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Abstract

We prove that the product of k consecutive terms of a primitive arithmetic progres-
sion is never a perfect fifth power when 3 ≤ k ≤ 54. We also provide a more precise
statement, concerning the case where the product is an ”almost” fifth power. Our
theorems yield considerable improvements and extensions, in the fifth power case, of
recent results due to Győry, Hajdu and Pintér. While the earlier results have been
proved by classical (mainly algebraic number theoretical) methods, our proofs are
based upon a new tool: we apply genus 2 curves and the Chabauty method (both
the classical and the elliptic verison).
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1 Introduction

Consider the Diophantine equation

x(x + d) . . . (x + (k − 1)d) = byn (1)
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in non-zero integers x, d, k, b, y, n with gcd(x, d) = 1, d ≥ 1, k ≥ 3, n ≥ 2 and
P (b) ≤ k. Here P (u) stands for the largest prime divisor of a non-zero integer
u, with the convention P (±1) = 1.

The equation has a very rich literature. For d = 1 and b = 1, equation (1)
has been solved by Erdős and Selfridge [9]. This celebrated result can be
reformulated as that the product of two or more consecutive positive integers
is never a perfect power. The complete solution of (1) in case of d = 1 is due
to Saradha [21] (case k ≥ 4) and Győry [10] (case k < 4).

For an overview of the huge number of related results for d > 1 we refer to
survey papers of Győry [11], Shorey [22], [23] and Tijdeman [25]. Now we
mention only results which are closely related to the scope of the present
paper, focusing on the complete solution of (1) when the number k of terms
is fixed.

In case of (k, n) = (3, 2) equation (1) has infinitely many solutions, already
for b = 1 (c.f. [25]). Euler (see [8]) proved that (1) has no solutions with
b = 1, and (k, n) = (3, 3) or (4, 2). Obláth [18], [19] obtained similar results
for (k, n) = (3, 4), (3, 5) and (5, 2).

By a conjecture of Erdős, equation (1) has no solutions in positive integers
when k > 3 and b = 1. In other words, the product of k consecutive terms of a
primitive positive arithmetic progression with k > 3 is never a perfect power.
By primitive arithmetic progression we mean one of the form

x, x + d, . . . , x + (k − 1)d,

with gcd(x, d) = 1. The conjecture of Erdős has recently been verified for
certain values of k in a more general form; see the papers [11], [12], [1], [13].
Since now we focus on the case n = 5, we give only the best known result
for this particular exponent. (Though the results mentioned are valid for any
n ≥ 2.) The following statement is a combination of results from [11] (case
k = 3), [12] (cases k = 4, 5), [1] (cases k = 6, 7) and [13] (cases 8 ≤ k ≤ 34).

Theorem A. The only solutions to equation (1) with n = 5, 3 ≤ k ≤ 34 and
P (b) ≤ Pk, with

Pk =



2, if k = 3, 4,

3, if k = 5,

5, if k = 6, 7,

7, if 8 ≤ k ≤ 22,
k−1
2

, if 23 ≤ k ≤ 34

are given by

(k, d) = (8, 1), x ∈ {−10,−9,−8, 1, 2, 3}; (k, d) = (8, 2), x ∈ {−9,−7,−5};
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(k, d) = (9, 1), x ∈ {−10,−9, 1, 2}; (k, d) = (9, 2), x ∈ {−9,−7};
(k, d) = (10, 1), x ∈ {−10, 1}; (k, d, x) = (10, 2,−9).

Note that knowing the values of k, d and x, all solutions (x, d, k, b, y, n) of (1)
can be easily listed.

To explain why the case n = 5 in equation (1) is special, we need to give
some insight into the method of solving (1) for fixed k, in the general case
n ≥ 2. One of the most important tools is the modular method, developed by
Wiles [26]. In [11], [12], [1], [13] all three types of ternary equations (i.e. of
signatures (n, n, 2), (n, n, 3), (n, n, n)) and related results of Wiles [26], Kraus
[16], Darmon and Merel [7], Ribet [20], Bennett and Skinner [2], Bennett,
Vatsal and Yazdani [3] and others are used. However, the modular technique
works effectively only for ”large” exponents, typically for n ≥ 7. Thus the
”small” exponents n = 2, 3, 5 must be handled separately. In fact these cases
are considered in distinct sections, or are covered by separate theorems in the
above mentioned papers.

Further, the exponents n = 2, 3 have already been considered in separate
papers. Equation (1) with n = 2 has a broad literature in itself; see e.g. [15]
and the references given there. Here we focus only on the resolution of (1) with
fixed k. For n = 2 and positive x, equation (1) has been completely solved (up
to a few exceptional cases) by Hirata-Kohno, Laishram, Shorey and Tijdeman
[15] for k ≤ 100, and in case of b = 1, even for k ≤ 109. Their main tools were
elliptic curves and quadratic residues. Later, the exceptional remaining cases
have been handled by Tengely [24], by the help of the Chabauty method. At
this point we note that we shall refer to the Chabauty method frequently in
this paper. For the description of the method, and in particular how to use
it in the frame of the program package Magma [4], we refer to the papers of
Bruin [5], [6] and the references given there.

When n = 3, working mainly with cubic residues, however making use of el-
liptic curves and the Chabauty method as well, Hajdu, Tengely and Tijdeman
[14] obtained all solutions to equation (1) with k < 32 such that P (b) ≤ k if
4 ≤ k ≤ 12 and P (b) < k if k = 3 or k ≥ 13. Further, if b = 1 then they could
solve (1) for k < 39.

The case n = 5 has not yet been closely investigated. In this case (in the above
mentioned papers considering equation (1) for general exponent n) mainly
classical methods were used, due to Dirichlet and Lebesgue (see e.g. [13]).
Apparently, for n = 5 elliptic curves are not applicable. In the present paper
we show that in this case the Chabauty method (both the classical and the
elliptic version) can be applied very efficiently. As we mentioned, the Chabauty
method has been already used for the cases n = 2, 3 in [1], [24], [14]. However,
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it has been applied only for some particular cases and equations. To prove our
results we solve a large number of genus 2 equations by Chabauty method,
and then build a kind of sieve system based upon them.

2 New results

Our first theorem considerably extends Theorem A, in the most interesting
case of b = 1 in equation (1). We call an arithmetic progression of the form
x, x + d, . . . , x + (k − 1)d primitive, if gcd (x, d) = 1.

Theorem 1 The product of k consecutive non-zero terms in a primitive arith-
metic progression with 3 ≤ k ≤ 54 is never a fifth power.

In fact Theorem 1 follows directly from the next result. To formulate it, we
need to introduce a new concept. An arithmetic progression x, x + d, . . . , x +
(k− 1)d is called trivial if d ≤ 5 and |x + id| ≤ 15 for some i = 0, 1, . . . , k− 1.
Further, a solution to equation (1) is also called trivial, if the terms x, x +
d, . . . , x+(k−1)d on the left-hand side of (1) form a trivial arithmetic progres-
sion. This concept is needed because of the huge number of trivial solutions;
on the other hand, such solutions of (1) can be listed easily for any fixed k.

Theorem 2 Equation (1) with n = 5, 3 ≤ k ≤ 24 and P (b) ≤ Pk has
precisely the non-trivial solutions with

(k, d) = (3, 7), x ∈ {−16,−8,−6, 2};

(k, d) = (4, 7), x ∈ {−16,−15,−12,−9,−6,−5};

(k, d) = (4, 11), x ∈ {−27,−6}; (k, d) = (5, 7), x ∈ {−16,−12};

(k, d) = (5, 11), x ∈ {−36,−32,−12,−8};

(k, d) = (5, 13), x ∈ {−40,−27,−25,−12};

(k, d) = (6, 7), x ∈ {−32,−25,−10,−3};

(k, d) = (6, 9), x ∈ {−25,−20}; (k, d) = (6, 13), x ∈ {−40,−25};

(k, d) = (7, 7), x ∈ {−39,−32,−27,−22,−20,−15,−10,−3};

(k, d) = (8, 7), x ∈ {−39,−27,−22,−10};

(k, d) = (9, 7), x ∈ {−39,−34,−32,−24,−22,−17};

(k, d) = (10, 7), x ∈ {−39,−24},
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where the values of Pk are given by

k 3 4 5 6 7, 8

Pk 3 5 7 11 13

k 9, 10, 11, 12 13, 14, 15 16, 17 18, 19, 20, 21, 22, 23 24

Pk 17 19 23 29 31

Observe that Pk > k for k ≥ 4 in Theorem 2, which is a new feature about
equation (1).

As a simple and immediate corollary of Theorem 2 we get the following state-
ment, concerning the case P (b) ≤ k. We mention that already this result
yields considerable improvement of Theorem A, in particular with respect to
the bound for P (b).

Corollary 3 For n = 5 and 3 ≤ k ≤ 36 all non-trivial solutions of equation
(1) with P (b) ≤ k are given by

(k, d) = (3, 7), x ∈ {−16,−8,−6, 2}; (k, d) = (5, 7), x ∈ {−16,−12}.

Our last theorem provides the key to the proof of Theorem 2 in case of k ≥ 4.
It has been proved by a kind of sieving procedure, based upon genus 2 equa-
tions and the Chabauty method. Note that having an increasing arithmetic
progression z1 < . . . < zl, by symmetry we obtain that −zl < . . . < −z1 is
also an increasing arithmetic progression. Hence dealing with such arithmetic
progressions it is sufficient to give only one progression from each symmetric
pair.

Theorem 4 Let 4 ≤ t ≤ 8 and z0 < z1 < . . . < zt−1 be a non-trivial primitive
arithmetic progression. Suppose that

z0 = b0x
5
0, zi1 = bi1x

5
i1
, zi2 = bi2x

5
i2
, zt−1 = bt−1x

5
t−1,

with some indices 0 < i1 < i2 < t− 1 such that P (b0bi1bi2bt−1) ≤ 5. Then the
initial term z0 and common difference z1 − z0 of the arithmetic progression
z0, . . . , zt−1 for the separate values of t = 4, . . . , 8 up to symmetry is one of

t = 4 : (−9, 7), (−6, 7), (−6, 11), (−5, 7);

t = 5 : (−32, 17), (−25, 13), (−20, 11), (−16, 13), (−12, 7), (−12, 11), (−12, 13),
(−10, 7), (−8, 7), (−8, 11), (−4, 7), (−3, 7), (−1, 7), (2, 7), (4, 7), (4, 23);
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t = 6 : (−125, 61), (−81, 17), (−30, 31), (−25, 8), (−25, 11), (−25, 13), (−25, 17),
(−20, 9), (−20, 13), (−20, 19), (−20, 29), (−15, 7), (−15, 11), (−15, 13), (−15, 23),
(−10, 7), (−10, 11), (−8, 7), (−5, 7), (−3, 7), (−1, 11), (−1, 13), (1, 7), (5, 11);

t = 7 : (−54, 19), (−54, 29), (−48, 23), (−30, 11), (−30, 13), (−27, 17), (−24, 13),
(−18, 7), (−18, 11), (−18, 13), (−18, 19), (−16, 11), (−15, 7), (−12, 7), (−12, 11),
(−10, 7), (−6, 7), (−6, 11), (−4, 9), (−3, 13), (−2, 7), (−2, 17), (2, 13), (3, 7), (6, 7),
(8, 7), (9, 11), (18, 7);

t = 8 : (−405, 131), (−125, 41), (−100, 49), (−32, 11), (−27, 11), (−27, 13),
(−25, 19), (−24, 7), (−16, 13), (−10, 13), (−9, 7), (−5, 11), (−4, 7), (−2, 11),
(−1, 13), (−1, 7), (1, 7), (3, 11), (4, 11), (5, 7), (6, 17).

3 Preliminaries

Before giving the proofs of our results, we explain some principles and tech-
niques which shall be used rather frequently later on. We present these tools
separately because in this way the structure of our proofs will be more trans-
parent.

3.1 Reducing equation (1) to arithmetic progressions of ”almost” fifth powers

In a standard way, as gcd(x, d) = 1 and n = 5, any solution of equation (1)
can be written as

x + id = aix
5
i (i = 0, 1, . . . , k − 1) (2)

where xi is a non-zero integer and ai is a fifth power free positive integer
with P (ai) ≤ k. This observation justifies the title of the paper, as well: the
members of the arithmetic progression x, x + d, . . . , x + (k− 1)d are ”almost”
n-th powers.

3.2 Listing the possible coefficient tuples

Suppose that
ai1x

5
i1

< ai2x
5
i2

< · · · < aitx
5
it (3)

are t (not necessarily consecutive) nonzero terms of a primitive arithmetic
progression, with aij as in (2). In this subsection we explain a method to list
all the possible coefficient t-tuples (ai1 , ai2 , . . . , ait) corresponding to (3).
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Observe that knowing aij is equivalent to knowing the exponents νp(aij) of
the primes p ≤ k in the factorization of aij . Take an arbitrary prime p ≤ k
dividing one of the terms aijx

5
ij
, and suppose that ij0 is such an index that

νp(aij0
x5

ij0
) ≥ νp(aijx

5
ij
) for all j = 1, . . . , t.

Since the arithmetic progression is assumed to be primitive, one can easily
check that then for all j = 1, . . . , t with j 6= j0 we have νp(aijx

5
ij
) = νp(j− j0).

As we have νp(aij0
) < 5, we can simply list all possibilities for the exponents

of the prime p in the coefficients ai1 , ai2 , . . . , ait . Then combining these pos-
sibilities for all primes p ≤ k, we can list all the possible coefficient t-tuples
(ai1 , ai2 , . . . , ait) which may occur in (3).

3.3 Local testing of coefficient tuples

As we will see, some of the coefficient tuples listed in the previous subsection
in fact cannot occur as coefficients of fifth powers in arithmetic progressions.
In many cases this can be shown already modulo m with some appropriate
choice of m. We shall use the moduli m = 11, 25.

Let 0 ≤ i1 < i2 < · · · < it ≤ k − 1 be t indices, and consider a coefficient
t-tuple (ai1 , ai2 , . . . , ait), which in fact we would like to exclude - that is, we
would like to show that no corresponding subsequence

ai1x
5
i1
, . . . , aitx

5
it (4)

of any appropriate arithmetic progression exists. For this purpose, consider
(4) modulo m (with m = 11 or 25). Observe that to have such a sequence, we
should find appropriate fifth powers modulo m. We check all the possibilities.
(Since we work with m = 11 and m = 25, the fifth powers modulo m are
only {0,±1} and {0,±1,±7}, respectively.) Observe that by coprimality, we
know that m | aij1

, aij2
yields that m | j1 − j2. If we find that no fifth powers

modulo m exist having also the previous property, then the actual coefficient
tuple (ai1 , . . . , ait) is not valid in the sense that no underlying subsequence (4)
exists. We shall illustrate how to use this test later on.

3.4 Reducing the problem to genus 2 equations

We found two ways to get access to genus 2 equations.
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3.4.1 Reduction method I

Suppose that a0x
5
0, a1x

5
1, a2x

5
2 is an arithmetic progression with nonzero terms,

and with common difference d. Then we have

(a1x
5
1)

2 − a0x
5
0 · a2x

5
2 = d2

which after the substitutions X = −x0x2/x
2
1, Y = d/x5

1 and A = a0a2, B = a2
1

yields the genus 2 equation

AX5 + B = Y 2

in X, Y ∈ Q.

3.4.2 Reduction method II

Suppose that
aix

5
i , ajx

5
j , aux

5
u, avx

5
v

are four terms of an arithmetic progression. Then we have

(j − u)aix
5
i + (u− i)ajx

5
j = (j − i)aux

5
u

and
(j − v)aix

5
i + (v − i)ajx

5
j = (j − i)avx

5
v.

Multiplying these identities we get an equation of the form

AX10 + BX5Y 5 + CY 10 = DZ5, (5)

where A = (j − u)(j − v)a2
i , B = ((j − u)(v − i) + (u − i)(j − v))aiaj,

C = (u− i)(v − i)a2
j , D = (j − i)2auav and X = xi, Y = xj, Z = xuxv. Then

from (5) we can easily get a pair of genus 2 curves over Q

A1Z
5
1 + B1 = X2

1 and A2Z
5
2 + B2 = X2

2

with the notation A1 = 4AD, B1 = B2 − 4AC, X1 = 2AX5/Y 5 + B, Z1 =
Z/Y 2 and A2 = 4CD, B2 = B2 − 4AC, X2 = 2CY 5/X5 + B, Z2 = Z/X2,
respectively.

The rational points on the genus 2 curves obtained by both methods (under
suitable assumptions) can be determined by the Chabauty method. Then,
following the corresponding substitutions backwards we can determine the
actual members of the original arithmetic progressions.

Note that in fact in case of k = 3 in the proof of Theorem 2 we also use genus 1
curves over some number fields, which can be treated by the elliptic Chabauty
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method. However, since these are particular cases, we do not include them in
this ”general” discussion.

4 Proofs

We give the proofs of our results in a specific order. First we prove the case
k = 3 of Theorem 2. We do so because this result is needed in the proof of
Theorem 4, which is the next step. The latter result gives the key to derive
Theorem 2 for k ≥ 4. Then we continue by proving the cases k ≥ 4 of Theorem
2 and its corollary. Finally, we give the proof of Theorem 1, which easily follows
from Theorem 2.

In the proof of case k = 3 of Theorem 2 we shall make use of two lemmas.
The first one is due to Bennett, Bruin, Győry, Hajdu [1].

Lemma 5 Let C be a positive integer with P (C) ≤ 5. If the Diophantine
equation

X5 + Y 5 = CZ5

has solutions in nonzero coprime integers X, Y and Z, then C = 2 and X =
Y = ±1.

The second lemma is a result of Kraus [16].

Lemma 6 Let A and B be coprime positive integers with AB = 2α3β for
nonnegative integers α and β with α ≥ 4. Then the Diophantine equation

AX5 + BY 5 = Z5

has no solutions in coprime nonzero integers X, Y and Z.

Proof of the case k = 3 of Theorem 2. First list all the possible coefficient
triples (a0, a1, a2) as in (2). This can be done by the method explained in Sub-
section 3.2. Altogether we obtain 182 such triples. Observe that a2x

5
2, a1x

5
1, a0x

5
0

is also an arithmetic progression. Hence by symmetry it is sufficient to con-
sider those 106 triples for which a0 ≤ a2. (It will be clear from our method
that we can do so without loss of generality indeed.)

Clearly, a0x
5
0, a1x

5
1, a2x

5
2 is also an arithmetic progression modulo 11 and 25. So

we can test the coefficient triples modulo 11 and 25, as explained in Subsection
3.3. After the modulo 11 test we are left with 88 triples; for example (1, 1, 6)
gets excluded by this method. The test modulo 25 excludes 6 more triples
(e.g. (1, 4, 3)), and we are left with 82 ones.
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Then we apply Lemmas 5 and 6, in this order, for the remaining set of triples.
As an example for the application of Lemma 5 consider (a0, a1, a2) = (2, 1, 4).
The identity a0x

5
0 + a2x

5
2 = 2a1x

5
1 gives an equation of the shape

X5 + Y 5 = 2Z5,

with X = −x0, Y = x2, Z = x1, hence with X, Y, Z coprime. Then Lemma 5
gives that the only solutions are given by (X, Y, Z) = ±(1, 1, 1). In view of our
assumption that the arithmetic progression on the left hand side of (1) has
a positive common difference, we get that in this case the progression must
be given by (x, d) = (−2, 3), i.e. x0 = −1, x1 = x2 = 1. Note that here we
can automatically handle the ”symmetric” case (a0, a1, a2) = (4, 1, 2). For this
triple we get the only arithmetic progression is defined by (x, d) = (−4, 3),
belonging to x0 = x1 = −1, x2 = 1. By the help of Lemma 5 we can ex-
clude 58 triples. (Note that from this step, as we have seen, some solutions
are obtained.) To see an example also for the application of Lemma 6, take
(a0, a1, a2) = (1, 1, 54). As one can easily check, this triple has not been ex-
cluded so far, by any of our previous filters. Observe that since a2x

5
2 is even,

a0x
5
0 also must be even, i.e. 2 | x0. Thus using the identity a0x

5
0 +a2x

5
2 = 2a1x

5
1

once again, we get an equation of the form

16X5 + 27Y 5 = Z5

with X = x0/2, Y = x2, Z = x1, and gcd(X,Y, Z) = 1. Then Lemma 6 shows
that this equation has no solutions, so there is no arithmetic progression with
coefficient triple (1, 1, 54). By Lemma 6 we can exclude 6 more triples, so at
this stage we are left with 18 ones.

Now we apply our Reduction method I explained in Subsection 3.4.1 to handle
the remaining triples. Note that the Chabauty method for determining the
rational points on a genus 2 curve is applicable only if the rank of the Jacobian
of the curve is at most one. We find that in 16 out of the 18 triples this is just
the case. For example, when (a0, a1, a2) = (4, 1, 18) we get the curve

72X5 + 1 = Y 2,

where the rank of the Jacobian of the curve is 0. The rational points on this
curve (and two more curves where the ranks of the Jacobians are zero) can
be determined by the procedure Chabauty0 of Magma. It turns out that the
above equation has the only rational solutions (X, Y ) = (0,±1). Since there
is no corresponding arithmetic progression on the left hand side of (1), this
triple is simply excluded. In case of (a0, a1, a2) = (1, 2, 3) the corresponding
genus 2 curve is given by

3X5 + 4 = Y 2,

where the rank of the Jacobian of the curve is one. Then we use the procedure
Chabauty of Magma (as well as in case of 12 alike curves) to get the rational
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points on the curve. We get that the above curve has the only rational points
(X,Y ) = (−1,±1), (0,±2), (2,±10). These points yield the only arithmetic
progression given by

(x, d) = (1, 1).

(In the ”symmetric” case (a0, a1, a2) = (3, 2, 1) we get the same curve, and the
rational points yield the only arithmetic progression (x, d) = (−3, 1).) Only in
the cases (a0, a1, a2) = (1, 1, 3), (2, 9, 16) do we get genus 2 curves where the
ranks of the Jacobians are > 1 (namely, equal to 2 in both cases). We handle
these triples by the elliptic Chabauty method, and the procedure Chabauty

of Magma. We give details only for the triple (1, 1, 3), the other one can be
handled similarly. In this case, using the identity (x + d)2 − x(x + 2d) = d2,
we get the equation

X5 − 3Y 5 = Z2 (6)

with X = x2
1, Y = x0x2, Z = d. Further, the coprimality property yields

gcd(X, Y, Z) = 1. Finally, we may also assume that XY is odd. Indeed, 2 | Y
would easily imply that both x0 and x2 are even, which would violate the
coprimality property. Further, 2 | X would mean that 2 | x1. Then the identity
a0x

5
0 + a2x

5
2 = 2a1x

5
1 would give rise to

64(x1/2)5 − 3x5
2 = x5

0,

which is a contradiction by Lemma 6. Let K be the number field generated
by α = 5

√
3 over Q. Using the procedure pSelmerGroup of Magma, following

the method of Bruin [6] we get that (6) can be factorized as

X4 + αXY 3 + α2X2Y 2 + α3XY 3 + α4Y 4 = δU2 (7)

and
X − αY = δ−1V 2 (8)

where U, V are some algebraic integers in K, and

δ ∈ {1, 7 + 6α + 5α2 + 4α3 + 3α4, 1 + α + α3, 4 + 2α + α4}.

Note that δ is a unit in K, so δ and δ−1 are algebraic integers in K. In case
of δ = 1 + α + α3 or 4 + 2α + α4, write

V = b0 + b1α + b2α
2 + b3α

3 + b4α
4

with some integers b0, b1, b2, b3, b4 (using that 1, α, α2, α3, α4 is an integral basis
for K). Expanding equation (8) in both choices for δ and using that XY is
odd, we easily get a contradiction modulo 2 or 4, respectively. Assume next
that δ = 1. Then equation (7) yields the elliptic curve

E1 : u4 + αu3 + α2u2 + α3u + α4 = v2

over K, with u = X/Y and v = U/Y 2. Using the point (0, α2) of E1, one can
apply the elliptic Chabauty method and the procedure Chabauty of Magma
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to find the points of E1 with (u, v) ∈ Q×K. In the present case the only such
points are given by (u,±v) = (0, α2). However, this point yields x1 = 0 which
is impossible. Finally, assume that δ = 7 + 6α + 5α2 + 4α3 + 3α4. Then (7)
gives rise to the elliptic curve

E2 : u4 + αu3 + α2u2 + α3u + α4 = (7 + 6α + 5α2 + 4α3 + 3α4)v2

over K, again with u = X/Y and v = U/Y 2. Using the point (−1, 1 + α −
α2 + α3 − α4) of E2, by a similar procedure as in case of E1 we get that the
only points (u,±v) ∈ Q×K of E2 are (−1, 1 + α− α2 + α3 − α4) and (3, 3−
3α+7α2−3α3−α4). These points yield the only arithmetic progression given
by (x, d) = (−1, 2), and the triple (1, 1, 3) is completely discussed. Note that
obviously, in case of the coefficient triple (3, 1, 1) we get the only progression
(x, d) = (−3, 2).

In case of the triple (a0, a1, a2) = (2, 9, 16) by a similar method we obtain that
the only underlying arithmetic progression is (x, d) = (2, 7) (and in case of
(a0, a1, a2) = (16, 9, 2) it is (x, d) = (−16, 7)), and the proof of the case of
k = 3 of Theorem 2 is complete.

Proof of Theorem 4. We work inductively on t. Assume first that t = 4.
Then the four terms b0x

5
0, bi1x

5
i1
, bi2x

5
i2
, b3x

5
3 in fact are consecutive ones of

an arithmetic progression, that is, i1 = 1, i2 = 2. Then by case k = 3 of
Theorem 2 (which has already been proved) we may assume that 5 | b1b2.
Using symmetry (just as before) we may further suppose that b0 ≤ b3. Now
following the method explained in Subsection 3.2 we can list all such coefficient
quadruples (b0, b1, b2, b3), which further have the properties as the coefficients
in (2). Then we check the remaining quadruples modulo 11, modulo 25, then
by Lemmas 5, 6. Since these checks go along the same lines as in the proof of
the case of k = 3 of Theorem 2 above, we suppress the details.

Then for the case of the quadruples still remaining, we choose two arbitrary
indices out of {0, 1, 2, 3} as i, j (the remaining two indices will play the role of
u, v), and apply Reduction method II as explained in Subsection 3.4.2 to con-
struct two genus 2 curves C1 and C2. If for either of these curves we have that
the rank of the Jacobian is ≤ 1, then by applying the Chabauty method (us-
ing Magma) its rational points can be determined. Then we get all arithmetic
progressions corresponding to the actual coefficient quadruple. If the choice of
i, j and u, v yields curves where the ranks of the Jacobians are ≥ 2, then we
make another choice for i, j and u, v, etc. Since we can construct 2 ·

(
4
2

)
= 12

such curves (which apparently are ”independent”), we have a good chance to
handle all coefficient quadruples. In fact, this is just what happens indeed. For
example, let (b0, b1, b2, b3) = (3, 10, 1, 162). Then choosing (i, j) = (0, 1) and
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(u, v) = (2, 3) in Reduction method II, we have

−3x5
0 + 20x5

1 = x5
2

and
−6x5

0 + 30x5
1 = 162x5

3.

Multiplying these identities we get the equation

18x10
0 − 210(x0x1)

5 + 600x10
1 = 162(x2x3)

5.

Introducing the new variables X = x2x3/x
2
1 and Y = 6x5

0/x
5
1−35, the previous

equation yields
Y 2 = 324X5 + 25.

This equation is of genus 2 where the rank of the Jacobian is 0. Using the
procedure Chabauty0 of Magma, we get that the only rational solutions of
this equation are (X,Y ) = (0,±5). Following the substitutions backwards, we
obtain no solution for x0, x1, x2, x3.

We handled all the possible coefficient quadruples remaining after the above
explained tests similarly. We get that the only non-trivial possibilities in case
of t = 4 are those given in the theorem.

Now assume that the statement is proved for some t ∈ {4, 5, 6, 7}, and consider
the value t+1. The indices i1, i2 may take only (t−1)(t−2)/2 values altogether.
From this point on we just repeat the same steps as with t = 4. For instance,
suppose we have already finished with the case t = 7 and consider the case of
t + 1 = 8 terms. Then we have 15 possibilities for the pair of indices (i1, i2),
given by 0 < i1 < i2 < 7. As an example, take (i1, i2) = (2, 3) and consider the
tuple (b0, b2, b3, b7) = (24, 10, 3, 25). As it cannot be excluded neither modulo
11, modulo 25, nor by Lemmas 5, 6, we use Reduction method II, again.
Choosing (i, j) = (0, 7) and (u, v) = (2, 3), after simplifying by 10 and 3,
respectively, we obtain

12x5
0 + 5x5

7 = 7x5
2

32x5
0 + 25x5

7 = 7x5
3.

Multiplying these identities we get

384x10
0 + 460(x0x7)

5 + 125x10
7 = 49(x2x3)

5.

After some calculations we are left with the equation

Y 2 = 3X5 + 25,

where X = 2x2x3/x
2
7 and Y = (192x5

0/x
5
7 + 115)/7. This equation is of

genus 2 and the rank of the Jacobian of the curve is 1. Using the proce-
dure Chabauty of Magma again, we conclude that its rational solutions are
(X, Y ) = (0,±5), (2,±11). Following the substitutions backwards, we find the
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only solution for the tuple (x0, x2, x3, x7) = (−1,−1,−1, 1) and the arithmetic
progression (−24,−17,−10,−3, 4, 11, 18, 25).

Altogether we get the only possibilities listed in the statement, and the proof
of the theorem is complete.

Proof of the case k ≥ 4 of Theorem 2. Clearly, the case k = 4 is an im-
mediate consequence of Theorem 4. Further, observe that the cases k =
8, 10, 11, 12, 14, 15, 17, 19, 20, 21, 22, 23 trivially follow from the corresponding
cases for k−1. Hence it is sufficient to consider the values k = 5, 6, 7, 9, 13, 16, 18, 24.
In each case we make the following steps. We list all the possible coefficient k-
tuples (a0, a1, . . . , ak−1) by the method given in Subsection 3.2. As previously,
by symmetry we may assume that a0 ≤ ak−1. In the generation process we con-
sider only those placements of primes which cannot be automatically excluded
by induction. For example, let k = 13; then Pk = 19. If 19 - a4a5a6a7a8 then
by coprimality we have that either P (a0a1 . . . a8) ≤ 17 or P (a4a5 . . . a12) ≤ 17,
and we can apply induction based upon the case k = 9. Further, if say 19 | a8

but 17 - a1a2 . . . a6 then one of P (a0a1 . . . a6) ≤ 13, P (a1 . . . a7) ≤ 13 holds,
and we can use the case k = 7, and so on. Then for the remaining tuples try
to find indices j1, j2, j3, j4 ∈ {0, 1, . . . , k − 1} which are (not necessarily con-
secutive) terms of an arithmetic progression of length t with 4 ≤ t ≤ 8, such
that P (aj1aj2aj3aj4) ≤ 5. It turns out that it is possible to find such indices
in case of all the remaining k-tuples. Having four such indices, we can simply
apply Theorem 4 to handle the actual coefficient tuple. For example, let k = 6
and consider the tuple

(a0, a1, . . . , a5) = (20, 11, 2, 7, 16, 25).

Note that this tuple cannot be excluded by induction. Take the indices (j1, j2, j3, j4) =
(0, 2, 4, 5), and observe that P (a0a2a4a5) ≤ 5 holds. Applying Theorem 4 with
t = 6, b0 = a0, bi1 = a2, bi2 = a4, b5 = a5, we find that the only non-trivial
primitive increasing arithmetic progressions corresponding to this tuple are
−20,−11,−2, 7, 16, 25 and its symmetric pair −25,−16,−7, 2, 11, 20. These
progressions are listed in the statement.

Considering another example, let k = 18 and take the tuple

(a0, a1, . . . , a17) =

= (2, 125, 132, 13, 14, 57, 40, 29, 54, 1, 68, 105, 46, 11, 48, 1, 130, 9).

This tuple cannot be excluded using induction. However, we find four appropri-
ate indices again, namely (j1, j2, j3, j4) = (8, 9, 14, 15) for which P (a8a9a14a15) ≤
5 holds. Applying Theorem 4 with t = 8, b0 = a8, bi1 = a9, bi2 = a14, bt−1 = a15,
we find that the only possible underlying 8-tuple is (a8, . . . , a15) = (54, 1, 68, 105, 46, 11, 48, 1).
However, there is no arithmetic progression having the appropriate property
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corresponding to this tuple. Therefore we have no solution with the original
18-tuple (a0, a1, . . . , a17).

By this process we have found all the non-trivial arithmetic progressions, which
are just the ones listed in the statement.

Proof of Corollary 3. Since the next prime after 31 is 37, the statement is an
immediate consequence of Theorem 2.

Proof of Theorem 1. For k ≤ 24 the statement is a simple consequence
of Theorem 4. In case of 25 ≤ k ≤ 54, observe that in (2) the product
A := a0a1 . . . ak−1 must be a full fifth power. Thus any prime p | A must
divide at least two coefficients ai. Hence one can easily check that for these
values of k there always exists an index i with 0 ≤ i < k − 24 such that
P (aiai+1 . . . ai+23) ≤ 31. So the statement follows from Theorem 4 also in this
case.
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