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Abstract. We investigate certain arithmetic properties of facto-
rials. On the one hand, we are interested in the densities of sets of
n such that the exponents of given primes in the prime factoriza-
tion of n! hold certain congruence properties. On the other hand,
given M , we investigate the behavior of the M -free parts of factori-
als. In fact we study the combination of the above two properties.
Among others, we show that for any prime p and positive integers
a, b, the set of those values of n for which the exponent of p in
n! is α (mod pa), and the p-free part of n! is β (mod pb), has the
expected density for any α, β. In the particular case p = 2, a = 1,
b = 3, our results extend and improve a result of Deshouillers and
Luca, yielding a better error term for the number of factorials up
to x, representable as a sum of three squares.

1. Introduction

It is long known that the equation

n! = x2

has no solutions in non-negative integers n, x for n > 1. This fact
follows e.g. from Bertrand’s postulate. Thus the question naturally
arises: is it still possible to find infinitely many vales of n!, such that
the exponents of all p ∈ P is even, where P is a given finite set of
primes? In the case where P consists of the first t primes for some t,
this question was posed by Erdős and Graham [10]. The question, and
its various extensions have attracted a lot of attention. We consider
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the following generalization, which contains all the problems studied
earlier.

Problem 1. Let p1, . . . , pt be distinct primes, m1, . . . ,mt be integers
greater than 1, and r1, . . . , rt be given integers. Set

A = A(p1, . . . , pt;m1, . . . ,mt; r1, . . . , rt) =

{n : νpi(n!) ≡ ri (mod mi) (i = 1, . . . , t)},
where for q being a prime, νq(k) stands for the exponent of q in the
prime factorization of the positive integer k. Is it true that for any
choice of the parameters pi,mi, ri (i = 1, . . . , t) the set A is non-empty
(or even infinite)? Does the set A have a density? Is A relatively dense?
(That is, is there an absolute constant c such that the differences of
the consecutive elements of A are bounded by c?)

A large part of the above problem is already solved. In the special
case where p1, . . . , pt are the first t primes, m1 = · · · = mt = 2 and r1 =
· · · = rt = 0 (i.e. the original question of Erdős and Graham), Problem
1 was answered to the affirmative by Berend [1]. More precisely, Berend
showed that in this case A is infinite, and further, it is relatively dense.
Berend provided the same result in the case where m1 = · · · = mt

is arbitrary (still only for p1, . . . , pt being the first t primes and r1 =
· · · = rt = 0). Later on, Chen and Zhu [7] formulated Problem 1 in the
case mi = 2 with ri ∈ {0, 1} (i = 1, . . . , t). (In fact they asked only
about the relative density of A, but not about its density.) Among
other results they proved that (in their settings) either A is empty, or
it is infinite and even relatively dense. Sander [20] proved that if t = 1,
then A is infinite, further, it has a density of 1/2. He also proved that
for t = 2, A is always infinite. Chen [6] could solve the problem of
Chen and Zhu [7] completely, i.e. he proved the relative density of A in
Problem 1 withmi = 2 and arbitrary ri ∈ {0, 1} (i = 1, . . . , t). Problem
1 with arbitrary moduli mi (i = 1, . . . , t) was first considered by Luca
and Stănică [18] (see their Conjecture 2; in fact they did not ask about
relative density). They could prove that under the assumption pi - mi

(i = 1, . . . , t) the density of A exists and it is equal to 1/m1 · · ·mt.
Finally, Berend and Kolesnik [2] proved that Conjecture 2 in [17] is
true. That is, they showed that the density of A in Problem 1 always
exists, and equals to 1/m1 · · ·mt.

We shall also be interested in the behavior of the ’remaining’ part of
n! (obtained after removing some primes). Later we shall see that this
problem (in combination with Problem 1) has an application concern-
ing the set of those integers n for which n! is representable as a sum of
three squares. At this point we mention a related, classical question:
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what is the distribution of the numbers 1!, 2!, . . . , (p − 1)! modulo p,
where p is a prime (see F11 in [14])? Answering a question of Erdős,
Rokowska and Schinzel [19] showed that if 2!, . . . , (p − 1)! are all dis-
tinct modulo p, then the missing residue is −((p − 1)/2)!, and p ≡ 5
(mod 8) must hold; however, there is no such p with 5 < p ≤ 1000. Ac-
cording to a standard conjecture (see F11 of [14] again), approximately
p/e modulo p residue classes are not represented by n!, as p tends to
infinity. This problem has a huge literature; see e.g. the papers [13, 15]
and the references given there. For a related question, we also refer to
the paper [17].

Problem 2. Let m > 1 be a positive integer and take an integer r
coprime to m. Set M =

∏
p|m p and for any positive integer k, write

k(M) for the M -free part of k, that is, set k(M) := k/
∏

p|M pνp(k). Put

B = B(m; r) = {n : (n!)(M) ≡ r (mod m)}.

Is it true that for any choice of the integersm, r, the set B is non-empty
(or even infinite)? Does the set B have a density? Is B relatively dense?

As a combination of Problems 1 and 2, we also consider

Problem 3. Let p1, . . . , pt be distinct primes, and let m1, . . . ,mt and
r1, . . . , rt be integers with mi ≥ 2 (i = 1, . . . , t). Further, let m > 1
be a positive integer and r be an integer with gcd(m, r) = 1. Put
M =

∏
p|m p. Let

C = C(p1, . . . , pt;m1, . . . ,mt; r1, . . . , rt;m; r) =

{n : νpi(n!) ≡ ri (mod mi) (i = 1, . . . , t) and (n!)(M) ≡ r (mod m)}.
Is it true that for any choice of the parameters p1, . . . , pt, m1, . . . ,mt,
r1, . . . , rt, m, r the set C is non-empty (or even infinite)? Does the set
C have a density? Is C relatively dense?

We think that in case of all the problems, the answers to all the ques-
tions are affirmative. In particular, we conjecture that for any choices of
the parameters, both sets B and C have densities, and these are given
by 1/φ(m) and 1/m1 · · ·mtφ(m), respectively. (As we mentioned be-
fore, the fact that the density of A exists and equals 1/m1 · · ·mt, was
proved by Berend and Kolesnik [2].) This would mean that the prop-
erties required in the definitions of the sets A and B, are independent.
Later on, we shall give some support for this conjecture.

In case of Problems 2 and 3 we know about only very restricted
results, which are related to the problem of representing factorials as
sums of squares. As we already mentioned, for n > 1, Bertrand’s
postulate implies that n! is never a square. As it was noted by Erdős



4 L. HAJDU AND Á. PAPP

and Obláth [11], the equation

n! = x2 + y2

has no solutions in non-negative integers n, x, y for n > 6. (We have
6! = 720 = 122 + 242.) This follows from the fact that for n ≥ 7 there
exists a prime p of the form 4k+3 between n/2 and n (see [4] and [9]).
On the other hand, by a classical result of Lagrange we know that the
Diophantine equation

n! = x2 + y2 + z2 + w2

is solvable for every n, in non-negative integers x, y, z, w. Consider now
the remaining case

(1) n! = x2 + y2 + z2

in non-negative integers n, x, y, z. By a classical result of Gauss, it is
known that an integer is not representable as the sum of three squares
if and only if it is of the form 22a(8b+7) with non-negative integers a, b.
That is, we arrive at Problem 3 with t = 1, p1 = 2, r1 = 0, m = 8 and
r = 7. In this particular case, Deshouillers and Luca [8] proved that the
set of values of n satisfying (1) has a density of 7/8. They also provided
an asymptotic formula, saying that the number of n with (1) up to N
is (7/8)N +O(N2/3). We mention that for the set of positive integers
themselves, the corresponding qualitative results are long known. As
one can easily check (and it must also be long known, though unfortu-
nately we could not find any related reference), the density of the set of
positive integers with even exponents of 2 in their prime factorization,
is 2/3. Further, the density of the set of positive integers having odd
part congruent to 7 modulo 8, is clearly 1/4. So it is not surprising
that the set of positive integers not representable as the sum of three
squares, is 1/6. The latter statement was proved by Landau [16]. (See
Wagstaff [22] for a similar result concerning the Schnirelmann density
of the same set.)

As we saw, the question of representing n! as the sum of at most
two squares is treated by the knowledge concerning primes in the block
of the first n positive integers. The much more general problem of
describing the size of the largest prime factor in a block of consecutive
integers has been investigated by many authors. For related results,
we refer to the excellent, recent survey paper of Shorey and Tijdeman
[21], and the references therein.

In this paper we prove several results concerning the most general
question formulated, namely Problem 3. We take up the problem where
the moduli are any powers of some prime p. We prove that for all
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choices of the other parameters, the conjecture formulated above is
true; that is, in all cases C has the suspected density. We also prove
that C is relatively dense, with an explicit bound for the gaps of the con-
secutive elements of C. In the particular case p = 2 and m1 = 2, m = 8
we also prove that asymptotically, the error term is O(N1/2 log2N) up
to N , thus improving the result of Deshouillers and Luca [8]. In this
special case we give a sharp upper bound for the gaps between the
consecutive elements of C, as well.

2. Main results

To formulate our general results, we need some notation. Let p be a
prime and a, b be positive integers. Put

I1 = {0, 1, . . . , pa − 1}, I2 = {i : 1 ≤ i ≤ pb, p - i} and I = I1 × I2.

Observe that |I| = (p − 1)pa+b−1. To simplify the reference to these
sets, by writing α ∈ I1 and β ∈ I2 for arbitrary integers α and β with
p - β, we shall always mean the elements α′ ∈ I1 and β′ ∈ I2, for which
α′ ≡ α (mod pa) and β′ ≡ β (mod pb), respectively.

In what follows, we shall always assume that p, a, b are fixed. For
(α, β) ∈ I put

H(α,β) = {n : νp(n!) ≡ α (mod pa), (n!)(p) ≡ β (mod pb)}.

Finally, we shall use the conventions

νp(0) = 0 and 0(p) = 1.

Our first two theorems solves the question of density and relative
density in Problem 3 for t = 1 with m1 = pa and m = pb, where
a, b are arbitrary positive integers, p1 = p is an arbitrary prime, and
r1 and r are arbitrary integers. The following statement shows that
the pairs (νp(n!) (mod pa), (n!)(p) (mod pb)) are uniformly distributed
among the possible pairs.

Theorem 2.1. For all (α, β) ∈ I, the set H(α,β) has a density of
1/(p− 1)pa+b−1.

In case of relative density, we can even give an explicit upper bound
for the differences between the consecutive terms of H(α,β).

Theorem 2.2. For all (α, β) ∈ I, the set H(α,β) is relatively dense.

Further, if we write H
(α,β)
1 < H

(α,β)
2 < H

(α,β)
3 < . . . for the elements

of H(α,β), then we have H
(α,β)
i+1 −H

(α,β)
i ≤ 2pmax(a,b)+b(p−1)pa+2b−2−b+1 for

all i ≥ 1.
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As a simple consequence of the above theorems we obtain the fol-
lowing.

Corollary 2.1. For any α ∈ I1 and β ∈ I2, the sets

{n : νp(n!) ≡ α (mod pa)} and {n : (n!)(p) ≡ β (mod pb)}
are relatively dense and are of densities 1/pa and 1/(p−1)pb−1, respec-
tively.

Note that the fact that the density of the first set is 1/pα, follows
from the earlier mentioned results of Berend and Kolesnik [2].

Now we give alike, but more precise statements in the special case
of p = 2, a = 1 and b = 3. This case is of particular interest, since it
describes the density of the set of values of n for which n! is expressible
as a sum of three squares.

The next theorem improves and extends an earlier mentioned result
of Deshouillers and Luca [8]. In that paper only the case (α, β) = (0, 7)
has been investigated (though it seems to be clear that the methods
applied in [8] are capable to handle all the other choices of (α, β)). Our
result significantly improves the error term O(x2/3) in [8] too.

Theorem 2.3. Let p = 2, a = 1, b = 3 and (α, β) ∈ I. Then for all
x > 0 we have

|H(α,β) ∩ [0, x)| = (1/8)x+O(x1/2 log2 x).

Our final theorem gives the precise value for the maximal gap length
in the sets H(α,β) in this special case.

Theorem 2.4. Let p = 2, a = 1, b = 3 and (α, β) ∈ I. Then the set

H(α,β) is relatively dense, and if we write H
(α,β)
1 < H

(α,β)
2 < H

(α,β)
3 <

. . . for the elements of H(α,β), then we have H
(α,β)
i+1 − H

(α,β)
i ≤ 42 for

all i ≥ 1. Further, the upper bound 42 is sharp for all (α, β) ∈ I.

Remark 1. Clearly, for the special choices p = 2, a = 1 and b ≤ 3
Corollary 2.1 also follows from Theorems 2.3 and 2.4.

3. Proofs

To prove our theorems, we need several lemmas. The first lemma
reveals a pattern in the behavior of νp(n!). For similar statements and
assertions see [7, 20, 17, 2].

Lemma 3.1. Let a be a positive integer. Then for any positive integers
t and k with 0 ≤ t < p and k ≥ a we have

νp((tp
k + i)!) ≡ νp(i!) +

t

1− p
(mod pa) (0 ≤ i < pk)
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with the usual convention 0! = 1.

Proof. We clearly have

νp((tp
k+i)!) = νp

(
(tpk)!

i∏
j=1

(tpk + j)

)
≡ νp((tp

k)!)+νp(i!) (mod pa).

Using the Legendre formula this gives

νp((tp
k+i)!) ≡ νp(i!)+t(1+p+· · ·+pk−1) ≡ νp(i!)+t

pk − 1

p− 1
(mod pa),

and the lemma follows. �

Our next two lemmas provide similar information about the behavior
of (n!)(p) (mod pb).

Lemma 3.2. Let b ≥ 1 and further assume that b ≥ 3 if p = 2. Then
for any k ≥ b− 1 and for any positive integer t we have

((tpk)!)(p) ≡

{
((t2b−1)!)(2) (mod 2b), if p = 2,

(−1)t(k−b+1)((tpb−1)!)(p) (mod pb), otherwise,

or, shortly

((tpk)!)(p) ≡ (−1)t(k−b+1)p((tpb−1)!)(p) (mod pb)

for all p ≥ 2.

Proof. We proceed by induction on k. For k = b − 1 the statement is
an identity. Suppose that the assertion is valid for some k ≥ b− 1. We
can write

((tpk+1)!)(p) = ((tpk)!)(p)
tpk+1∏
i=1
p-i

i.

Since by the induction hypothesis we have

((tpk)!)(p) ≡

{
((t2b−1)!)(2) (mod 2b), if p = 2,

(−1)t(k−b+1)((tpb−1)!)(p) (mod pb), otherwise,

we only need to show that

(2)

tpk+1∏
i=1
p-i

i ≡

{
1 (mod 2b), if p = 2,

(−1)t (mod pb), otherwise.
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To prove this, observe that

tpk+1∏
i=1
p-i

i ≡

pk+1∏
i=1
p-i

i


t

(mod pk+1).

Now in view of k + 1 ≥ b ≥ 3 if p = 2 and k + 1 ≥ b ≥ 1 otherwise, we
have that u2 ≡ 1 (mod pb) if and only if u ≡ ±1, 2k ± 1 (mod 2k+1)
for p = 2, and u ≡ ±1 (mod pk+1) for p ≥ 3. Hence we get

pk+1∏
i=1
p-i

i ≡

{
1 (mod 2k+1), if p = 2,

−1 (mod pk+1), otherwise.

This in view of k + 1 ≥ b gives (2), which proves the lemma. �

The following lemma plays a key role in our arguments.

Lemma 3.3. Let b ≥ 1 and k ≥ b − 1. If p = 2 and b = 2 then
assume that k ≥ b. Then for every t ≥ 1 with p - t there exist uniquely
determined numbers γt(j) ∈ I2 (1 ≤ j ≤ pb−1), such that for all i, j
with (j − 1)pk−b+1 ≤ i < jpk−b+1, 1 ≤ j ≤ pb−1 we have

((tpk + i)!)(p) ≡ γt(j)(i!)
(p) (mod pb).

Further,

i) if p = 2, then the numbers γt(j) (j = 1, . . . , 2b−1) form a per-
mutation of I2 for any odd t,

ii) if p ≥ 3 then γp−1(p
b−1) = −1, and the numbers γt(j) (1 ≤ t ≤

p − 1, 1 ≤ j ≤ pb−1) generate the multiplicative group Z∗
pb

of
invertible elements of Zpb.

Proof. For p = 2 and b = 1 the lemma is trivial. Further, if p = 2 and
b = 2, then the statement can be easily proved by induction; we get
γ1(1) = 3 and γ1(2) = 1 in this case. So from this point on we shall
always assume that if p = 2 then b ≥ 3.

First observe that for any s with tpk ≤ s < (t + 1)pk such that
νp(s) ≤ k − b we have

s(p) ≡ (s− tpk)(p) (mod pb).

This immediately gives that writing

δt(j) =
(tpk + (j − 1)pk−b+1)(p)

((j − 1)pk−b+1)(p)
(1 ≤ j ≤ pb−1)
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with the convention 0(p) = 1, we have

(3) ((tpk + i)!)(p) ≡ (i!)(p)δt(0)

j∏
ℓ=1

δt(ℓ) (mod pb)

for all i, j with (j − 1)pk−b+1 ≤ i < jpk−b+1, 1 ≤ j ≤ pb−1, where
δt(0) = (−1)t(k−b+1)p((tpb−1)!)(p)t−1. Here we used that by Lemma 3.2

((tpk−1)!)(p) ≡ ((tpk)!)(p)t−1 ≡ (−1)t(k−b+1)p((tpb−1)!)(p)t−1 (mod pb).

So by choosing

(4) γt(j) ≡ δt(0)

j∏
ℓ=1

δt(ℓ) (mod pb) (1 ≤ j ≤ pb−1)

and noting that these numbers are clearly uniquely determined, the
first part of the statement follows.

To prove the second part of the lemma, we have to distinguish the
cases p = 2 and p ≥ 3.

The case p = 2. To prove the second statement in this case, we show
that the γt(j) are all distinct. This clearly implies i). For this, we need

to show that the products
∏ℓ2

ℓ=ℓ1
δt(ℓ) are all distinct from 1 modulo 2b,

for 1 < ℓ1 ≤ ℓ2 ≤ 2b−1. (Recall that here we may assume that b ≥ 3.)
Putting uj−1 ≡ ((j − 1)(2))−1 (mod 2b) for j > 1, we have

δt(j) ≡ t2b−1−ν2(j−1)uj−1 + 1 (mod 2b).

Since for any j > 1 obviously δt(j) ̸≡ 1 (mod 2b), we may assume that
ℓ1 < ℓ2. Thus we need to show that

ℓ2∏
ℓ=ℓ1

(t2b−1−ν2(ℓ−1)uℓ−1 + 1) ̸≡ 1 (mod 2b) (1 < ℓ1 < ℓ2 ≤ 2b−1).

Suppose to the contrary that the above congruence holds for some ℓ1, ℓ2
as above. Then for these values of ℓ1, ℓ2 we have

ℓ2∏
ℓ=ℓ1
2|ℓ−1

(t2b−1−ν2(ℓ−1)uℓ−1 + 1)

ℓ2∏
ℓ=ℓ1
2-ℓ−1

(t2b−1−ν2(ℓ−1)uℓ−1 + 1) ≡ 1 (mod 2b).

However, then the same congruence certainly holds also modulo 2b−1.
Thus, observing that the second product is clearly 1 modulo 2b−1, in
case of 2 | ℓ− 1 letting ℓ′ − 1 = (ℓ− 1)/2 we get

⌊(ℓ2+1)/2⌋∏
ℓ′=⌈(ℓ1+1)/2⌉

(t2b−2−ν2(ℓ′−1)uℓ′−1 + 1) ≡ 1 (mod 2b−1).
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Here we used that ν2(ℓ − 1) = ν2((ℓ − 1)/2) + 1 and ((ℓ − 1)/2)(2) =
(ℓ−1)(2) for ℓ−1 even, whence uℓ′−1 ≡ uℓ−1 (mod 2b). Since uℓ′−1 ·(ℓ′−
1)(2) ≡ 1 (mod 2b), we certainly have uℓ′−1 · (ℓ′ − 1)(2) ≡ 1 (mod 2b−1),
as well. Finally, observe that 1 < ⌈(ℓ1 + 1)/2⌉ ≤ ⌊(ℓ2 + 1)/2⌋ ≤ 2b−2.

Hence our claim that the products
∏ℓ2

ℓ=ℓ1
δt(ℓ) (1 < ℓ1 ≤ ℓ2 ≤ 2b−1)

are all different from 1 modulo 2b follows by induction on b. Thus the
products

∏j
ℓ=1 δt(ℓ) (j = 1, . . . , 2b−1) are pairwise distinct modulo 2b.

Hence the lemma follows in this case.

The case p ≥ 3. To prove the second statement in this case, first
observe that by Lemma 3.2, (3) and (4) we have

(−1)k−b+1((pb−1)!)(p)γp−1(p
b−1) ≡ ((pk)!)(p)γp−1(p

b−1) ≡

≡ ((pk+1)!)(p) ≡ (−1)k−b+2((pb−1)!)(p) (mod pb).

This gives

γp−1(p
b−1) ≡ −1 (mod pb).

Now we construct an element of the subgroup generated by the elements
γt(j) (1 ≤ t ≤ p− 1, 1 ≤ j ≤ pb−1) which is a generator of Z∗

pb
. In fact

we shall prove that already the subgroup G of Z∗
pb

generated by

±δt(0)δt(1) (1 ≤ t ≤ p− 1)

contains such an element. It will be sufficient, since

γp−1(p
b−1) = −1 and γt(1) = δt(0)δt(1) (1 ≤ t ≤ p− 1).

As δt(1) ≡ t (mod pb), we have

±δt(0)δt(1) ≡ ±((tpb−1)!)(p) (mod pb) (1 ≤ t ≤ p− 1).

Observe that for b = 1 we have t! ∈ G for all t = 1, . . . , p− 1 implying
G = Z∗

p. Let now b ≥ 2. We show that G contains an element which

is generator modulo p2. As it is well-known, this element will be a
generator also modulo pb. Since by Lemma 3.2 we have

((tpb−1)!)(p) ≡ ±((tp)!)(p) (mod p2)

for any b ≥ 2, we need to check the statement only for b = 2. That is,
it is sufficient to show that for b = 2, the group G contains a generator
modulo p2. For this, first observe that for any t we have

((tp)!)(p)

(((t− 1)p)!)(p)
= t

p−1∏
i=1

((t− 1)p+ i) ∈ G (t = 1, . . . , p− 1).

Recall that if g1, g2 are generators modulo p such that

g1 ≡ g2 (mod p) but g1 ̸≡ g2 (mod p2),
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then one of g1, g2 is also a generator modulo p2. Let g be any generator
element modulo p with 1 < g < p. Then by Wilson’s theorem we have

−g

p−1∏
i=1

((g − 1)p+ i) ≡ (p− g)

p−1∏
i=1

((p− g − 1)p+ i) ≡ g (mod p).

If we would also have

−g

p−1∏
i=1

((g − 1)p+ i) ≡ (p− g)

p−1∏
i=1

((p− g − 1)p+ i) (mod p2),

then

−g(g − 1)

p−1∑
j=1

(p− 1)!

j
≡ (p− 1)! + g(g + 1)

p−1∑
j=1

(p− 1)!

j
(mod p)

would also hold. However, this by
p−1∑
j=1

1

j
≡

p−1∑
j=1

j ≡ p(p− 1)

2
≡ 0 (mod p)

is impossible. This implies that one of

−g

p−1∏
i=1

((g − 1)p+ i), (p− g)

p−1∏
i=1

((p− g − 1)p+ i) ∈ G

is a generator modulo p2. Hence the lemma follows. �
Remark 2. The combination of Lemmas 3.1 and 3.3 allows us to
follow how the classes corresponding to (α, β) ∈ I ’switch’. To see this,
just observe that combining these lemmas, for any k ≥ max(a, b) we
have that

(νp(i!), (i!)
(p)) = (α, β)

if and only if

(νp((tp
k + i)!), ((tpk + i)!)(p)) =

(
α +

t

1− p
, γt(j)β

)
,

for any t, j, i with 0 ≤ t ≤ p− 1, 1 ≤ j ≤ pb−1 and (j − 1)pk−b+1 ≤ i <
jpk−b+1.

Now we can give the proofs of Theorems 2.3 and 2.4.

Proof of Theorem 2.3. First we prove the statement for numbers of the
form x = (2k)!. For this, we use linear recurrence sequences of vectors.
We need to introduce some notation. For (α, β) ∈ I and x > y ≥ 0 let

H(α,β)(y, x) := H(α,β) ∩ [y, x) and h(α,β)(y, x) :=
|H(α,β)(y, x)|

x− y
.
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n 2ν2(n) · n(2) 2ν2(n!) · n!(2) (α, β) n 2ν2(n) · n(2) 2ν2(n!) · n!(2) (α, β)

0 1 1 (0,1) 16 24 215 · 3 (1,3)

1 1 1 (0,1) 17 1 215 · 3 (1,3)

2 2 2 · 1 (1,1) 18 2 · 1 216 · 3 (0,3)

3 3 2 · 3 (1,3) 19 3 216 · 1 (0,1)

4 22 23 · 3 (1,3) 20 22 · 5 218 · 5 (0,5)

5 5 23 · 7 (1,7) 21 5 218 · 1 (0,1)

6 2 · 3 24 · 5 (0,5) 22 2 · 3 219 · 3 (1,3)

7 7 24 · 3 (0,3) 23 7 219 · 5 (1,5)

8 23 27 · 3 (1,3) 24 23 · 3 222 · 7 (0,7)

9 1 27 · 3 (1,3) 25 1 222 · 7 (0,7)

10 2 · 5 28 · 7 (0,7) 26 2 · 5 223 · 3 (1,3)

11 3 28 · 5 (0,5) 27 3 223 · 1 (1,1)

12 22 · 3 210 · 7 (0,7) 28 22 · 7 225 · 7 (1,7)

13 5 210 · 3 (0,3) 29 5 225 · 3 (1,3)

14 2 · 7 211 · 5 (1,5) 30 2 · 7 226 · 5 (0,5)

15 7 211 · 3 (1,3) 31 7 226 · 3 (0,3)

Table 1. Exponents of 2 and odd parts of n! for 0 ≤ n ≤ 31.

If y = 0, then we shall simply writeH(α,β)(x) and h(α,β)(x), respectively.
Define the vectors v⃗k (k ≥ 0) by

v⃗k :=



h(0,1)(2k+1)
h(0,3)(2k+1)
h(0,5)(2k+1)
h(0,7)(2k+1)
h(1,1)(2k+1)
h(1,3)(2k+1)
h(1,5)(2k+1)
h(1,7)(2k+1)


.

Any term of the sequence (v⃗k) for k ≥ 4 can be expressed by the help
of the previous four terms. The initial vectors v⃗0, v⃗1, v⃗2, v⃗3 can be easily
obtained by the help of Table 1. These are the following:

v⃗0 =



2
0
0
0
0
0
0
0


, v⃗1 =



2
0
0
0
1
1
0
0


, v⃗2 =



2
1
1
0
1
2
0
1


, v⃗3 =



2
2
2
2
1
5
1
1


.
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As we already mentioned, for every k ≥ 4 the coordinates of v⃗k can
be given by the help of the previous four vectors. The first entry of
v⃗k, namely h(0,1)(2k+1), can be obtained in the following way. We start
with

h(0,1)(2k+1) = h(0,1)(2k) + h(0,1)(2k, 2k+1).

Cutting the interval (2k, 2k+1) into four parts, we get

h(0,1)(2k+1) = h(0,1)(2k)+h(0,1)(2k, 2k+2k−2)+h(0,1)(2k+2k−2, 2k+2k−1)

+h(0,1)(2k + 2k−1, 2k + 2k−1 + 2k−2) + h(0,1)(2k + 2k−1 + 2k−2, 2k+1).

In what follows, we shall apply Lemmas 3.1 and 3.3 repeatedly, in the
way explained in Remark 2. In the latter statement, as one can easily
check, now we have

(γ1(1), γ1(2), γ1(3), γ1(4)) = (3, 7, 5, 1).

We get

h(0,1)(2k+1) = h(0,1)(2k) + h(1,3)(2k−2) + h(1,7)(2k−2, 2k−1)

+h(1,5)(2k−1, 2k−1 + 2k−2) + h(1,1)(2k−1 + 2k−2, 2k).

From this we obtain

h(0,1)(2k+1) = h(0,1)(2k) + h(1,3)(2k−2) +
(
h(1,7)(2k−1)− h(1,7)(2k−2)

)
+
(
h(0,7)(2k−3) + h(0,3)(2k−3, 2k−2)

)
+

+
(
h(1,1)(2k)− h(1,1)(2k−1)− h(1,1)(2k−1, 2k−1 + 2k−2)

)
=

= h(0,1)(2k) + h(1,3)(2k−2) +
(
h(1,7)(2k−1)− h(1,7)(2k−2)

)
+

+
(
h(0,7)(2k−3) + h(0,3)(2k−2)− h(0,3)(2k−3)

)
+(

h(1,1)(2k)− h(1,1)(2k−1)− h(0,3)(2k−3)− h(0,7)(2k−2) + h(0,7)(2k−3)
)
.

After rearrangement, this yields

h(0,1)(2k+1) = h(0,1)(2k) + h(1,1)(2k)− h(1,1)(2k−1)+

+h(1,7)(2k−1) + h(0,3)(2k−2)− h(0,7)(2k−2)

+h(1,3)(2k−2)− h(1,7)(2k−2)− 2 · h(0,3)(2k−3) + 2 · h(0,7)(2k−3).

Thus the first coordinate of v⃗k is given by

v⃗k = (1, 0, 0, 0, 1, 0, 0, 0) · v⃗k−1 + (0, 0, 0, 0,−1, 0, 0, 1) · v⃗k−2+

+(0, 1, 0,−1, 0, 1, 0− 1) · v⃗k−3 + (0,−2, 0, 2, 0, 0, 0, 0) · v⃗k−4.

Similar calculations yield the other coordinates of v⃗k, as well. Alto-
gether, we get the recurrence relation

v⃗k = G1 · v⃗k−1 +G2 · v⃗k−2 +G3 · v⃗k−3 +G4 · v⃗k−4 (k ≥ 4),
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where

G1 =



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


,

G2 =



0 0 0 0 −1 0 0 1
0 0 0 0 0 −1 1 0
0 0 0 0 0 1 −1 0
0 0 0 0 1 0 0 −1
−1 0 0 1 0 0 0 0
0 −1 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0


,

G3 =



0 1 0 −1 0 1 0 −1
1 0 −1 0 1 0 −1 0
0 −1 0 1 0 −1 0 1
−1 0 1 0 −1 0 1 0
0 1 0 −1 0 1 0 −1
1 0 −1 0 1 0 −1 0
0 −1 0 1 0 −1 0 1
−1 0 1 0 −1 0 1 0


,

G4 =



0 −2 0 2 0 0 0 0
−2 0 2 0 0 0 0 0
0 2 0 −2 0 0 0 0
2 0 −2 0 0 0 0 0
0 0 0 0 0 −2 0 2
0 0 0 0 −2 0 2 0
0 0 0 0 0 2 0 −2
0 0 0 0 2 0 −2 0


.

By a theorem of Cerrucci and Vaccarino [5] we know that the above
relation can be written as a system of coordinatewise recurrence rela-
tions, and the common generating polynomial g(x) of these relations
is the characteristic polynomial of the matrix

G =


O O O G4

E O O G3

O E O G2

O O E G1

 .

Here O is the 8× 8 zero matrix, and E is the 8× 8 unit matrix. Hence
for g(x) we get

g(x) = x11(x−2)(x2+2)(x4−2x2+4)(x4−2x3+2x2−4x+4)(x2−2x+2)2(x2−2)3.
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Now using the standard theory of recurrence sequences (see e.g. [12]),
we get that every coordinate of v⃗k can be written as

c12
k + c2(i

√
2)k + c3(−i

√
2)k +

3∑
i=0

c4+iα
k
i +

3∑
i=0

c8+iβ
k
i +

(c12k + c13)(1 + i)k + (c14k + c15)(1− i)k+

(c16k
2 + c17k + c18)

√
2
k
+ (c19k

2 + c20k + c21)(−
√
2)k

with complex numbers c1, . . . , c21, which can be different for different
coordinates. Here α1, α2, α3, α4 and β1, β2, β3, β4 are the (distinct) roots
of x4−2x2+4 and x4−2x3+2x2−4x+4, respectively. It is easy to check
that all these roots have absolute value

√
2. Calculating the vectors

v⃗k for k = 0, . . . , 20, the constants c1, . . . , c21 can be obtained for each
coordinate by solving a system of linear equations. Using Magma [3]
we get that c1 = 1/8 in all cases. Thus

(5) h(α,β)(2k) =
2k

8
+O

(
k2
√
2
k
)

for every (α, β) ∈ I. As k = log2 2
k and

√
2
k
= (2k)1/2, hence the

formula in the theorem follows for x = 2k. As we have

h(α,β)(2k, 2k+1) = h(α,β)(2k+1)− h(α,β)(2k),

thus also
(6)

h(α,β)(2k, 2k+1) =
2k+1

8
− 2k

8
+O

(
(k + 1)2

√
2
k+1
)
=

2k

8
+O

(
k2
√
2
k
)
.

Let now N be an arbitrary positive integer. Then we can write

N =

j∑
i=1

2fi ,

with f1 > f2 > · · · > fj ≥ 0. Clearly, h(α,β)(N) can be written as

h(α,β)(N) = h(α,β)(2f1) + h(α,β)(2f1 , 2f1 + 2f2) + · · ·+

+h(α,β)(2f1 + · · ·+ 2fj−1 , 2f1 + · · ·+ 2fj).

Any term of the above sum can be expressed as

h(α,β)(2f1 + · · ·+ 2fℓ , 2f1 + · · ·+ 2fℓ + 2fℓ+1) = h(α,β)(t2fℓ , t2fℓ + 2fℓ+1),

where t is odd. By Lemmas 3.1 and 3.3, using (5) and (6), we easily
get

h(α,β)(t2fℓ , t2fℓ + 2fℓ+1) =
2fℓ+1

8
+O

(
f 2
ℓ+1

√
2
fℓ+1
)
.
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Thus

h(α,β)(N) =

(
2f1

8
+ · · ·+ 2fj

8

)
+O

(
f 2
1

√
2
f1
)
+ · · ·+O

(
f 2
j

√
2
fj
)
,

whence

h(α,β)(N) =
N

8
+O

(
f 2
1

√
2
f1+1 − 1√
2−1

)
=

N

8
+O

(
f 2
1

√
2
f1
)
.

Now using f1 ≤ log2N we get

h(α,β)(N) =
N

8
+O

(
log2N ·N1/2

)
,

and the theorem follows. �

Proof of Theorem 2.4. The assertions can be readily checked. For this
purpose, we used simple Magma [3] programs. Checking all the values
of n! with 0 ≤ n < 127, we find that all the intervals [0, 32), [32, 64),
[64, 96), [96, 127) contain at least two elements from all the sequences
H(α,β) ((α, β) ∈ I). Obviously, the consecutive elements of any H(α,β)

inside any of these intervals, have distance less than 42. Further, as
one can easily check, all the intervals [0, 14], [21, 31], [32, 48], [47, 63],
[64, 78], [85, 95], [96, 122], [100, 127] contain at least one element from
each H(α,β). This immediately shows that all the differences of the
consecutive elements below 27 inside all the sets H(α,β) are bounded by
42. Further, in view of that all the numbers (127− 100)+ (14− 0)+ 1,
(31−21)+(48−32)+1, (63−47)+(78−64)+1, (95−85)+(122−96)+1
are at most 42, we also have no problem with merging the four intervals,
the first two statements follow by induction using Lemmas 3.1 and 3.3.
To see that the bound 42 cannot be improved for any (α, β) ∈ I, one
can check that

(4836, 4878), (39652, 39694), (2788, 2830), (23268, 23310),

(6884, 6926), (740, 782), (13028, 13070), (19172, 19214)

are pairs of consecutive elements of the sets

H(0,1), H(0,3), H(0,5), H(0,7), H(1,1), H(1,3), H(1,5), H(1,7),

respectively. In fact, these are the first instances of pairs of consecutive
elements with difference 42 in each H(α,β). �

For the proof of Theorem 2.1 we need a further lemma.
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Lemma 3.4. Let p be a prime, u be a positive integer and a1, . . . , apu
be real numbers. For t = 1, . . . , u− 1 put

a
(t)
i =

1

p

p∑
j=1

a
(t−1)
(i−1)p+j (i = 1, . . . , pu−t)

with a
(0)
i = ai (i = 1, . . . , pu). Suppose that

(7) max
1≤i≤pu

|ai| > C1

and

(8) |a(t)ℓp+j1
− a

(t)
ℓp+j2

| ≤ C2

for any 0 ≤ t ≤ u − 1, 0 ≤ ℓ ≤ pu−t − 1 and 1 ≤ j1 < j2 ≤ p, where
C1 and C2 are some real numbers with C1 > (u + 1)(p − 1)C2/p > 0.
Then a1, . . . , apu have the same sign, and we have

min
1≤i≤pu

|ai| > C1 − (u+ 1)(p− 1)C2/p.

Proof. We proceed by induction on u. For u = 1 conditions (7) and (8)
reduce to

max(|a1|, . . . , |ap|) > C1 and |aj1 − aj2 | ≤ C2 (1 ≤ j1 < j2 ≤ p),

respectively. These simply yield

min(|a1|, . . . , |ap|) > C1 − C2 ≥ C1 − 2(p− 1)C2/p,

and it is also clear that a1, . . . , ap are of the same sign. So the lemma
follows in this case. Assume now that the statement is valid for some
u ≥ 1, for any real numbers a1, . . . , apu . Take any real numbers
a1, . . . , apu+1 , satisfying the properties (7) and (8), with u replaced by
u+ 1; in particular, with C1 > (u+ 2)(p− 1)C2/p > 0. Put

bi =
1

p

p∑
j=1

a(i−1)p+j (i = 1, . . . , pu).

By (7) and (8) we get that

|bℓp+j1 − bℓp+j2 | ≤ C2

for all 0 ≤ ℓ ≤ pu−1 − 1 and 1 ≤ j1 < j2 ≤ p, whence

max
1≤i≤pu

|bi| >
C1 + (p− 1)(C1 − C2)

p
= C1 − (p− 1)C2/p.

Thus the numbers b1, . . . , bpu satisfy the conditions (7) and (8), with
C1 replaced by C1 − (p − 1)C2/p. Hence by the induction hypothesis
we have

min
1≤i≤pu

|bi| > C1 − (u+ 1)(p− 1)C2/p,
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and that the bi-s are of the same sign.
Let i be the index for which |ai| is minimal. Without loss of generality

we may assume that i = 1; all the other cases are similar. Then we
have

C1 − (u+ 1)(p− 1)C2/p < |b1| =
∣∣∣∣a1 + · · ·+ ap

p

∣∣∣∣ .
This by (8) immediately gives

min
1≤i≤pu+1

|ai| = |a1| ≥ C1 − (u+ 2)(p− 1)C2/p.

It is also clear that the ai-s are of the same sign. Thus the lemma
follows. �

Now we are ready to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. As in the proof of Theorem 2.3, for (α, β) ∈ I
and x > y ≥ 0 set

H(α,β)(y, x) = H(α,β) ∩ [y, x) and h(α,β)(y, x) =
|H(α,β)(y, x)|

x− y
.

If y = 0, we simply write H(α,β)(x) and h(α,β)(x), respectively. To prove
the theorem, by the above notation we need to show that

lim
x→∞

h(α,β)(x) = 1/(p− 1)pa+b−1

for every (α, β) ∈ I. For this, first we prove the following assertion: we
have

(9) lim
k→∞

h(α,β)((j − 1)pk−b+1, jpk−b+1) = 1/(p− 1)pa+b−1

for any (α, β) ∈ I and 1 ≤ j ≤ pb−1. Note that in particular, this
immediately gives

lim
k→∞

h(α,β)(pk) = 1/(p− 1)pa+b−1

for all (α, β) ∈ I. To show (9), for k ≥ max(a, b) and 1 ≤ j ≤ pb−1 set

A
(k)
j = [(j − 1)pk−b+1, jpk−b+1),

and for 1 ≤ t ≤ p− 1 put

B
(k)
t,j = [tpk + (j − 1)pk−b+1, tpk + jpk−b+1).

Observe that we have

A
(k+1)
j =

(j−1)p+p∪
i=(j−1)p

A
(k)
i (j = 1, . . . , pb−2)
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and

A
(k+1)

tpb−2+j
=

(j−1)p+p∪
i=(j−1)p

B
(k)
t,i (t = 1, . . . , p− 1, j = 1, . . . , pb−2).

Set

D(k) =
∑

(α,β)∈I

pb−1∑
j=1

(x
(k)
j (α, β))2,

where

x
(k)
j (α, β) = h(α,β)((j − 1)pk−b+1, jpk−b+1)− 1/(p− 1)pa+b−1.

Applying Lemmas 3.1 and 3.3 with 1 ≤ t ≤ p−1, the recursive relation

for the sets A
(k)
j yields that

D(k + 1) =

p−1∑
t=0

∑
(α,β)∈I

pb−2−1∑
j=0

(
1

p

p∑
i=1

x
(k)
jp+i(α

(t)
jp+i, β

(t)
jp+i)

)2

.

Here (α
(t)
jp+i, β

(t)
jp+i) ∈ I is given by

α
(t)
jp+i +

t

1− p
≡ α (mod pa), γt(j)β

(t)
jp+i ≡ β (mod pb),

where the γt(j) are defined in Lemma 3.3 for t ≥ 1, and γ0(j) = 1. Here

one should observe that ℓ ∈ A
(k)
j if and only if tpk + ℓ ∈ B

(k)
t,j , and such

an ℓ belongs to H(α
(t)
jp+i,β

(t)
jp+i)((j−1)pk−b+1, jpk−b+1) if and only if tpk+ℓ

belongs to H(α,β)(tpk + (j − 1)pk−b+1, tpk + jpk−b+1) (j = 1, . . . , pb−1).

Hence, as for all possible values of i, j, t the pairs (α
(t)
jp+i, β

(t)
jp+i) yield

permutations of I, by a simple calculation we obtain
(10)

D(k)−D(k+1) =
∑

(α,β)∈I

pb−2−1∑
j=0

∑
1≤i1<i2≤p

(
x
(k)
jp+i1

(α, β)− x
(k)
jp+i2

(α, β)

p

)2

.

This immediately implies that the sequence D(k) is monotone decreas-
ing. Since clearly, D(k) ≥ 0 for all k, this sequence is convergent; write
σ for its limit. If σ = 0, then assertion (9) immediately follows. So
assume that σ > 0. Observe that the definition of D(k) implies that
for all k ≥ max(a, b) we have

mk := max
(α,β)∈I

1≤j≤pb−1

|x(k)
j (α, β)| >

√
σ/pa+b.

Now choose a k ≥ max(a, b) such that D(k) < σ + µ, where µ is
to be chosen later. (For the moment, it is sufficient to consider µ
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to be ’very small’, also with respect to σ.) Fix j0 and (α0, β0) such

that mk = |x(k)
j0
(α0, β0)|. We shall assume that here x

(k)
j0
(α0, β0) > 0,

the other case is completely similar. Observe that by (10) we have
that D(k + i) − D(k + i + 1) < µ for all i ≥ 0. This, choosing µ
sufficiently small in terms of σ, by Lemma 3.4 inductively shows that

x
(k)
j (α0, β0) > c1(σ) holds for all j with 1 ≤ j ≤ pb−1. Here and later

on, cℓ(σ) is an explicitly computable positive constant depending only
on σ (besides a, b and p, which are considered to be fixed). At this
point we need to distinguish two cases.

Assume first that p = 2. Then by Lemmas 3.1 and 3.3, using the

recursive definition of the sequence x
(k)
j , together with a similar argu-

ment as above (choosing µ to be sufficiently small), we get that there

exists a j with 1 ≤ j ≤ 2b−1 such that x
(k+1)
j (α0 − 1, β′) > c2(σ), and

then that in fact x
(k+1)
j (α0 − 1, β′) > c3(σ) for all j with 1 ≤ j ≤ 2b−1,

where β′ ∈ I2. Repeating the argument, we get that for all α∗ ∈ I1
there exists a β∗ ∈ I2 such that x

(k+2a)
j (α∗, β∗) > c4(σ) for all j with

1 ≤ j ≤ 2b−1. Now let (α̂, β̂) ∈ I be arbitrary. Then there exists a

β∗ ∈ I2 such that x
(k+2a)
j (α̂ + 1, β∗) > c4(σ). Then, since the γ1(j) in

Lemma 3.3 yield a permutation of the invertible elements of Z2b , we see
that for the index j defined by γ1(j)β

∗ ≡ β̂ (mod 2b), with the usual

argument we obtain that x
(k+2a+1)
j (α̂, β̂) > c5(σ). Then repeating the

argument once more, we get that in fact x
(k+2a+1)
j (α̂, β̂) > c6(σ) for all

j with 1 ≤ j ≤ 2b−1. This is already sufficient for our purposes; we
shall draw the conclusion a bit later, after examining the case of odd
primes p as well.

So let now p be an odd prime. Recall that x
(k)
j (α0, β0) > c1(σ) for

all j with 1 ≤ j ≤ pb−1, and let β∗ ∈ I2 be arbitrary. By Lemma 3.3
there exists an ℓ depending only on p and b, and γt1(j1), . . . , γtℓ(jℓ) ∈
I2 such that γt1(j1) · · · γtℓ(jℓ)β0 ≡ β∗ (mod pb). This by the usual
argument gives that for every β∗ ∈ I2 one can find an α∗ ∈ I1 such

that x
(k+s)
j (α∗, β∗) > c7(σ) for all j with 1 ≤ j ≤ pb−1, with some s ≥ 0

depending only on p and b. Now applying Lemmas 3.1 and 3.3 with
t = p − 1 and j = pb − 1, by the usual argument again, we get that

x
(k+s+1)
j (α∗ − 1,−β∗) > c8(σ) for all j with 1 ≤ j ≤ pb−1. Repeating

this argument 2pa times, since pa is odd, we get that x
(k+s+2pa)
j (α, β∗) >

c9(σ) for all α ∈ I1 and for all j with 1 ≤ j ≤ pb−1. Since β∗ ∈ I2 is

arbitrary, we get that in fact x
(k+s′)
j (α̂, β̂) > c10(σ) for all (α̂, β̂) ∈ I

and j with 1 ≤ j ≤ pb−1, for some s′ ≥ 0 depending only on a, b and p.
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So in both cases we get x
(k+s′)
j (α̂, β̂) > c11(σ) for all (α̂, β̂) ∈ I and

j with 1 ≤ j ≤ pb−1, for some s′ ≥ 0 depending only on a, b and p.
However, this contradicts the identity∑

(α,β)∈I

x
(k)
j (α, β) = 0

being valid for all k ≥ max(a, b) and 1 ≤ j ≤ pb−1. This proves that
σ = 0, and consequently, lim

k→∞
mk = 0 (hence also (9)).

Now choose an arbitrary ε > 0, and let k0 ≥ max(a, b) be such that

(11)

∣∣∣∣h(α,β)((j − 1)pk−b+1, jpk−b+1)− 1

|I|

∣∣∣∣ < ε

whenever k ≥ k0, for any (α, β) ∈ I and 1 ≤ j ≤ pb−1. By (9) we know
that such a k0 exists. In fact (11) is valid for any j ≥ 1. This follows
by induction from the fact that by Lemmas 3.1 and 3.3, for any k ≥ k0
we have

H(α,β)(tpk+(j−1)pk−b+1, tpk+jpk−b+1) = H(α′,β′)((j−1)pk−b+1, jpk−b+1),

with some (α′, β′) ∈ I and t, j with 0 ≤ t ≤ p− 1 and 1 ≤ j ≤ pb−1.
Let N0 be a positive integer to be specified later, and let N > N0.

Write

N =
r∑

s=1

csp
fs

with integers f1 > · · · > fs ≥ 0 and 0 < c1, . . . , cs < p. Then for any
(α, β) ∈ I we can clearly write
(12)∣∣H(α,β)(N)

∣∣ = r∑
ℓ=1

cℓ−1∑
i=0

∣∣∣∣∣H(α,β)

(
ℓ−1∑
g=1

cgp
fg + ipfℓ ,

ℓ−1∑
g=1

cgp
fg + (i+ 1)pfℓ

)∣∣∣∣∣ .
Let M be the largest multiple of pk0−b+1 with M ≤ N , and set q =
M/pk0−b+1. Using (11), for every 1 ≤ j ≤ q we have

1

|I|
− ε <

∣∣H(α,β)((j − 1)pk−b+1, jpk−b+1)
∣∣

pk−b+1
<

1

|I|
+ ε,

whenever k ≥ k0. Write

N =
r∑

s=1

csp
fs =

r′∑
s=1

csp
fs + T,
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where T = N − M ; observe that 0 ≤ T < pk0−b+1. Thus, using (11),
we have both

|H(α,β)(N)| ≤
r′∑

s=1

cs

(
pfs

|I|
+ εpfs

)
+ T ≤ N − T

|I|
+ ε(N − T ) + T,

and

|H(α,β)(N)| ≥
r′∑

s=1

cs

(
pfs

|I|
− εpfs

)
≥ N − T

|I|
− ε(N − T ).

Recalling that h(α,β)(N) = |H(α,β)(N)|/N , taking N0 sufficiently large,
the theorem follows. �

Proof of Theorem 2.2. The statement that for any (α, β) ∈ I, H(α,β) is
relatively dense, would follow from the arguments given in the proof
of Theorem 2.1 (in particular, from (9)). However, to give an explicit
bound for the largest gap in H(α,β), we follow another (though similar)
method.

From the proof of Theorem 2.1, for k ≥ max(a, b) we extend the
notation

A
(k)
j = [(j − 1)pk−b+1, jpk−b+1)

from 1 ≤ j ≤ pb−1 to 1 ≤ j ≤ pb. For all such j, set

T
(k)
j = {(α, β) ∈ I : H(α,β) ∩ A

(k)
j ̸= ∅}.

Observe that by Lemmas 3.1 and 3.3 (see also Remark 2), T
(k)

tpb−1+j
is an

injective map of T
(k)
j , for t = 0, . . . , p− 1 and j = 1, . . . , pb−1. Further,

for any k ≥ max(a, b) we clearly have

T
(k+1)
j =

p∪
i=1

T
(k)
(j−1)p+i (j = 1, . . . , pb−1).

For k as before, let

s(k) = |T (k)
1 |+ · · ·+ |T (k)

pb−1 |.

Clearly, s(k) is a positive integer with s(k) ≤ pb−1|I| = (p − 1)pa+2b−2.
From what we know about the sets T (k) and T (k+1), we easily deduce

that s(k+1) ≥ s(k), with equality precisely when T
(k)
(j−1)p+i1

= T
(k)
(j−1)p+i2

for all j = 1, . . . , pb−1 and 1 ≤ i1 < i2 ≤ p. Using this observation

together with the inductive definition of the sets T
(k)
j , we see that if for

some k we have

s(k) = s(k+1) = · · · = s(k+b),
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then in fact

T
(k)
j1

= T
(k)
j2

(1 ≤ j1 < j2 ≤ pb).

This implies that then, with this k, we have s(k+ℓ) = s(k), for all ℓ ≥ 0.
Summarizing the above arguments, we obtain that there exists a K
such that s(K+ℓ) = s(K) for all ℓ ≥ 0, and that

K = max(a, b) + b(p− 1)pa+2b−2

is an appropriate choice.

Now we show that with this K we have T
(K)
j = I for all j = 1, . . . , pb.

For this, it is in fact sufficient to show that this equality holds for all

j = 1, . . . , pb−1. Note that we already know that T
(K)
j1

= T
(K)
j2

for

1 ≤ j1 < j2 ≤ pb. At this point we split our argument into two parts.

Assume first that p = 2. Let (α, β) ∈ T
(K)
1 . Then, choosing the j for

which γ1(j) = 1 in Lemma 3.3, by Lemma 3.1 we see that (α− 1, β) ∈
T

(K)
1 is also valid (in view of T

(K)
1 = T

(K)
j ). This shows that for all α∗ ∈

I1, we have (α∗, β) ∈ T
(K)
1 . Let now (α̂, β̂) ∈ I be arbitrary. Choose

the j for which γ1(j)β ≡ β̂ (mod 2b). Then, since (α̂ + 1, β) ∈ T
(K)
1 ,

we obtain (α̂, β̂) ∈ T
(K)
1 . This proves our claim for p = 2.

Suppose next that p is an odd prime. Let (α, β) ∈ T
(K)
1 . Then, in

view of γp−1(p
b−1) ≡ −1 (mod pb), applying Lemmas 3.1 and 3.3 with

t = p− 1 and j = pb − 1, we get that (α − pa − 1, (−1)p
a+1β) ∈ T

(K)
1 ,

that is, (α − 1, β) ∈ T
(K)
1 . This shows that in fact for all α∗ ∈ I1,

we have (α∗, β) ∈ T
(K)
1 . Let now (α̂, β̂) ∈ I be arbitrary. Based

upon Lemma 3.3, choose γt1(j1), . . . , γtℓ(jℓ) ∈ I2 in Lemma 3.3 such

that γt1(j1) · · · γtℓ(jℓ)β ≡ β̂ (mod pb). Then we inductively see that

(α′, β̂) ∈ T
(K)
1 with some α′ ∈ I1. Indeed, we know that (α′′, γtℓ(jℓ)β) ∈

T
(K+s)
j′ for some s and j′, but then this pair also belongs to T

(K)
1 - and

so on. By what we have proved so far, this yields (α̂, β̂) ∈ T
(K)
1 . Thus

our claim follows in this case, too.
So by Lemmas 3.1 and 3.3 we conclude that any interval of the form

[(j − 1)pK−b+1, jpK−b+1) (j ≥ 1) contains all elements of I. Thus the
largest gap in H(α,β) cannot be larger than 2pK−b+1 for any (α, β) ∈ I.
Hence the theorem follows. �
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