ 1 2 3 4 5 6 7 8 9
1 8 9 6 4 3 7 2 5 Ω′ 1
2 7 4 5 9 1 2 8 Ω′ 6 3
3 9 8 7 5 6 3 4 2 1 Ω′

4 4 7 8 6 Ω′ 9 3 1 2 5
5 3 2 1 Ω′ 5 4 9 8 7 6
6 2 3 Ω′ 1 9 8 7 6 5 4
7 1 Ω′ 3 2 7 6 5 4 9 8
8 6 5 4 8 2 1 Ω′ 9 3 7
9 5 6 9 7 8 Ω′ 1 3 4 2

.

2.2 Center and Veblen points

In this section we want to characterize the notion of Veblen points in an algebraic way and to study a particular
class of loop extensions called Schreier extensions, that in our case correspond to Steiner triple systems with
Veblen points.

We remind the reader that for Steiner loops of projective type the nuclei and the center coincide. On the
one hand, the center Z of a Steiner loop LS has cardinality 2t, for some non negative integer t, since it is an
elementary abelian 2-group. On the other hand, being Z a normal subloop, its cardinality must divide that of
LS . Thus, one gets v + 1 = 2t(w + 1), where w + 1 must be the cardinality of the quotient Steiner loop.

Now we want to stress the fact that the non-zero central points of a Steiner loop of projective type are
exactly the Veblen points of the corresponding Steiner triple system.

Definition 2.7. A point x in a STS S is a Veblen point if whenever {x, a, b}, {x, c, d}, {t, a, c} are triples of S,
also {t, b, d} is a triple of S.

The following theorem, that gives an algebraic characterization of Veblen points, leads to a much more
general version of the Veblen and Young theorem for STS.

Theorem 2.8. Let LS be a Steiner loop of projective type and Z be its center. A point x ∈ S is a Veblen point
if, and only if, x ∈ Z.
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Proof. Let x ∈ S be a Veblen point. If we consider the triples {x, xy, y}, {x, z, xz}, {t, xy, z} in S, we have
that also {t, y, xz} is a triple in S. Hence one has that (xy)z = t = y(xz), that is, using commutativity,
z(xy) = (zx)y. Therefore, x is in central element.

Conversely, let x ̸= Ω be in the center Z. If {x, y, xy}, {x, z, xz} and {t, y, xz} are triples of S, then the
element t = y(xz) coincides with (xy)z, meaning that {t, xy, z} is also a triple of S.

Corollary 2.9. The set of Veblen points of an STS(v) is always a Steiner sub-system, in particular it is a
projective geometry of cardinality 2c − 1, for some integer c ≥ 0.

Theorem 2.10. If v + 1 = 2t(w + 1) is an admissible factorization only for t = 0, then any STS(v) contains
no Veblen points.

Proof. The claim follows from the fact that, if the center has cardinality 2c, then v+1
2c must be the cardinality

of the quotient projective Steiner loop.

After the definition of Schreier extensions we will give a necessary and sufficient condition on the existence
of STS(v) with (at least) 2c − 1 Veblen points.

Further in this paper we will give a construction method to obtain such STS’s containing Veblen points.

Remark 2.3. If S is a STS(15), then the cardinality of Z could be 1, 2, 4, 8 or 16. Actually, we will see
that a STS(15), different from PG(3, 2), can have at most one Veblen point. In particular, in relation to the
classification in [8], the STS(15) number 1 is PG(3, 2), the STS(15) number 2 has precisely one Veblen point,
which is the point 0, and all the STS(15) from number 3 to 80 have no Veblen points.

Now, in order to show what we claimed in advance in the previous Remark 2.3, we prove a more general
fact about Veblen points, Pasch configurations and Fano planes.

Lemma 2.11. If S is a STS(v), then:

1. The number of Pasch configurations through a Veblen point is (v−1)(v−3)
4 .

2. If S has 2 Veblen points a, b, then the third point c = ab in the line through them is also a Veblen point,
and there are v−3

4 Fano planes containing the line ℓ1 = {a, b, ab}.

Proof. If a is a Veblen point, then for all points b ∈ STS(v), a ̸= b, there are v−3
4 Pasch configurations through

b and a which do not contain the block {a, b, ab}.

"
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"
"
""
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�
�
�
�
��

b
b

b
b

b
b

bb

T
T

T
T

T
T

T
TT

v v

v
v vv

a

b

This follows from the fact that we cannot choose a, b, ab to be in the Pasch configuration, so we are left with
v−3 points of the STS(v), and in a Pasch configuration there are 4 further points. Fixing one of these 4 points,
the others are uniquely determined: indeed, if we fix x to be in the configuration, the other must necessarily be
ax, bx and a(bx) = (ax)b, and rearranging these four points we obtain the same configuration. Finally, since
the point b can be chosen in v − 1 different ways we obtain the first assertion.

Fixed the Veblen line ℓ = {a, b, ab}, let x be a point of S not in ℓ. Since ℓ is a Veblen line, together with x
it generates the Fano plane shown in the next picture.
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a

ax

x

ab bx

b (ab)x

We can choose x in v − 3 different ways, but replacing it with ax, bx or with (ab)x = b(ax) = a(bx) we obtain
the same Fano planes. Hence there are v−3

4 different Fano planes containing the Veblen line ℓ = {a, b, ab}.

Remark 2.4. If STS(15) S has more than one Veblen point, then it contains at least a line ℓ = {a, b, ab}
of Veblen points. Fixed another line through a, say ℓ′ = {a, x, ax} ̸= ℓ, there are exactly 2 different Pasch
configurations containing both ℓ and ℓ′. Since the number of lines different from ℓ is 6, we can affirm that there
are precisely 12 Pasch configurations containing ℓ1. Since we have 42 different Pasch configurations through
every Veblen point a, b or ab, 12 of which contain the whole line ℓ, S has at least 30 · 3 + 12 = 102 Pasch
configurations. By the table in [8], we can affirm that the only STS(15) with more than one Veblen point is
PG(3, 2) (in which every point is a Veblen point).

Now we want to see if there are STS(15) with exactly one Veblen point. If S is such, then it contains at least
42 Pasch configurations. With this argument, using the table in [8], we can cut out all the STS(15) from number
6 to 80. For the STS(15) number 3, 4 and 5, we note that in the corresponding Steiner loops of projective type
the following holds:

7 · (1 · 6) ̸= (7 · 1) · 6,
7 · (3 · 1) ̸= (7 · 3) · 1,
4 · (0 · 8) ̸= (4 · 0) · 8,
1 · (d · a) ̸= (1 · d) · a,
c · (9 · 0) ̸= (c · 9) · 0,
2 · (b · 5) ̸= (2 · b) · 5.

This means that the center of these loops is trivial, and consequently STS(15) number 3, 4 and 5 have no Veblen
points.

Finally, if S is STS(15) number 2, it is easy to see that the point 0 is its only Veblen point by checking that
it is in the center of LS .

2.3 Schreier extensions

As mentioned in the beginning of this section, we are interested in the study of the class of loop extensions
called Schreier extension, introduced in [20].

Let N be a group with identity Ω′, Q be a loop with identity Ω̄, T : Q → Aut(N) a function of Q into
the automorphism group of N with T (Ω̄) = Id, and f : Q × Q → N a function with the property f(P, Ω̄) =
f(Ω̄, P ) = Ω′, for every P ∈ Q. From now on, for a notation in accordance with the literature, we assume the
operation of N to be additive and that of Q to be multiplicative. The operation

(P, x) ◦ (R, y) =
(
PR, f(P,R) + xT (R) + y

)
,

defines on Q×N a loop L called Schreier extension of N by Q, which contains N = {(Ω̄, x) | x ∈ N} ≃ N as a
normal subgroup with corresponding quotient loop isomorphic to Q.
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In the case of Steiner loops of projective type, if LS is a Schreier extension of LN by LQ, N must be a
projective geometry over GF(2), and by Proposition 3.2. in [20] we have that the function T is trivial, LN is
central and f is symmetric. Hence in Schreier extensions for Steiner loops the multiplication is given by

(P, x) ◦ (R, y) =
(
PR, x+ y + f(P,R)

)
,

and function f is called a factor system. In this case we say that the Steiner triple system S is a Schreier
extension of N by Q. We want to stress the fact that since LN is in the center of LS , the elements of N are
Veblen points of S. Hence, Schreier extensions allow us to construct Steiner triple systems containing Veblen
points. Conversely, if LN is a central subgroup of LS , then LS can be obtained as a Schreier extension of LN
by LQ = LS/LN (cf. [5], p. 334), and this means that any STS S containing Veblen points can be seen as a
Schreier extension of the projective geometry consisting of its Veblen points (or a smaller subsystem).

We note that, if a central subgroup LN ≤ LS has cardinality 2, say LN = {Ω′, 1}, then the factor system
f : LQ × LQ → LN is simply f(P,R) = ΦP,R(Ω, 1) + 1, where Φ is the Steiner operator describing LS as an
extension of LN by LQ.

Theorem 2.12. There exists an STS(v) with (at least) 2c−1 Veblen points if, and only if, v+1
2c ≡ 2, 4 (mod 6).

Proof. One direction of the claim follows from the fact that, if the center has cardinality 2c, then v+1
2c must be

the cardinality of the quotient projective Steiner loop.
The other direction is proved because we can construct such a loop considering a Schreier extension of an

elementary abelian 2-group LN of cardinality 2c by a Steiner loop LQ of order v+1
2c .

Remark 2.5. A list of the first 100 cardinalities of STS’s which cannot have Veblen points follows:
9, 13, 21, 25, 33, 37, 45, 49, 57, 61, 69, 73, 81, 85, 93, 97, 105, 109, 117, 121, 129, 133, 141, 145, 153, 157, 165,
169, 177, 181, 189, 193, 201, 205, 213, 217, 225, 229, 237, 241, 249, 253, 261, 265, 273, 277, 285, 289, 297, 301,
309, 313, 321, 325, 333, 337, 345, 349, 357, 361, 369, 373, 381, 385, 393, 397, 405, 409, 417, 421, 429, 433, 441,
445, 453, 457, 465, 469, 477, 481, 489, 493, 501, 505, 513, 517, 525, 529, 537, 541, 549, 553, 561, 565, 573, 577,
585, 589, 597, 601.

As for the unmentioned cardinalities, by Theorem 2.12 we can say: any STS(19) has at most one Veblen
point, any STS(27) has at most one Veblen point, any STS(39) has at most 3 Veblen points.

Lemma 2.13. If a Steiner loop of projective type is a Schreier extension of a group LN by a loop LQ, then the
corresponding factor system f must be constant on the triples of Q, that is

f(P,Q) = f(P,R) = f(Q,R) (3)

whenever {P,Q,R} is a triple of Q. Moreover, it holds f(P, P ) = Ω′ for every P ∈ LQ.

Proof. Since LS fulfills the totally symmetric property

(P, x) ◦
(
(P, x) ◦ (Q, y)

)
= (Q, y),

for every P,Q ∈ LQ, x, y ∈ LN , we have that(
P (PQ), x+ x+ y + f(P,Q) + f(P, PQ)

)
= (Q, y),

that is
(Q, y + f(P,Q) + f(P, PQ)) = (Q, y),

which implies
f(P,Q) = f(P, PQ).

With a similar argument it is easy to check that also f(P,Q) = f(Q,PQ) holds. So, if P and Q are two distinct
points of the STS Q, then {P,Q,R = PQ} is a triple and we obtain equation (3). If P = Q ∈ LQ, then it
follows that

f(P, P ) = f(P, Ω̄) = Ω′.
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Now we prove a theorem which characterizes Schreier extensions of index at most 4.

Theorem 2.14. Any Schreier extension LS of index at most 4 is a group.

Proof. Since the factor loop LQ has cardinality less or equal 4, it can be either the elementary abelian 2-group
of order 2 or 4. We want to prove that the associative property

(P, x) ◦ ((Q, y) ◦ (R, z)) = ((P, x) ◦ (Q, y)) ◦ (R, z) (4)

holds for every P,Q,R ∈ LQ and x, y, z ∈ LN . Let f be the factor system defining the Schreier extension. If
LQ has cardinality 2, then f is trivial and the extension is splitting, hence LS is a group. Let now LQ be the
elementary abelian 2-group of order 4. On the left-hand side we have

(P, x) ◦ ((Q, y) ◦ (R, z)) = (P, x) ◦ (QR, y + z + f(Q,R))

= (PQR, x+ y + z + f(P,QR) + f(Q,R)),

on the other hand we have

((P, x) ◦ (Q, y)) ◦ (R, z) = (PQ, x+ y + f(P,Q)) ◦ (R, z)

= (PQR, x+ y + z + f(PQ,R) + f(P,Q)).

Hence we have to check that
f(P,QR) + f(Q,R) = f(PQ,R) + f(P,Q). (5)

� If the three points form the only triple in the underlying STS(3) Q, then by Lemma 2.13 we obtain (5).

� If one of the three points is the identity element, say P = Ω̄ without loss of generality, then f(Ω̄, QR) +
f(Q,R) = f(Q,R) + f(Ω̄, Q), recalling that f(Ω̄, QR) = Ω′ = f(Ω̄, Q) by definition of f .

� If two of the three points coincide, say P = Q without loss of generality, then the equation (5) reduces to
f(P, PR) + f(P,R) = f(Ω̄, R) + f(P, P ). Its right-hand side is Ω′, and since {P,R, PR} is a triple one
has that f(P, PR) = f(P,R), therefore the left-hand side is equal to Ω′ as well.

It is well known that Steiner triple systems where all points are Veblen points are projective geometries over
GF(2), but in the following we give much more relaxed hypotheses.

Corollary 2.15. If a Steiner triple system S with cardinality |S| < 2d− 1, d > 0, contains at least 2d−4 Veblen
points, then it is a projective geometry.

Proof. Indeed, if we suppose that S has at least 2d−4 Veblen points, the center Z of LS has at least 2d−3

elements. If |S| < 2rd − 1, then one has |LS/Z| < 8. Hence LS is a group and S is a projective geometry
which contains a STS(2d−3 − 1) as a subsystem. Therefore, S can either be PG(d − 4, 2), PG(d − 3, 2) or
PG(d− 2, 2).

Remark 2.6. As a consequence of Corollary 2.15, we can easily see the fact that the only STS(15) with more
than one Veblen point is PG(3, 2), as we showed before. In fact, now we can say even more. If we let d be 5, we
have that the only STS(v) with v < 31 having more than one Veblen point are PG(1, 2), PG(2, 2) or PG(3, 2).

As mentioned after Theorem 2.1, in the next Theorem we characterize projective geometries over GF(2) in
terms of subcentral series.

Theorem 2.16. A Steiner loop LS of projective type has a subcentral series

Ω� LS1
� · · ·� LSt

= LS ,

where the factors LSi+1
/LSi

are Steiner loops of projective type of cardinality 2 if, and only if, S is a projective
geometry PG(t− 1, 2).
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Proof. We prove the first part of the assertion by induction. If t = 1, then LS = GF(2), so S = PG(0, 2).
Let now t > 1 and assume that LSt−1

is a projective geometry. Since LSt−1
is central and of index 2, then by

Theorem 2.14 LSt
is a group and therefore the STS S is a projective geometry. In particular, S = PG(t− 1, 2).

Conversely, if St is a projective geometry PG(t−1, 2), then the Steiner loop of projective type is an elementary
abelian 2-group and the assertion follows directly.

Now we give an example of a Steiner loop of projective type LS corresponding to the STS(15) number 2, as
a Schreier extension of its center (which has cardinality 2) by the factor loop LQ corresponding to the STS(7).

Example 2.16.1. Let LS be the Schreier extension of LN = {Ω′, 1} by LQ = {Ω̄, P1, . . . , P7} given by the
factor system f such that

f(P3, P5) = f(P3, P6) = f(P5, P6) = 1,

f(P3, P4) = f(P3, P7) = f(P4, P7) = 1,

and f is trivial elsewhere.
If we identify the elements of LS as follows:

Ω = (Ω̄,Ω′), 0 = (Ω̄, 1),

1 = (P1,Ω
′), 2 = (P1, 1),

3 = (P2,Ω
′), 4 = (P2, 1),

5 = (P3,Ω
′), 6 = (P3, 1),

7 = (P4,Ω
′), 8 = (P4, 1),

9 = (P5,Ω
′), a = (P5, 1),

b = (P6,Ω
′), c = (P6, 1),

d = (P7,Ω
′), e = (P7, 1),

we obtain the presentation of the STS(15) number 2 given in [8], where the triples are given by the columns of
the table

0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
1 3 5 7 9 b d 3 4 7 8 b c 3 4 7 8 b c 7 8 9 a 7 8 9 a 7 8 9 a 7 8 9 a
2 4 6 8 a c e 5 6 9 a d e 6 5 a 9 e d b c d e c b e d e d c b a e b c

.

2.3.1 A small cohomology theory for Steiner triple systems

In this subsection we want to study a small cohomology theory for Steiner loops of projective type LS which
are a Schreier extension of a central subloop LN by a factor loop LQ. We denote the group of all factor systems
(or, equivalently, of all Schreier extensions) with

ExtS(LN ,LQ).

In fact, in order to stay constructive, we just identify an extension with the corresponding factor system defining
the operation.

Remark 2.7. Since a factor system is simply defined by the values it takes on the triples of Q, one easily finds
that the number of all possible Schreier extensions of LN by LQ is

|ExtS(LN ,LQ)| = 2tb,

where b is the number of triples of Q and 2t is the cardinality of the elementary abelian 2-group LN .

Definition 2.17. Two Schreier extensions LS1
and LS2

of LN by LQ are equivalent if there is an isomorphism
LS1

−→ LS2
which induces the identity homomorphism both on LN and LQ. In this case, if f1 and f2 are the

corresponding factor systems we write f1 ∼ f2.
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Let δ1 be the cohomology operator defined on the set of all functions LQ → LN by

(δ1φ)(P,Q) := φ(PQ)− (φ(P ) + φ(Q)),

adapted from group theory to the non-associative frame of loop theory (recall that LN is a central subgroup of
LS).

For any φ : LQ → LN mapping Ω̄ 7→ Ω′, we have that its coboundary, that is δ1φ, belongs to ExtS(LN ,LQ),
because (δ1φ)(P, P ) = (δ1φ)(Ω̄, P ) = (δ1φ)(P, Ω̄) = Ω′ and it is constant on the triples of Q.

Lemma 2.18. Two factor systems f1, f2 ∈ ExtS(LN ,LQ) are equivalent if, and only if, they differ by a
coboundary.

Proof. If we assume that Φ is an equivalence between the extension given by the factor system f1 and the one
given by f2, then we have that

Φ(P, x) = Φ((P,Ω′)(Ω, x)) = Φ(P,Ω′)(Ω, x) = (P,φ(P ))(Ω, x) = (P, x+ φ(P )),

for a suitable function φ : LQ −→ LN , and, computing the multiplication of two elements, one sees directly
that f2 = f1 + δ1(φ). Conversely, if f2 = f1 + δ1(φ), then the map Φ(P, x) := (P, x + φ(P )) gives in turn an
isomorphism which fixes both LN and LQ, hence an equivalence, from the extension corresponding to f1 to
that corresponding to f2.

Remark 2.8. In the setting of loop theory, as for groups, factor systems are thoroughly determined by a given
section σ, that is a function LQ → LS such that πσ = id, where π : LS → LQ is the canonical projection, hence
σ(P ) = (P,φ(P )), for a suitable function φ : LQ → LN . In fact, computing both

σ(P ) + σ(Q) = (P,φ(P )) + (Q,φ(Q)) = (PQ,φ(P ) + φ(Q) + f(P,Q)) and

σ(PQ) = (PQ,φ(PQ)),

we find the difference
σ(PQ)− (σ(P ) + σ(Q)) = (Ω̄, (f + δ1φ)(P,Q)).

Note that we used the fact that f(PQ,PQ) = Ω′ and that LN is a group.

Remark 2.9. Let us denote by B2(LQ,LN ) the set {δ1φ | φ : LQ → LN with φ(Ω̄) = Ω′}. One has

|B2(LQ,LN )| = |{φ : LQ → LN | φ(Ω̄) = Ω′}|
|Hom(LQ,LN )|

,

hence the number of non-equivalent Schreier extensions of LN by LQ is

|ExtS(LN ,LQ)|
|B2(LQ,LN )|

=
2tb · |Hom(LQ,LN )|

|B2(LQ,LN )|

Example 2.18.1. If the loop LS is a Schreier extension of LN by LQ, where |LN | = 2 and Q is the Fano
plane. One has |{φ : LQ → LN | φ(Ω̄) = Ω′}| = 27 and |Hom(LQ,LN )| = 23 and hence |B2| = 24. Hence in

this case the number of non-equivalent Schreier extensions is 27

24 = 8.

Definition 2.19. Two Schreier extensions LS1
and LS2

of LN by LQ are isomorphic if there is an isomorphism
LS1 −→ LS2 which fixes globally both LN and LQ.

Of course two equivalent extensions are isomorphic, but the converse is not always true. However, if f0 is
the trivial factor system, that is the map f0(P,Q) = Ω′ for every P,Q ∈ LQ, then being isomorphic to f0 and
being equivalent to f0 mean the same thing.
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Proposition 2.20. Let LS1 and LS2 be two Schreier extensions of LN by LQ. Every isomorphism of extensions
LS1

→ LS2
has, up to equivalence, the following form

(P, x) 7−→ (β(P ), α(x)), (6)

for some suitable α ∈ Aut(LN ) and β ∈ Aut(LQ).

Proof. Since for any isomorphism of extension Ψ : LS1
→ LS2

we have Ψ(LN ) = LN and Ψ(LQ) = LQ, we
obtain that

Ψ(P,Ω′) = (β(P ), φ(P )), for any P ∈ LQ,

where β is a suitable automorphism of LQ and φ is a function LQ → LN mapping Ω̄ 7→ Ω′, and also that

Ψ(Ω̄, x) = (Ω̄, α(x)), for any x ∈ LN , (7)

where α is a suitable automorphism of LN . Hence

Ψ(P, x) = Ψ
(
(P,Ω′) ◦ (Ω̄, x)

)
= (β(P ), φ(P )) ◦ (Ω̄, α(x)) = (β(P ), α(x) + φ(P )).

By Lemma 2.18, up to an equivalence we can suppose φ to be trivial and the assert is proved.

Fixed LN and LQ, if f1 and f2 are two isomorphic factor systems and Ψ is an isomorphism of the corre-
sponding extensions, by Proposition 2.20, from the relation

Ψ ((P, x) ◦ (Q, y)) = Ψ(P, x) ◦Ψ(Q, y),

we obtain that
Ψ(PQ, x+ y + f1(P,Q)) = (β(P ), α(x)) ◦ (β(Q), α(y)),

that is (
β(PQ), α(x) + α(y) + (αf1)(P,Q)

)
=

(
β(P )β(Q), α(x) + α(y) + f2(β(P ), β(Q))

)
.

Hence, we have (up to a co-boundary) the relation

αf1 = f2β, (8)

where with fβ : LQ×LQ → LN we denote, for simplicity, the factor system (P,Q) 7→ f(β(P ), β(Q)). Equation
(8) can be rewritten as

f1 = α−1f2β. (9)

This defines an action of the group Aut(LN )×Aut(LQ) on the set ExtS(LN ,LQ)/ ∼ of non-equivalent extensions
given by

(α, β)(f) = α−1fβ,

whose orbits are the isomorphism classes of all the factor systems.

Example 2.20.1. Now we give an example of two isomorphic but non-equivalent Schreier extensions of cardi-
nality 20. Let LN = {Ω′, 1} be the unique loop of cardinality 2 and LQ the Steiner loop corresponding to the
STS(9). We can represent Q as the affine plane AG(3, 2) having the points

{P1 = (−1, 1), P2 = (0, 1), P3 = (1, 1), P4 = (−1, 0), P5 = (0, 0),

P6 = (1, 0), P7 = (−1,−1), P8 = (0,−1), P9 = (1,−1)}

and the triples

{P1, P2, P3}, {P1, P4, P7}, {P1, P5, P9}, {P1, P6, P8},
{P2, P4, P9}, {P2, P5, P9}, {P2, P6, P7}, {P3, P4, P8},
{P3, P5, P7}, {P3, P6, P9}, {P4, P5, P6}, {P7, P8, P9}.
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Let us consider the Schreier extension given by the factor system f1 defined by

f1(P3, P6) = f1(P3, P9) = f1(P6, P9) = 1

and Ω′ for any other couple of points.

The automorphism β of LQ induced by the affine map x 7→ Ax + b of AG(3, 2), with A =

(
1 1
0 1

)
,

b =

(
−1
0

)
, permutes the points of Q as follows:

β(Pi) = Pσ(i), with σ = (465)(789).

Let us consider the factor system f2 := f1β, that is given by

f1(P3, P4) = f1(P3, P8) = f1(P4, P8) = 1

and Ω′ for any other couple of points. Clearly f1 and f2 are isomorphic. Furthermore, they are equivalent if,
and only if, f1 − f2 = δ1φ for a suitable function φ : LQ → LN . A straightforward computer calculation shows
that such a function φ does not exist.

2.3.2 Steiner triple systems with a unique factorization

In this last section we want to give some results concerning Steiner loops of cardinality v + 1 which admit just
one admissible factorization of the type v + 1 = 2(w + 1).

Theorem 2.21. All the Steiner loops LS of projective type with cardinality n = v + 1 are simple if n ̸≡ 4 and
8 mod 12. On the contrary, if n ≡ 4 or 8 mod 12, then there exists a Steiner loop LS1

of order n which is
a Schreier extension of a normal subgroup LN1

of order 2, and there exists also a Steiner loop LS2
of order n

which is an extension of a normal subloop LN2
(corresponding to a projective hyperplane) of order n−2

2 by a
factor loop LQ of order 2.

Proof. Since the STS S has cardinality v ≡ 1 or 3 mod 6, one has v ≡ 1, 3, 7, or 9 mod 12. If n = v+1 ≡ 4, or
8 mod 12, then n = 2 ·(w+1) is an admissible factorization and w is the cardinality of a projective hyperplane.
Hence we can construct both a Steiner loop LS1

of order n, which has a normal subgroup LN1
of order 2 (hence

central), and also we can construct a Steiner loop LS2
of projective type of order n which has a normal subgroup

LN2
corresponding to a projective hyperplane.

On the contrary, if n ≡ 2 or 10 mod 12, then n = 2 · (w + 1) with w an even integer, meaning that n do
not have any admissible factorization, hence any Steiner loop of cardinality n must be simple.

Corollary 2.22. Let LS be a Steiner loop of projective type with cardinality v + 1 and suppose that it has a
unique admissible factorization v + 1 = 2(w + 1). Then LS belongs to one of the following families:

� Simple Steiner loops;

� Schreier extensions of the group of order 2 by a Steiner loop corresponding to a STS(w);

� Extensions of a Steiner loop corresponding to a projective hyperplane by the group of order 2.

As a consequence of the above Corollary it is possible, in principle, to construct all the non-simple STS(v)
admitting the unique factorization v+1 = 2(w+1). In [14] this has been done for the two smallest meaningful
cases v = 19, 27, as well as for six (out of 80) most interesting cases with v = 31, represented as Schreier
extensions of a group with two elements by a Steiner loop of order 16 chosen among the 80 STS(15) given in
[8].
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