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Abstract. In part I of the present paper the following problem
was investigated. Let G be a finite simple graph, and S be a
finite set of primes. We say that G is representable with S if it
is possible to attach rational numbers to the vertices of G such
that the vertices v1, v2 are connected by an edge if and only if
the difference of the attached values is an S-unit. In part I we
gave several results concerning the representability of graphs in
the above sense.

In the present paper we extend the results from paper I to the
algebraic number field case and make some of them effective. Be-
sides we prove some new theorems: we prove that G is infinitely
representable with S if and only if it has a degenerate representa-
tion with S, and we also deal with the representability with S of the
union of two graphs of which at least one is finitely representable
with S.

1. Introduction

In part I of the paper [13] we obtained a variety of theorems on graphs
where the vertices have distinct rational values and two vertices are
connected by an edge if and only if their values differ by an S-unit where
S is a given finite set of primes. In this paper we generalize many of
these results to the case when the underlying field is not necessarily Q,
but any algebraic number field K. Moreover, we give effective versions
of most of the results. Besides we derive some new results. We study
for which sets S a given graph has (infinitely many equivalence classes
of) representations with S.

All our results in the present paper deal with finite graphs G where
the vertices have distinct values from an algebraic number field K, and
with finite sets S of prime ideals of K, such that two vertices of G

Date: April 24, 2016.
2010 Mathematics Subject Classification. 05C25, 05C62, 11D61.
Key words and phrases. Arithmetic graphs, cubical graphs, representability, S-

unit equations.
Research was supported in part by the OTKA grants NK104208 (K.Gy.) and

K100339, K115479 (K.Gy. and L.H.).
1
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are connected by an edge if and only if the difference of their values
is an S-unit. We call such a graph G a difference graph of S-units.
In Section 2 we introduce S-equivalence of difference graphs, finitely
representable and infinitely representable difference graphs, degenerate
and non-degenerate representations of difference graphs, and further
notation.

In Section 3 we prove that in every number field K, for every graph
G there is an effectively computable S such that G is representable
with S. We further deal with graphs with more than one component
and with connected graphs which are not doubly connected. In the
rest of the paper we restrict ourselves to the case where G is doubly
connected. In Section 4 we consider the cases that G is a cycle, a
complete bipartite graph or a cubical graph. Section 5 contains the
theorem that G is infinitely representable with S if and only if it has
a degenerate representation with S. In Section 6 two theorems on the
union of two graphs are formulated, one for the case that both are
finitely representable with S, one for the case that only one of them
is finitely representable with S. Finally, in Section 7, some effective
results are stated for graphs G of which the complement or the attached
triangle graph G△ satisfy some connectedness condition. In Sections 8-
12 we give the proofs of the statements from Sections 3-7, respectively.

2. Notation and terminology

We introduce notation which will be used throughout the paper.
Let K be an algebraic number field with degree d and discriminant

DK , and S a finite (possibly empty) set of prime ideals of K. We
recall that an α ∈ K is said to be an S-integer if in the prime ideal
factorization of the ideal (α) generated by α no prime ideal from outside
S has negative exponent. The S-integers in K form a ring, denoted
by OS, which is called the ring of S-integers. The units ε of OS (when
ε, 1/ε ∈ OS) are called S-units. They form a multiplicative group,
denoted by O∗

S and called the group of S-units. If in particular S is
empty, then OS and O∗

S are just the ring of integers OK and the unit
group O∗

K of K, respectively. Further, in the case K = Q, we denote by
ZS the ring of S-integers. In the sequel we suppose that if S is empty,
then K is not Q and not an imaginary quadratic field. Therefore O∗

S

is infinite.
We write

N(S) := max
p∈S

N(p),

where N(p) stands for the norm of a prime ideal p. If a ∈ K, then
write h(a) for the logarithmic height of a, and for A ⊂ OS with A =
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{a1, . . . , an} set

h(A) := max
i=1,...,n

h(ai).

For any finite ordered subset A = {α1, . . . , αn} of OS, we denote by
GS(A) the graph whose vertices are α1, . . . , αn and whose edges are the
(unordered) pairs {αi, αj} for which

αi − αj ∈ O∗
S;

cf. Győry [10] where mainly the complements of these graphs were
studied. The ordered subsets A and A′ of OS are called S-equivalent if

A′ = εA+ β

for some ε ∈ O∗
S and β ∈ OS. In this case the graphs GS(A) and GS(A

′)
are obviously isomorphic.

Throughout the paper, all graphs we consider are finite and simple.
By the order of a graph G we mean the number of its vertices, denoted
by |G|. We say that a graph G is representable over K with S if there
is a subset A of OS such that GS(A) is isomorphic to G. Further,
we say that G is effectively representable over K with S if a subset
A of OS can be effectively determined such that GS(A) is isomorphic
to G. A graph G is called finitely representable over K with S if, up
to S-equivalence, there are at most finitely many subsets A of OS for
which G is isomorphic to GS(A). Further, G is said to be infinitely
representable with S if G is isomorphic to GS(A) for infinitely many
pairwise S-nonequivalent A. Note that in every representation the
vertices have distinct values. In the sequel we omit ‘over K’ and ‘with
S’ if it is obvious what K and S are.

We note that in all our results on infinite representability with S
it suffices that there are more than a certain computable number of
equivalence classes which provide representations (cf. Theorem C and
the Remark after its proof in Section 10).

3. Basic representability theorems

The first theorem is an effective version of Theorem 2.1 of Part I
and, at the same time, a generalization to the number field case.

Theorem 3.1. Let G be a graph with |G| = n. Then there exist a finite
set S of prime ideals of K and a set A ⊂ OS with |A| = n such that G
is isomorphic to GS(A), and N(S) ≤ c1(n, d,DK), h(A) ≤ c2(n, d,DK)
hold. Here the numbers ci(n, d,DK) are effectively computable (i =
1, 2).
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Remark. A simple calculation shows that in case of K = Q (when

D = d = 1) bounds of the form ci(n) = ee
··
·e
n

with n copies of e (i =
1, 2) apply in the previous theorem. However, since these bounds most
probably are very far from the best possible ones, we do not calculate
them. An important feature of our proof is that it is constructive:
following our argument one can construct A and S with the required
property. This is illustrated by an example after the proof of Theorem
3.1 in Section 8.

In what follows, we assume that K is effectively given, i.e. K = Q(ϑ)
and a minimal polynomial P ∈ Q[x] of ϑ is given. We may assume that
P ∈ Z[x] and that ϑ is an algebraic integer. We say that α ∈ K is
effectively given / effectively determinable if in the representation

α = a0 + a1ϑ+ . . . ad−1ϑ
d−1

of α the coefficients a0, . . . , ad−1 ∈ Q are given / effectively deter-
minable.

We say that S is effectively given / effectively determinable if the
prime ideals in S are effectively given / effectively determinable. This
means that a finite set of generators for each prime ideal involved is
effectively given / effectively determinable.

Corollary 3.1. Let G be as in Theorem 3.1. Then there is a finite,
effectively determinable set S of prime ideals of K such that G is rep-
resentable with S, and some representation of G with S can be, at least
in principle, effectively determined.

Theorems 3.2 and 3.3 are effective versions and, at the same time,
generalizations to the number field case of the corresponding results of
Part I, obtained over Q.

As usual, by a forest graph we mean a graph containing no cycles,
i.e. it is a finite, disjoint union of trees.

Theorem 3.2. Let S be any fixed finite set of prime ideals in K, and
let G be a forest graph with |G| = n. Then G is effectively representable
with S. Further, such a representation GS(A) can be, at least in princi-
ple, effectively constructed such that h(A) ≤ c3(n,N(S), d,DK), where
the bound is effectively computable.

In fact, Theorem 3.2 is a simple consequence of the following result.

Theorem 3.3. Let S be any fixed finite set of prime ideals in K, and
let A be any fixed finite set of S-integers, with |A| = n.

i) There exist infinitely many a′ ∈ OS outside A such that writing
A′ = A ∪ {a′}, a′ is an isolated vertex of GS(A

′).
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ii) For every a ∈ A there exist infinitely many a′ ∈ OS such that writing
A′ = A ∪ {a′}, in GS(A

′) the vertex a′ is connected by an edge with a
only.

Further, one can effectively find an element a′ with either one of the
above properties such that h(a′) < c4(n,N(S), d,DK , h(A)) holds. Here
the upper bound is effectively computable.

The next result is a kind of extension of part ii) of Theorem 3.3. We
say that a graph is simply connected if it is connected but not doubly
connected, and that it is at most simply connected if it is disconnected,
or simply connected.

Theorem 3.4. Let G be a graph which is at most simply connected. If
G is representable with some S, then it is infinitely representable with
S.

The following result, which is an extension of Theorem 2.4 of Part I
to the number field case, shows that the investigations can be reduced
to the components of a graph.

Theorem 3.5. Let S be any fixed finite set of prime ideals in K, and
suppose that every component of a graph G is representable with S.
Then G is representable with S.

4. Cyclic, bipartite and cubical graphs

In view of the results of the previous section, the question of rep-
resentability of graphs which are not connected, or contain a bridge,
is completely settled. So from this point on it is sufficient to consider
only graphs not of these types. We say that a graph G having at least
one edge is doubly connected, if after deleting any edge of G, the graph
obtained is connected. If G is not doubly connected, then it is at most
simply connected.

In this section we discuss those graphs which are always representable
(i.e. representable for all K, with all S). Further, we study certain
doubly connected graphs, namely cycles and complete bipartite graphs.
The research upon cycles (over Q) was initiated by Ruzsa [16]. His
intention was, for given S, to study the graphs which can be represented
with S. Besides providing related theorems of various types, Ruzsa also
formulated some problems and conjectures. Some of them were solved
in [3]. For details see [16, 3].

Let Cn denote the cyclic graph of order n, and write Km,n for the
complete bipartite graph of type (m,n). The next theorem is an ex-
tension of Theorem 3.1 of [13] to the number field case.
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Theorem 4.1. i) The graphs C2n (n = 1, 2, . . . ) and K2,2 are infinitely
representable with all S.
ii) The graphs C3, C5 and Km,n with m > n > 1 or m = n ≥ 3 are
finitely representable with any S.

As one can easily check by examples, it depends on S whether C2n+1

for n > 2 is infinitely representable.
The following result extends Theorem 3.2 of [13] to the number field

case.

Theorem 4.2. If m > 1, n > 1 and

(1) m+ n > 3 · 216(|S|+d)

then Km,n is not representable with S.

Theorem 4.1 states that there exist graphs which are representable
with all S, for example G = K2,2. In the remaining part of the section
we study such graphs.

As we shall see, in this context the so-called cubical graphs play
an important role. The n-cube Qn is defined in the following way.
The vertices of Qn are the n-tuples with coordinates 0 and 1, and two
vertices are connected by an edge if and only if the vertices differ in
exactly one coordinate. It follows that Qn has 2n vertices, and n2n−1

edges. An embedding of a graph G into Qn is an injective mapping of
the vertices of G into the vertices of Qn such that the edges of G are
mapped into the edges of Qn. A graph G is called cubical, if it can be
embedded in Qn for some n. Obviously, cubical graphs are bipartite.

The following theorem is a generalization of Theorem 6.1 of [13] to
the number field case.

Theorem 4.3. A graph G is representable with all K and S if and
only if G is cubical.

For a survey on related results concerning cubical graphs, we refer
to [13].

Remark. It is not true that for fixed K, only cubical graphs would
be representable with every S. Indeed, if K = Q(

√
5), then since

(1 +
√
5)/2 and (1−

√
5)/2 are both units, a triangle (which is clearly

not cubical) is representable with any S as {0, 1, (1 +
√
5)/2}.

The following result is an extension of Theorem 4.1 from [13]. It
plays a crucial role in the proof of Theorem 4.3.

Theorem 4.4. Suppose that a graph G with |G| ≥ 3 is representable
over Q for some S of the form S = {p}, where p is a (rational) prime
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larger than twice the number of edges of G. Then G is infinitely repre-
sentable with all K and S.

Note that Theorem 4.4 implies that if G is representable with all K
and S, then G is infinitely representable with all K and S.

5. Infinite representability

Let K and S be as above. Let G be a graph and GS(A) a repre-
sentation of G where A = {a1, . . . , an} is the set of vertex values. By
a path in GS(A) we mean a sequence of vertices ai1 , . . . , aim (repeti-
tions permitted) such that aij is connected with aij+1

by an edge for
j = 1, . . . ,m − 1. We call ai1 and aim the endpoints of the path. We
define its path value as aim − ai1 . Note that the path value of every
closed path (i.e. with aim = ai1) is 0. If ai and aj are connected by
an edge, we call the path value from ai to aj the arrow value from
ai to aj. Hence every edge in GS(A) generates two arrow values with
opposite signs, which we call the arrow values of that edge. Observe
further that a path value is the sum of the composing arrow values,
aim − ai1 =

∑m−1
j=1 (aij+1

− aij). If S and A are fixed, we write G for

GS(A). Every representation is meant with respect to S.
We shall prove the following properties.

Lemma 5.1. Let G be connected. The equivalence class to which a
representation G of G belongs is determined by its arrow values.

Lemma 5.2. Let G be connected and let values from K be given to all
arrows (directed edges) of G. Then these arrow values form a repre-
sentation of G if and only if
1. a path length is 0 if and only if the path is closed and
2. the endpoints of a path are connected by an edge if and only if the
path length is in O∗

S.

Remark. Obviously two representations of G are in the same S-
equivalence class if and only if the quotient of every two corresponding
arrow values is the same constant.

Lemma 5.3. Let G be a representation of a graph G. Then there
exist only finitely many pairs (E , ε) of non-empty proper subsets E of
the set of edges of G and S-units ε such that multiplying all the arrow
values of E by ε and leaving all the other arrow values unchanged yields
a representation GE,ε of a graph GE,ε such that G and GE,ε are not
isomorphic.

These lemmas are used in the proofs of the following characteriza-
tions of graphs with infinitely many representations with S.
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Theorem 5.1. Let G be doubly connected and have at least one edge.
Then the following statements are equivalent.
a) The graph G is infinitely representable with S.
b) There are a representation G of G, a non-empty proper subset E of
the edges of G and an S-unit ε0 ̸= 1 such that multiplying the arrow
values of E by ε0 and leaving the other arrow values unchanged yields
another representation of G.
c) There are a representation G of G, a non-empty proper subset E of
the edges of G and infinitely many S-units ε such that multiplying the
arrow values of E by ε and leaving the other arrow values unchanged
yields another representation of G.

We call a representation G of a graph G degenerate if a non-empty
proper subset E of the edges of G and infinitely many S-units ε ex-
ist such that multiplying the arrow values of E by ε and leaving the
other arrow values unchanged yields another representation of G. Thus
Theorem 5.1 has the following consequence.

Corollary 5.1. A doubly connected graph is infinitely representable if
and only if it has a degenerate representation.

6. Finite representability

Let in the above notation K,S and G be given. Again representabil-
ity means representability with S. We state some results which can
help to establish the finite representability of G.

Let G1, G2 be induced subgraphs of G. We define G1 ∪ G2 as the
minimal graph which has all the vertices of G1 and G2 as vertices and
all the edges of G1 and G2 as edges.

We first treat the case that both G1 and G2 are finitely representable.
Suppose G = G1 ∪ G2 and G1 and G2 have at most one vertex in
common. If either G1 or G2 is not representable, then G is not rep-
resentable. If both G1 and G2 are representable and both have an
edge which the other does not have, then G is infinitely representable.
Therefore the interesting case is that the intersection of G1 and G2

consists of at least two vertices. In that case we have the following
result.

Theorem 6.1. Suppose G = G1 ∪G2 and G1 and G2 are both finitely
representable. If G1 and G2 have at least two vertices in common, then
G is finitely representable.

By Theorem 5.1 we know that if G is infinitely representable, then
there is a degenerate representation. The following theorem says that
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if G1 is finitely representable and both G2 and G1 ∪ G2 are infinitely
representable, then the degeneracy is entirely in G2 \G1.

Theorem 6.2. Suppose G = G1 ∪ G2 such that G1 is finitely rep-
resentable and G2 is infinitely representable. If G is infinitely repre-
sentable, then there are a representation G of G, a non-empty subset E
of the edges of G belonging to the edges of G \G1, and infinitely many
S-units ε such that multiplying the arrow values of E by such an ε and
leaving the other arrow values unchanged yields another representation
of G.

Remark. The remaining case is that both G1 and G2 are infinitely
representable. In that case their union both may be finitely repre-
sentable and infinitely representable and we do not know a simple
criterion to distinguish them. For example, let K = Q and S con-
sist of odd primes. Consider a cycle G1 with 8 vertices, successively
v1, v2, v3, v4, v5, v6, v7, v8, and a cycle G2 with 8 vertices, successively
w1, w2, w3, w4, w5, w6, w7, w8, such that G1 and G2 have no edge in com-
mon. If v1 = w1, v5 = w4, and G1 and G2 have no other vertices in com-
mon, then the union contains a 7-cycle (v1, v2, v3, v4, v5 = w4, w3, w2)
and therefore there is no representation of G1 ∪G2 at all. However, if
v1 = w1, v5 = w5 and G1 and G2 have no other vertices in common,
then G1∪G2 has two vertices v1 = w1 and v5 = w5 which are connected
by four disjoint paths of length 4, and their arrows can be given val-
ues 1, p, p2, pr and p, p2, pr, 1 and p2, pr, 1, p and pr, 1, p, p2, respectively,
where r is any integer ≥ 3. Hence G1 ∪G2 is infinitely representable.

Theorem 6.1 implies two theorems of [13]. The theorems are partial
counterparts of Theorem 3.4. For a graph G we denote by G△ the
graph whose vertices are the edges of G, and where two vertices e1 and
e2 of G△ are connected by an edge if and only if G contains a triangle
having e1 and e2 as sides. Further, if both G and G△ are connected
then we say that G is △-connected. The △-graphs of tree and forest
graphs have only isolated vertices. Observe that if both G and G△ are
connected, then G is doubly connected. For a graph G we denote by
G∇ the graph whose vertices are the triangles of G where two vertices
of G∇ are connected by an edge if and only if the triangles in G have
a common side.

Corollary 6.1. Let G be a graph such that G∇ is non-empty and both
G and G∇ are connected. Then G is finitely representable with every
S.

The following corollary is a generalization of Theorem 5.1 of Part I
to the number field case.
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Corollary 6.2. Let G be a graph such that G△ has an edge and both
G and G△ are connected. Then G is finitely representable with every
S.

We denote by H(G) the graph whose vertices are the △-connected
components of G, and two vertices of H(G) are connected if the corre-
sponding △-connected components of G have at least two vertices in
common in G. This graph H(G) is called the H(G)-graph of G. The
next corollary generalizes Theorem 5.2 of Part I to the number field
case.

Corollary 6.3. Let G be a graph such that G contains a triangle and
both G and H(G) are connected. Then G is finitely representable with
every S.

7. Effective results for △-connected graphs

We give effective versions of Corollaries 6.2 and 6.3.

Theorem 7.1. Let G be a graph of order n ≥ 3 such that both G and
G△ are connected. Then, for effectively given K and S, all represen-
tations of G with S can be effectively determined.

Theorem 7.1 can be generalized in the following way.

Theorem 7.2. Let G be a graph of order n ≥ 3. Suppose that both
G and H(G) are connected. Then for effectively given K and S, all
representations of G with S can be effectively determined.

If G△ is connected, then H(G) consists of one vertex and is therefore
also connected. Hence Theorem 7.1 is a special case of Theorem 7.2.

The following theorem is a generalization to the number field case
and, for d = 1, an improvement of Theorem 5.3 of Part I. We denote
the complement of G by G.

Theorem 7.3. Let n ≥ 3 be an integer, and fix S. Then for all but at
most (

n · 5114(|S|+d)
)4(n−1)

S-equivalence classes of ordered n-term subsets A from OS, one of the
following cases holds:

i) GS(A) is connected and at least one of GS(A) and GS(A)
△ is not

connected;

ii) GS(A) has exactly two components, G1 and G2, say, such that |G1| =
1, and G2 is not connected;

iii) n = 4 and GS(A) = K2,2.
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As it is pointed out in [10], for each of i), ii), iii), one can choose
S such that there are infinitely many S-equivalence classes of ordered
n-term subsets A in OS with the property i), ii), and iii), respectively.

The following corollary is a consequence of Theorem 7.3. This is a
generalization and, for d = 1, an improvement of Theorem 5.4 of Part
I to the number field case.

Corollary 7.1. Let G be a graph of order n ≥ 3 and suppose that G
is more than (

n · 5114(|S|+d)
)4(n−1)

times representable for some S. Then at least one of G and G△ is not
connected.

The final theorem is concerned with the situation where no repre-
sentation is possible.

Theorem 7.4. Let G be a graph of order n such that G has either at
least three components, or two components of order ≥ 2. If

n > 3 · 216(|S|+d)

then G is not representable with any S.

This is a generalization to the number field case of Theorem 5.5 of
Part I.

Question. Does there exist a criterion/algorithm to decide the repre-
sentability of a graph G for fixed K and S?

In case of graphs G for which G and G△ are connected, Theorem 7.1
gives a positive answer to the algorithmic part of the above question.

8. Proofs of the results stated in Section 3

In the proofs below we shall work with finite subsets A of OK . In
every S-equivalence class of ordered subsets A from OS there is a set
consisting of integers of K. Such a subset can be obtained from A
by multiplying it by an appropriate element of O∗

S ∩ OK . Hence for
Theorems 3.1-3.3 it suffices to study the graphs GS(A) with subsets A
having elements from OK . In this case, a, b ∈ A are connected by an
edge if and only if a− b ∈ O∗

S ∩OK = O∗
K .

Proof of Theorem 3.1. Let G be a fixed graph with |G| = n. Let N0 be
the second smallest norm of prime ideals in OK . Note that we certainly
have N0 ≤ 3d. Write n′ := max{n,N0} and

S0 := {p prime ideal : N(p) < n′}.
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We prove by induction on k that for any graph G′ with |G′| = k ≤ n
there exists a finite set S ′ of prime ideals with S0 ⊂ S ′ and a finite set
A′ ⊂ OK with |A′| = k such that GS′(A′) is isomorphic to G′. We shall
indicate how one can bound the sets S ′ and A′ in terms of n, d,DK .

Let k = 1. Then G′ is a graph with one vertex (and without edges).
Taking S ′ = S0 and A′ = {0}, since N(S ′) < n′ and h(A′) = 0, we are
obviously done in this case.

Let now G′ be a graph such that |G′| = k with 2 ≤ k ≤ n. Write
v1, . . . , vk for the vertices of G′. Let G′′ be the graph obtained from
G′ by omitting the vertex vk, together with the corresponding edges.
By induction we may assume that there exists a set S ′′ of prime ideals
containing all elements of S0 and a set A′′ = {a1, . . . , ak−1} of in-
tegers in K such that GS′′(A′′) is isomorphic to G′′, by an isomor-
phism φ : GS′′(A′′) → G′′. Further, here we may also suppose that
N(S ′′) < c′′(n, d,DK) and h(A′′) < c′′(n, d,DK) with some effectively
computable constant c′′(n, d,DK) depending only on n, d,DK . With-
out loss of generality we may assume that φ(ai) = vi (i = 1, . . . , k−1).
Write T ′′ for the set of indices of those vertices of G′′ which are not
connected with vk by an edge in G′. Further, put

D := {d prime ideal : d /∈ S ′′, d | a− b for some distinct a, b ∈ A′′}.

For later use, observe that for all d ∈ D we have N(d) ≥ n′ > k − 1.
If T ′′ ̸= ∅, write T ′′ = {t1, . . . , tℓ}, and choose distinct prime ideals

qt1 , . . . , qtℓ such that for all tj ∈ T ′′ we have

• qtj /∈ S ′′,
• qtj /∈ D.

Observe that having the upper bounds for N(q) with q ∈ S ′′ ∪D, the
prime ideals qt1 , . . . , qtℓ can be chosen in a way that their norms are
bounded in terms of n, d,DK . By the above properties, for any distinct
i1, i2 ∈ {1, . . . , k−1} we have ai1 ̸≡ ai2 (mod qtj). For each prime ideal
d ∈ D choose an xd ∈ OK such that for all i = 1, . . . , k − 1 we have

(2) ai ̸≡ xd (mod d).

Since N(d) > k − 1 for all d ∈ D, such an xd exists. Consider now the
following linear system of congruences:

(3)

{
a ≡ xd (mod d) (d ∈ D),

a ≡ atj (mod qtj) (tj ∈ T ′′).

By the Chinese Remainder Theorem, this system has infinitely many
solutions a. Choose ak to be a solution, and let A′ = A′′ ∪ {ak}.
Here using the information concerning the ideals d and qt1 , . . . , qtℓ , we
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may assume that h(ak) is bounded in terms of n, d,DK . Further, put
T ′ = {1, . . . , k − 1} \ T ′′ and set

S ′ = S ′′ ∪ {p prime ideal : p | ak − ai for some i ∈ T ′}.

We claim that by these choices the graph GS′(A′) is isomorphic to
G′. More precisely, an isomorphism is given by φ∗ : GS′(A′) → G′ with
φ∗(ai) = vi (i = 1, . . . , k).

Let i ∈ {1, . . . , k − 1}. If i ∈ T ′ then on the one hand, vi and vk are
connected by an edge in G′, and on the other hand, by the definition
of S ′ we have that ai and ak are connected in GS′(A′). Assume now
that i ∈ T ′′. Then vi and vk are not connected in G′. However, writing
i = tj, in view of qtj /∈ S ′′ and qtj | ak − ai, we have that qtj /∈ S ′.
Indeed, otherwise qtj | ak − ai′ for some i′ ∈ T ′, whence qtj | ai − ai′
with distinct i, i′ ∈ {1, . . . , k−1}. This means that qtj ∈ S ′′∪D, which
contradicts its definition. Thus qtj | ak − ai implies that ai and ak are
not connected by an edge in GS′(A′).

Finally, we need to check that for any i, j ∈ {1, . . . , k− 1}, ai and aj
are connected by an edge in GS′(A′) if and only if they are connected by
an edge in GS′′(A′′). If ai and aj are connected by an edge in GS′′(A′′)
then by S ′′ ⊂ S ′, obviously they are connected by an edge in GS′(A′).
Assume now that ai and aj are not connected in GS′′(A′′). Then there
is a prime ideal d ∈ D \ S ′′ dividing ai − aj. Observe that, by (3) and
(2), d | ak − xd and d - aℓ − xd, whence d - ak − aℓ for ℓ = 1, . . . , k − 1.
This implies that d /∈ S ′. Hence ai and aj are not connected by an edge
in GS′(A′) either.

As one can see from the construction, N(S ′), as well as h(A′) can be
bounded effectively in terms of n, d,DK . Hence the statement follows.

�

An example. Here we illustrate (in fact by providing a detailed expla-
nation) the construction given in the above proof through an example.
For simplicity, we shall work over K = Q.

Consider first the cyclic graph C4 = (v1, v2, v3, v4) (with points v1,
v2, v3, v4 and edges {v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}). As in the above
proof, we use S and A as ’variables’, to be changed during the algo-
rithm. Recall that the starting set S = S0 should contain all primes
less than n. Since in our case n = 4, we shall start with the set of
primes {2, 3}.

Initialization. We put S = {2, 3} and A = ∅.
Step 1. We can choose any integer a1 to represent v1; take a1 := 0,

and put A := {0}. S is left unchanged.
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Step 2. Since v2 is connected with v1, here no restriction is needed;
we can represent v2 by a2 := 1, and put A := {0, 1}. S is left unchanged
once again.

Step 3. Since v1 and v2 are connected, by an edge, we let D := ∅.
To choose a representative for v3, firstly we need to be sure that the
representatives of v1 and v3 are not connected. For this we take an
arbitrary prime q1 outside S (and also outside D; the latter condition
is needed to have distinct moduli in the linear congruence system (3)).
Here the choice q1 := 5 is appropriate. Since D is empty, by (3) we
may take a3 := 5, whence A := {0, 1, 5}. Then we need to insert the
prime divisors of a3 − a2 = 4 into S, to make sure that a2 and a3 (just
as v2 and v3) are connected. In the present case this just means that
S remains still unchanged.

Step 4. Now since v1 and v3 are not connected, we have D := {5}.
Further, v4 is not connected with v2. So we need to find a prime q1,
similarly as in Step 3, i.e. such that q1 /∈ D∪S. So we can take q1 := 7.
Now we need to find a4 subject to (3). Since a2 = 1 and we can take
x5 := 2, this now reads as

(4)

{
a4 ≡ 2 (mod 5)

a4 ≡ 1 (mod 7).

Hence we can take a4 := 22, and let A := {0, 1, 5, 22}. Finally, we
include the prime divisors of a4 − a1 = 22 and a4 − a3 = 17 to S, to
get S := {2, 3, 11, 17}.

Output. We output A = {0, 1, 5, 22} and S := {2, 3, 11, 17}. One
can easily check that with these choices, GS(A) is isomorphic to C4. �

In what follows, we shall need some algorithmic results for the Chi-
nese Remainder Theorem in number fields (see Algorithm 4.2.2, p. 188
in [2]), for finding an S-unit of bounded height (see Algorithm 7.4.8,
p. 376 in [2]), for listing all prime ideals of bounded norm (see Al-
gorithm 2.3.23, p. 100 in [2]) and for finding S-integers of bounded
height (which can be reduced e.g. to listing all prime ideals of bounded
norm).

Proof of Corollary 3.1. Suppose that K is effectively given in the sense
defined in Section 3. By Theorem 3.1 there exist a finite set S of prime
ideals of K and a set A ⊂ OS with |A| = n such that G is isomorphic
to GS(A), and N(S) ≤ c1(n, d,DK), h(A) ≤ c2(n, d,DK), where c1, c2
are effectively computable. However, there are only finitely many such
finite sets S of prime ideals in K, and for each given S, there are only
finitely many finite subsets A of OS with these properties, and all pairs
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S,A can be effectively determined. Finally, we can select a pair S, A for
which GS(A) is isomorphic to G. In this way we find a representation
of G with S. �
Proof of Theorem 3.4. The proof of the statement is similar to the
proof of Theorem 4.2 in [13], we only need to use OS in place of ZS. �

We shall use the following finiteness result, due to Evertse, [4] at
several places.
Theorem A. (Evertse [4]) The S-unit equation

(5) αx+ βy = 1

in x, y ∈ O∗
S where α and β are nonzero elements of K has at most

(6) 3 · 7d+2|S|

solutions where d = [K : Q].

Proof of Theorem 3.3. Write A = {a1, . . . , an}.
To prove i) choose prime ideals q1, . . . , qn in K, outside S. Note that

here we may clearly assume that the norms of these ideals are bounded
in terms of N(S), d. Consider the system of linear congruences

x ≡ ai (mod qi) (i = 1, . . . , n)

in x ∈ OK . By the Chinese Remainder Theorem, this system has
infinitely many solutions. Let a′ ∈ OK be a solution such that a′ /∈ A.
Then obviously, a′ is an isolated vertex of the graph GS(A

′) where A′ =
A∪{a′}. Further, it is also clear that one can effectively find such an a′,
with h(a′) bounded by a constant depending only on n,N(S), d,DK .

To prove ii), take an arbitrary a ∈ A. Write

D := {±(ai − aj) : 1 ≤ i < j ≤ n},
and let ε ∈ O∗

S ∩ OK such that ε /∈ D, and for any η ∈ O∗
S ∩ OK we

also have ε + η /∈ D. The existence of such an ε easily follows from
Theorem A. Namely, for d ∈ D the equation x+y = d has only finitely
many solutions in x, y ∈ O∗

S ∩OK , and the number of solutions can be
bounded by a constant c0(s) depending only on s, see [9]. Avoiding all
such elements u, v, together with the at most 2

(
n
2

)
elements of D, in

fact we can choose ε in infinitely many ways. We can bound h(ε) in
terms of n,N(S), d,DK as follows. Take an arbitrary S-unit ε0 which
is not a root of unity, with h(ε0) bounded in terms of N(S), d,DK .
Considering the powers εi0 with i = 1, . . . , c0(s)+2

(
n
2

)
, one of them will

be an appropriate choice for ε.
Let a′ = a + ε. Then a′ /∈ A, and obviously a′ and a are connected

by an edge in the graph GS(A
′) where A′ = A∪{a′}. Assume that a′ is
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also connected with some vertex b ∈ A with b ̸= a. Then b− (a+ ε) =:
η ∈ O∗

S ∩ OK . However, this yields η + ε = b − a, whence η + ε ∈ D,
contradicting the choice of ε. This shows that in the graph GS(A

′) only
the vertex a is connected by an edge with the vertex a′.

Finally, noting that h(a′) ≤ h(a) + h(ε), our claim follows. �
Proof of Theorem 3.2. Let G be the disjoint union of the tree graphs
T1, . . . , Tk. Starting from one vertex α ∈ OK , using part ii) of Theorem
3.3, we can inductively build up a set A1 ⊂ OK such that GS(A1) is iso-
morphic to T1. Then by part i) of Theorem 3.3 we can adjoin an isolated
vertex a′ ∈ OK to this graph, and then build up a component A2 ⊂ OK

(with a′ ∈ A2) such that GS(A2) is isomorphic to T2. Following this
procedure, we can clearly construct a set A = A1∪A2∪· · ·∪Ak with the
property that h(A) is bounded by a constant c3(n,N(S), d,DK). �
Proof of Theorem 3.5. The proof is similar to the proof of Theorem 2.4
in [13]. We only need to work with K and OS instead of Q and ZS,
respectively. �

9. Proofs of the results stated in Section 4

We shall need the following two theorems. Theorem B will be used
in the present section and in Section 12, and Theorem C in Section 10.

Consider first the equation

(7) α1x1 + · · ·+ αnxn = 1 in x1, . . . , xn ∈ O∗
S

where α1, . . . , αn are non-zero elements of K. A solution (x1, . . . , xn)
of (7) is called non-degenerate if∑

i∈I

αixi ̸= 0 for each non-empty subset I of {1, . . . , n}

and degenerate otherwise. Clearly, if (7) has a degenerate solution then
it has infinitely many solutions. Evertse [5] gave the explicit upper
bound below for the number, Nn, of non-degenerate solutions of (7).
His bound was generalized, with a slightly weaker bound, by Evertse,
Schlickewei and Schmidt [8] and Amoroso and Viada [1] for the case of
finitely generated multiplicative subgroups of K∗ where K is any field
of characteristic 0.

Theorem B.

(8) Nn ≤ (235n2)n
3(|S|+d).

This is Theorem 3 of Evertse [5].
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Consider now the system of equations

(9) αi1x1 + · · ·+ αinxn = 0, i = 1, . . . ,m

in x1, . . . , xn ∈ O∗
S, where αij ∈ K for i = 1, . . . ,m; j = 1, . . . , n. This

is a generalization of the homogeneous version of equation (7). Two
solutions (x1, . . . , xn) and (y1, . . . , yn) of (9) are called S-equivalent if
yj = εxj j = 1, . . . , n holds for some ε ∈ O∗

S. Further, a solution
(x1, . . . , xn) is called degenerate, if for some proper non-empty subset
I of {1, . . . , n} ∑

j∈I

αijxj = 0 for i = 1, . . . ,m,

and non-degenerate otherwise. If (9) has a degenerate solution, then
it has infinitely many S-equivalence classes of solutions.

We shall use the following consequence of Theorem 2 of Evertse and
Győry [6]. It is a generalization of earlier work of Evertse, van der
Poorten and Schlickewei on S-unit equations.

Theorem C. The system of equations (9) has only finitely many non-
degenerate equivalence classes of solutions.

For more general versions see Laurent [15] and Győry [11].

Proof of Theorem C. Let (x1, . . . , xn) be a non-degenerate solution of
(9). Then at least one of the coefficients α1n, . . . , αmn is different from
zero. Putting yj = −xj/xn for j = 1, . . . , n− 1, (y1, . . . , yn−1,−1) is S-
equivalent to the solution (x1, . . . , xn). Further, it satisfies the system
of equations

αi1y1 + · · ·+ αi,n−1yn−1 = αin, i = 1, . . . ,m,

such that there is no proper non-empty subset J of {1, . . . , n− 1} with∑
j∈J αijyj = 0 for i = 1, . . . ,m. But by Theorem 2 of Evertse and

Győry [6], the number of such solutions (y1, . . . , yn−1) is finite, which
completes the proof. �

Remark. Using Theorem B we can derive an explicit upper bound for
the number of non-degenerate equivalence classes of solutions of (9).

Proof of Theorem 4.1. i) Let n be a positive integer and G = C2n.
Then C2n is infinitely representable according to the proof by induc-
tion of Theorem 3.1 of [16]. Since G = K2,2 is isomorphic to C4, the
statement is also valid for this graph.

ii) Let G = C3. Then every representation of G with S corresponds
with a normalized equation x+ y = 1 in x, y ∈ O∗

S. By Theorem A the
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number of solutions of this equation is finite. Therefore C3 is finitely
representable with S.

Let now G = C5, and let GS(A) be a representation of G, with
A = {a1, . . . , a5} ⊂ K. Write u1, . . . , u5 for the S-units

a2 − a1, a3 − a2, a4 − a3, a5 − a4, a1 − a5.

Then we have

(10) u1 + · · ·+ u5 = 0.

Suppose that the left hand side of (10) contains a vanishing subsum.
Then there is such a subsum with two terms. Since these terms cannot
be consecutive, we may assume that u1 + u3 = 0. However, then
a4−a1 = a3−a2 is also an S-unit, which implies that a1 and a4 should
also be connected by an edge in GS(A). Since this is not the case, we
conclude that the left hand side of (10) has no vanishing subsums. Now
by Theorem B we get that the number of non-degenerate solutions of
equation (10) is finite. Thus C5 is finitely representable.

Finally, let G = Km,n with m > n > 1 or m = n ≥ 3. Choose two
vertices P,Q from the n-set of vertices of G. Then, after normalization,
this yields m ≥ 3 distinct solutions of the equation αx + αy = 1 in
x, y ∈ O∗

S, where α is some non-zero element of K. By Theorem A this
equation has only finitely many solutions. Thus there are only finitely
many ways to represent G with S. �
Proof of Theorem 4.2. Theorem 4.2 is an immediate consequence of the
following theorem, since Km,n with m ≥ n ≥ 2 has two components
each of size ≥ 2. �
Theorem D. (Győry [12]) Let A be an ordered n-term subset in OS.
If

n > 3 · 216(|S|+d)

then GS(A) has at most two components, and one of them is of order
at most 1. Here d is the degree of the underlying number field K.

Proof. This is a special case of Theorem 2.3 of [12]. �
Proof of Theorem 4.4. The proof is similar to the proof of Theorem 4.1
in [13], working with K and OS in place of Q and ZS, respectively. �
Proof of Theorem 4.3. Assume first that G is representable with all K
and S. Then, by Theorem 6.1 of [13], G is cubical.

Suppose now that G is cubical. Then, by Theorem 6.1 of [13], G
is infinitely representable with K = Q and S = {p}, where p is as in
Theorem 4.4. Hence the statement follows from Theorem 4.4. �
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10. Proofs of the results stated in Section 5

Proof of Lemma 5.1. Let G be a representation of G. Fix a vertex v of
G. Since G is connected, there is a path from v to any other vertex w.
The vertex value of w is determined by the vertex value of v and the
arrow values of a path from v to w (and apparently independent of the
chosen path because of the existence of G). Hence all the vertex values
of any representation of G are fixed by the vertex value of v and the
arrow values. Observe that all the generated representations of G are
‘shifts’ of G and therefore equivalent by definition. �

Proof of Lemma 5.2. Suppose we have a representation G of G. If the
length of a path is 0 and its endpoints are not equal, then there are two
vertices with the same value, a contradiction. By definition the length
of some path in G is in O∗

S if and only if the endpoints of the path are
connected by an edge in G.

On the other hand, suppose the conditions of the lemma are fulfilled.
Fix a vertex v ofG and give it a value a. For any other vertex w consider
some path from v to w and give w the induced value, b say. Since all
paths from v to w have the same path value the value b is independent
of the chosen path. Thus b is determined by a and the arrow values.
Moreover a ̸= b, and v and w are connected by an edge if and only if
b − a ∈ O∗

S. Thus we have a representation G of G. The equivalence
class to which G belongs is determined by the arrow values. �

Proof of Lemma 5.3. Suppose there are infinitely many pairs (E , ε) as
in the statement of the lemma such that GE,ε is not isomorphic to G.
Since there are only finitely many possibilities to choose E , there exists
an E for which this is true for infinitely many S-units ε. Fix this E .
Every arrow value of G is an S-unit. After multiplying it by an S-unit
ε it becomes again an S-unit. Thus every edge of G leads to an edge
of GE,ε. The only reason that G and GE,ε are not isomorphic can be
that GE,ε has an edge where G has no edge.

There are only finitely many edges which can be added to G. There-
fore we can fix two vertices v and w in G for which there are infinitely
many S-units ε such that multiplying the arrow values of E in G by
ε and leaving the others unchanged causes an edge in GE,ε between v
and w. Let r and rε denote the path values from v to w in G and GE,ε,
respectively. Both r and rε are independent of the chosen path. Write
r = P +Q where P is the contribution of the arrows from E to a path
from v to w in G and Q is the contribution of the other arrows along
that path. Then rε = ε · P + Q. Furthermore P and Q are constants
(that is, independent of ε) and rε is an S-unit, η say. This yields the
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S-unit equation η = ε ·P +Q with infinitely many solutions in S-units
ε, η. By Theorem A this equation has only finitely many solutions ε, η,
unless PQ = 0. We conclude PQ = 0. If P = 0, then r = Q = rε
and therefore there was already an edge in G between v and w. If
Q = 0, than r = P = ε−1rε is also an S-unit, and we have the same
conclusion. �

Proof of Theorem 5.1. Obviously c) implies both a) and b).
a) ⇒ c). Let G be a doubly connected graph with n edges. Sup-
pose there are infinitely many equivalence classes of representations
of G. Let G be any representation of G. Let G have arrow values
±x1, . . . ,±xn where the value of each arrow is fixed and nonzero. Since
G is doubly connected, every edge of G is part of a cycle and the edges
of G are determined by the cycles. Every cycle of G corresponds to
an equation (9) with αij ∈ {−1, 0, 1} for all j, xj the corresponding
arrow value and i numbering the (finitely many) cycles. Note that,
by Lemmas 5.1 and 5.2, there is a bijection between the solutions of
(9) and the arrow value sets which generate representations of graphs
G′ which have the same vertices and edges as G, but possibly other
edges too. By Theorem C there are only finitely many non-degenerate
equivalence classes of solutions. Since we have infinitely many equiv-
alence classes of solutions, there is a degenerate equivalence class of
solutions to system (9). This corresponds to a representation G of G,
a proper subset E of the edges of G and infinitely many S-units ε such
that multiplying the arrow values of G which belong to E by an S-unit
ε and leaving the other arrow values unchanged leaves the sum of the
arrow values of every cycle in G equal to 0. According to Lemma 5.3
there are only finitely many S-units ε such that the resulting graph
GE,ε is not isomorphic to G. Hence there are infinitely many S-units ε
such that multiplying the arrow values of E by ε and leaving the other
arrow values unchanged yields another representation of G.
b) ⇒ c). Suppose there are a representation of G of G, a non-empty
proper subset E of the edges of G and an S-unit ε0 ̸= 1 such that mul-
tiplying the arrow values of E by ε0 and leaving the other arrow values
invariant yields another representation of G. Consider any closed path
in G. Let P be the total contribution of the edges from E to this closed
path and Q the total contribution of the edges not in E . Then both
P + Q = 0 and ε0 · P + Q = 0 in view of Lemma 5.2. Since ε0 ̸= 1
we obtain P = 0. Thus the contribution of the arrow values from E to
any closed path of G is 0.

Consider the graph GE,ε which arises by multiplying the arrow values
of E in G by the S-unit ε and leaving the other arrow values unchanged.
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Since the contribution of the arrow values from E to the path values of
any closed path is 0, the graph GE,ε is a representation of some graph
GE,ε in view of Lemma 5.2. By Lemma 5.3 there exist only finitely
many S-units ε for which the graph GE,ε is not isomorphic with G.
Thus there are infinitely many S-units ε such that multiplying the
arrow values of E by ε and leaving the other arrow values invariant
yields another representation of G. Each such a representation belongs
to a different equivalence class of representations of G. Thus G is
infinitely representable with S. �

11. Proofs of the results stated in Section 6

In the proofs we use the following observations. By the definition of
equivalence of representations the values of all the vertices of a repre-
sentation G with S of some connected graph G are uniquely determined
within an equivalence class by the value of one vertex and the value of
one arrow. (Conversely, the value of the vertex may be any element
of K and the value of the arrow any S-unit.) Since vertices have dis-
tinct values, within an equivalence class a representation of G is also
uniquely determined by the values of two vertices.

Proof of Theorem 6.1. Consider the set of representations of G = G1∪
G2 for which two vertices v1 and v2 in G1 ∩ G2 have fixed distinct
values. Then, by the finite representability of G1, there are only finitely
many representations of G1. But for the same reason there exist only
finitely many representations of G2. Hence there are only finitely many
possibilities to give values to the other vertices of G. Thus G is finitely
representable. �

Proof of Theorem 6.2. If G1 and G2 have no vertices in common, then
the statement is trivial. If G1 and G2 have precisely one vertex in
common, then the situation is still simple. Indeed, consider any repre-
sentation of G1 and any degenerate representation of G2. Suppose that
in these representations of G1 and G2 the values a and a′ are attached
to the common vertex of G1 and G2, respectively. Now adding a′ − a
to the values attached to the vertices of G1, we get a representation
of G of the required form, since G1 and G2 have no common edge.
Thus the infinitely many pairwise non-equivalent representations of G2

yield infinitely many non-equivalent representations of G which leave
G1 unchanged.

So from this point on we may assume that G1 and G2 have at least
two vertices in common. Every representation of G induces a represen-
tation of G1 and a representation of G2. Fix the values of two vertices
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v, w ∈ G1 ∩G2 and consider representations of G with these fixed ver-
tex values. Then, by the finite representability of G1, there are only
finitely many different induced representations of G1.

Suppose G is infinitely representable. Then, by Theorem 5.1, there
are a representation G of G, a non-empty proper subset E of the edges
of G and infinitely many S-units ε such that multiplying the values
of the arrows of E by ε and leaving the other arrow values of G un-
changed yields another representation of G. Since G1 has only finitely
many representations, there exists a set E of infinitely many S-units ε
such that multiplication of the arrow values of E by ε and leaving the
other arrow values unchanged yields a representation of G such that
its restriction to G1 is in the equivalence class of some representation
G1 of G1.

Let c be the difference of the values of v and w in G1 and cε the
difference after the multiplication of the arrow values of E by ε ∈ E
leaving the other arrow values invariant. Then c ̸= 0 and, since both
representations belong to the same equivalence class of G1, cε = βεc
where βε is an S-unit. But for these ε’s we also have along any path in
G1 from v to w that cε = εP+Q where P is the sum of the contributions
of the arrows in E , Q the contribution of the arrows not in E , and
P +Q = c. Thus the equation βεc = εP +Q with constants c, P,Q has
infinitely many solutions in S-units ε, βε. By Theorem A this implies
P = 0 or Q = 0 as c ̸= 0. If P = 0, then cε = Q = c for infinitely many
ε’s. Then cε = c for infinitely many ε’s. If Q = 0, then we repeat the
above procedure with E replaced by its complement in G and conclude
that cε = c for infinitely many ε’s too. For such ε’s the vertex values
of v and w remain unchanged. But this means that the restriction to
G1 is the representation G1 itself. Thus E belongs to G \G1. �

Remark. In the proof of Theorem 6.2 P = 0 corresponds to the case
that no edge of G1 belongs to E and Q = 0 to the case that all edges
of G1 belong to E .

Proof of Corollary 6.1. It suffices to notice that by Theorem 4.1 a tri-
angle is finitely representable for any S and that two triangles with a
common edge have two vertices in common. Thus Theorem 6.1 can be
used inductively. �

Proof of Corollary 6.2. We show that G∇ is connected if and only if
G△ is connected. Then the statement follows from Corollary 6.1.

For given G△ we can construct G∇ in the following way: replace
every triangle of edges by a vertex and connect two vertices by an
edge if and only if the corresponding triangles in G△ have a vertex in
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common. Conversely, for given G∇ we can construct G△ by replacing
every vertex by a triangle such that if the vertices are connected by an
edge in G∇ the corresponding triangles in G△ have a common vertex.
It is obvious that there is a path in G△ between two triangles if and
only if there is a path in G∇ between the corresponding vertices. This
proves our claim. �
Proof of Corollary 6.3. Apply Theorem 6.1 to the components of G△.

�

12. Proofs of the results stated in Section 7

We shall need some further preliminary results. The following theo-
rem was established in terms of the complements of the graphs GS(A)
which formulation is more useful for certain applications.

Theorem E. (Győry [12]) Let n ≥ 3 be an integer, and fix S. Then
for all but at most (

(n+ 1)4216(|S|+d)
)n−2

S-equivalence classes of ordered n-term subsets A from OS, one of the
following cases holds:

i) GS(A) is connected and at least one of GS(A) and GS(A)
△ is not

connected;

ii) GS(A) has exactly two components, G1, and G2, say, such that |G1| =
1, and G2 is not connected;

iii) GS(A) has exactly two components of orders ≥ 2.

Proof. This is a consequence of a special case of Theorem 2.2 of [12]. �
For n ≥ 5, the following lemma provides an upper bound for the

number of cases in Theorem E iii).

Lemma 12.1. Let n ≥ 5 be an integer, and let S be fixed. There are
at most (

n · 5453(|S|+d)
)n−1

S-equivalence classes of ordered n-term subsets A in OS for which
GS(A) consists of two components, of which one has order ≥ 3 and
the other has order ≥ 2.

In the proof of Lemma 12.1 we use the following result.

Lemma 12.2. Apart from an S-unit factor, there are at most

21053(|S|+d)
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elements γ ∈ K∗ such that

x+ y = γ in x, y ∈ O∗
S

has more than two solutions.

For a qualitative version of Lemma 12.2, see Evertse, Győry, Stewart
and Tijdeman [7]. For the special case K = Q, see Lemma 10.2 in Part
I.

Proof of Lemma 12.2. A combination of the proof of Lemma 10.2 of
Part I with OS instead of ZS and the inequality N3 ≤ 5444(|S|+d) from
Theorem B proves the assertion. �

Proof of Lemma 12.1. Following the proof of Lemma 10.1 of Part I
with the choice

C1 = 5444(|S|+d), C2 = 3 · 73d+2|S|

and working over OS in place of ZS, the assertion follows. �

Proof of Theorem 7.3. Combine Theorem E and Lemma 12.1. �

Proof of Corollary 7.1. Let G be a graph of order n ≥ 3 and suppose
that G is more than (

n · 5114(|S|+d)
)4(n−1)

times representable for some S. This means that G is isomorphic to
GS(A) for as many S-equivalence classes of ordered subsets A from OS.
The assertion immediately follows from Theorem 7.3. �

Proof of Theorem 7.4. The theorem immediately follows from Theo-
rem D. �

To prove Theorem 7.1, we shall need the following

Theorem F. (Győry [10]) Let n ≥ 3 be an integer. For given S, there
are only finitely many S-equivalence classes of n-term subsets A in OS

such that both GS(A) and GS(A)
△ are connected. These classes of

n-term subsets are effectively determinable.

Proof. This is in fact an immediate consequence of Theorem 1 of Győry
[10]. Indeed, if A is a subset of On

S for which GS(A) and GS(A)
△ are

connected, then A is S-equivalent to a subset A′ of On
S such that A′ is of

the form A′ = {0, α′
2, . . . , α

′
n} and GS(A

′) and GS(A
′)△ are connected.

We can now apply Theorem 1 of [10] to the complement of the graph
GS(A

′) and the assertion follows. �
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Remark. We note that the proof of Theorem 1 of [10] is based on
Győry’s [9] effective finiteness results on the equation (5). This result
gives also an explicit upper bound for the heights of the solutions. This
bound has been improved by several people. The best known bound
is due to Győry and Yu [14]. These bounds could be used to obtain
quantitative versions of Theorem F.

Proof of Theorem 7.1. Let G be a graph of order n ≥ 3 such that both
G and G△ are connected. If G is representable with S and is isomorphic
to GS(A) for some n-term A ⊂ OS, then GS(A) and GS(A)

△ must be
connected. Now Theorem F applies and the assertion follows. �
Proof of Theorem 7.2. Let G be a graph of order ≥ 3. Suppose that G
is representable with some S and that G and H(G) are connected. If
G△ is connected then the assertion follows from Theorem 7.1. Consider
the case when G△ is not connected. By Theorem 7.1 each △-connected
component ofG△ is finitely representable and, for given S, each of these
representations is effectively determinable. We claim that if two such
components are connected in H(G) then the subgraph of G spanned by
these components is also finitely representable, and all representations
of this subgraph can be effectively determined.

Indeed, let GS(A) be a graph isomorphic to G for some subset A of
OS, and let GS(B), GS(B

′) be the induced subgraphs of GS(A), isomor-
phic to the respective subgraphs of G spanned by the two components
under consideration. Then it follows that

b1 − b2 = εκb1,b2 and b′1 − b′2 = ηκ′
b′1,b

′
2

for each distinct b1, b2 from B and b′1, b
′
2 from B′, where ε, η are S-units

and κb1,b2 , κ
′
b′1,b

′
2
can take only finitely many values from OS, and these

are effectively determinable. But by assumption B and B′ have two
common vertices, which implies that η = ετ for some τ ∈ OS which
may take only finitely many and effectively determinable values. For
each b1 ∈ B and b′1 ∈ B′ we have

b1 − b′1 = (b1 − b2) + (b2 − b′1)

where b2 is a common vertex of B and B′. This means that up to the
factor ε, b1−b′1 may take only finitely many and effectively determinable
values from OS, whence our claim follows.

Finally, we can treat the remaining components by induction, and
the assertion follows. �
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