
On the diophantine equation n(n+d):::(n+(k�1)d)=byl 1
ON THE DIOPHANTINE EQUATION n(n+ d) : : : (n+ (k � 1)d) = bylK. Gy}ory1;2, L. Hajdu1;3 and N. SaradhaDediated to Professor P. Ribenboim on the oasion of his 75th birthdayAbstrat. We show that the produt of four or �ve onseutive positive terms inarithmeti progression an never be a perfet power whenever the initial term isoprime to the ommon di�erene of the arithmeti progression. This is a general-ization of the results of Euler and Obl�ath for the ase of squares, and an extensionof a theorem of Gy}ory on three terms in arithmeti progressions. Several other re-sults onerning the integral solutions of the equation of the title are also obtained.We extend results of Sander on the rational solutions of the equation in n; y whenb = d = 1. We show that there are only �nitely many solutions in n; d; b; y whenk � 3, l � 2 are �xed and k + l > 6.

1. IntrodutionIn this paper we onsider the diophantine equation(1.1) � = �(n; d; k) = n(n+ d) : : : (n+ (k � 1)d) = bylin positive integers n; d; y; b, l � 2, k � 2 with gd(n; d) = 1, P (b) � k, where forany integer u with juj > 1 we write P (u) for the greatest prime fator of u and weput P (�1) = 1. We also take b to be l-th power free.First we take l = 2. In this ase, if k = 3, d = 1, then (1.1) has no solutionexept when n 2 f1; 2; 48g. We refer to [17℄ for the details and history. Fermatshowed that there are no four squares in arithmeti progression. Euler proved themore general result that a produt of four terms in an arithmeti progression annever be a perfet square. Obl�ath [11℄ extended this result to the ase k = 5. Erd}os[4℄ and Rigge [14℄, independently showed that a produt of two or more onseutiveintegers is never a perfet square. Reently, Saradha and Shorey [19℄ proved that aprodut of four or more terms in an arithmeti progression an never be a perfetsquare provided that d is a power of a prime number.Now we take l � 3. Erd}os and Selfridge [5℄ proved the remarkable result that aprodut of two or more onseutive integers an never be a perfet power. When2000 Mathematis Subjet Classi�ation: 11D41.1Researh supported in part by the Netherlands Organization for Sienti� Researh (NWO), theHungarian Aademy of Sienes and by grants T029330 and 042985 of the Hungarian NationalFoundation for Sienti� Researh (HNFSR).2Researh supported in part by grant T025157 of the HNFSR.3Researh supported in part by the J�anos Bolyai Researh Fellowship, by grant F034981 of theHNFSR and by the FKFP grant 3272-13/066/2001. Typeset by AMS-TEX1



2 K. Gy}ory, L. Hajdu and N. Saradhad = 1, it was proved by Saradha [16℄ for k � 4 and by Gy}ory [8℄ for k = 2; 3 that(1.1) has no solution with P (y) > k. Gy}ory [9℄ showed that (1.1) for k = 3 does nothold whenever P (b) � 2. His proof depends on the works of Wiles [26℄, Darmon andMerel [3℄ and Ribet [13℄ on generalized Fermat equations. In this result of Gy}oryP (b) � 2 annot be replaed by P (b) � 3; for (k; l) = (3; 3) equation (1.1) hasin�nitely many solutions with P (b) = 3, see Tijdeman [25℄. Saradha and Shorey[18℄ showed that (1.1) with k � 4, P (b) < k implies that d has a prime fator � 1mod l. Thus (1.1) with k � 4, P (b) < k and l � 3 has no solution, if d has onlythe prime fators 2, 3 and 5.In this paper we show that, for k = 4; 5 and b = 1, (1.1) has no solution. Inother words,Theorem 1. Equation (1.1) with k = 4; 5 and b = 1 does not hold.This gives an answer to a problem proposed by Guy; see D17 in his book [6℄.In fat, for l � 3 we show more.Theorem 2. (i) Let k = 4. Then (1.1) with l � 3 and P (b) � 2 implies that l hasa prime fator > 3 and 8 jj �.(ii) Let k = 5. Then (1.1) with l � 3 and P (b) � 2 implies that l has a prime fator> 3. Further, we have either 8 jj � or 16 jj �.As will be seen below, for ertain appliations equation (1.1) is interesting alsoin the ase when n and b are not neessarily positive integers, and P (b) � 3. Wepresent some results (f. Theorems 8 to 10) with these more general settings inSetion 2. Theorems 1 and 2 will be simple onsequenes of our Theorems 8 and 9.Now we onsider the equation(1.2) x(x+ 1) : : : (x+ k � 1) = �2�zlin rational numbers x and z � 0, and integers k � 2, l � 2 and � with �l < � < l.We may restrit ourselves to the ase 0 � � < l by replaing in (1.2) �; z byl � �; z=2, respetively. If x and z are integers and � = 0, then by the result ofErd}os and Selfridge, we see that x = �j, z = 0 for 0 � j < k are the only solutions.These are also the solutions of (1.2) for eah �; they will be alled trivial. Inwhat follows, we shall deal only with non-trivial solutions. Equation (1.2) was �rstonsidered by Sander [15℄, who studied it for 2 � k � 4 and � = 0. By puttingx = n=d and z = y=y1 with gd(n; d) =gd(y; y1) = 1, d > 0, y � 0 and y1 > 0, wesee that (1.2) redues to(1.3) n(n+ d) : : : (n+ (k � 1)d) = �2�ul; vl = 2dkwhere (u; v) = (y; y1) and � +  = � for some non-negative integers � and . Thussolving (1.2) for rational values x and z � 0 is equivalent to solving equation (1.1)with P (b) � 2 for integers n, y � 0 and d > 0 with the additional restrition that2dk is an l-th power. With the help of our general Theorems 8 to 10 we shall proveTheorem 3. Let 2 � k � 18 and l � 3 with gd(l; k) = 1. Then (1.2) with z 6= 0implies k = 2 and (x; z; �) = (�1=2; 1=2; l� 2), (�2; 1; 1), (1; 1; 1).For small values of k we an remove the ondition gd(l; k) = 1. In the asesk = 2; 3; 4 and � = 0, Sander [15℄ proved that (1.2) has no solution. We �nd,



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 3however, in Theorem 4 below that for k = l = 3 there are two solutions whih aremissing from the orresponding Proposition 2 of [15℄. Hene Conjeture 1 of Sander[15℄ stating that for k � 3, (1.2) with � = 0 has only the trivial solutions, shouldbe modi�ed aordingly. We also ompletely solve (1.2) with � = 0 for k = 5, anew result. Thus we haveTheorem 4. Let 2 � k � 5 and l � 3. Then the only non-trivial solutions of (1.2)with � = 0 are given by k = l = 3 and (x; z) = (�2=3; 2=3), (�4=3; 2=3).For (1.2) when � 6= 0 we showTheorem 5. Let k and l be as in Theorem 4, with the assumption that l 6= 4 ifk = 2. Let � > 0.(i) If k = 2, then equation (1.2) has the only non-trivial solutions (x; z; �) =(�1=2; 1=2; l� 2), (�2; 1; 1), (1; 1; 1).(ii) If k = 3; 4 then (1.2) has no non-trivial solution.(iii) If k = 5, then (1.2) implies that l = 5 and � 2 f3; 4g.Remark. The assumption that l 6= 4 if k = 2 is neessary. It is well-known thatthere are in�nitely many triples (p; q; r) of positive integers with gd(p; q; r) = 1satisfying 2p4 � q4 = r2 (see e.g. [12℄, pp. 152{164). By putting x = q4=r2, we seethat (1.2) with k = 2, � = 1 and l = 4 has in�nitely many solutions in (x; z).So far we have given omplete solutions of (1.1) or (1.2) for small values of k. Nowwe present some �niteness results on (1.1). For a omplete survey on suh resultswe refer to [2℄, [9℄, [22℄, [23℄ and [25℄. By applying Faltings' theorem, Darmon andGranville [2℄ showed that (1.1) with b = 1, k � 3, l � 4 �xed has only �nitely manysolutions in n; d; y. We re�ne this result and extend it to the ase b > 1.Theorem 6. For �xed k � 3 and l � 2 with k + l > 6, equation (1.1) has only�nitely many solutions in n; d; b; y.Theorem 6 is best possible in the sense that for �xed k � 3, l � 2 with k+ l � 6,(1.1) has in eah ase in�nitely many solutions; f. Tijdeman [25℄. From the proofof Theorem 6, we observe that the above result is valid for the solutions of (1.1)with n < 0 as well.Shorey [22℄ proved that if d > 1 and l � 4 then the ab-onjeture implies thatk is bounded by an absolute onstant. We re�ne this result asTheorem 7. The ab-onjeture implies that (1.1) with d > 1, k � 3 and l � 4has only �nitely many solutions in n; d; k; b; y; l.We note that if we use an e�etive variant of the ab-onjeture, then the abovetheorem is also e�etive. The restrition d > 1 is obviously neessary; for d = 1and n = 1, (1.1) is solvable for every k � 2.2. A generalization of equation (1.1)In this setion we onsider the following generalization of equation (1.1):(2.1) � = �(n; d; k) = n(n+ d) : : : (n+ (k � 1)d) = bylin non-zero integers n; b and in d > 0; y > 0, l � 2, k � 2 with gd(n; d) = 1,P (b) � k. Further, to make the representation byl unique we assume here and in



4 K. Gy}ory, L. Hajdu and N. SaradhaTheorems 8 to 10 that y is not divisible by primes � k. Thus while onsidering(2.1), b is not taken as l-th power free. We note that if n; d; b; y is a solution of(2.1) then so is �n� (k � 1)d; d; (�1)kb; y.In what follows, �p(u) denotes the order of p in u for any prime p and non-zerointeger u.Theorem 8. Suppose equation (2.1) holds.(i) Let k = 3 and l � 3. Then either(n; d; b; y) 2 f(�4; 3; 8; 1); (�2; 3;�8; 1)g;or l - �3(b). Moreover, if P (l) > 3, then �2(b) � 5.(ii) Let k = 4 and suppose that P (l) > 3. Then �3(b) > 0, and either �2(b) = 0,l - �3(b) or �2(b) = 3.(iii) Let k = 5. Suppose that P (l) > 3, and that l j �5(b). Then �3(b) > 0, andeither �2(b) = 0, l - �3(b) or �2(b) = 3 or 4.Remark. For k = 3, �2(b) � 5 is sharp as is shown by the example2(2 + 7)(2 + 2 � 7) = 32 � 25:Similarly, for k = 4, �2(b) = 3 is sharp sine1 � 2 � 3 � 4 = 3 � 23:For (k; l) = (3; 3) and �3(b) = 1; 2, it is known that (2.1) has in�nitely manysolutions whih an be seen by taking b = 3; 6; 36; f. Tijdeman [25℄.For the ases l = 3; 4 we proveTheorem 9. (i) Let l = 3. Then equation (2.1) with k = 4 has only the solutions(n; d; b; y) = (�6; 5; 216; 1); (�9; 5; 216; 1); (�3; 2; 9; 1); (1; 1; 24; 1); (�4; 1; 24; 1):Further, (2.1) has no solution with k = 5, 3 j �5(b).(ii) Let l = 4 and 4 j �3(b), 4 j �5(b). Then equation (2.1) does not hold withk = 4; 5.Theorem 10. Let d = 2hdl1 (h � 0), l j �p(b) for eah prime p with 3 � p � k.Suppose that 2 � k � 18 if �2(d) < 4, and let 2 � k � 30 otherwise, i.e. if�2(d) � 4. Further, in the latter ase we suppose that l has a prime fator > 3.Then the only solutions of (2.1) are as follows: k = 2 and (n; d; b; y) = (�2; 1; 2; 1),(1; 1; 2; 1), (�1; 2;�1; 1). 3. Notation and lemmasBy equation (2.1), we observe that if a prime p > k divides �, then it dividesonly one term in � and �p(�) � 0 mod l. Hene we dedue that(3.1) n+ id = aixliwith P (ai) � max(P (b); k � 1), xi > 0, ai l-th power free for 0 � i < k. Also wehave gd(xi; xj) = 1 for eah i 6= j if 2l � k. Further,(3.2) n+ id = AiX liwith P (Ai) � k, Xi > 0, gd Xi; Qp�k p! = 1 for 0 � i < k. Note thatgd(Xi; Xj) = 1 for eah i 6= j. We need several lemmas for the proofs of ourtheorems. We begin with a result of Gy}ory [9℄.



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 5Lemma 1. Equation (1.1) with k = 3, l > 2 and P (b) � 2 has no solution.Gy}ory derives the above result as a onsequene of the following statement (f.[9℄, Theorem G) on a generalized Fermat equation.Lemma 2. Let l � 3, � � 0 be integers. Then the equationxl + yl = 2�zlin relatively prime integers x; y; z � 1 has no solution for � 6= 1, and for � = 1 theequation has only the trivial solution x = y = z = 1. Further, the equationxl � yl = 2�zlhas no solution in relatively prime integers x; y; z � 1.The above result was established by Wiles [26℄ for � � 0 mod l, by Darmon andMerel [3℄ for � � 1 mod l, and by Ribet [13℄ for � 6� 0; 1 mod l and l � 5 prime.For the other ases, see Gy}ory [9℄.In [18℄, Saradha and Shorey gave the following result on a more general Fermatequation by using the ontributions of Wiles [26℄, Ribet [13℄ and others. The �rstsuh results were due to Serre [10℄ and Kraus [21℄; see also Sander [15, p. 432℄.Lemma 3. Let l be a positive integer having a prime fator > 3. Suppose thata; b;  are non-zero integers suh that either P (ab) � 3 or a; b;  are omposed ofonly 2 and 5. Then the equation axl + byl = zlin non-zero integers x; y; z with gd(axl; byl; zl) = 1, �2(byl) � 4 has no solution.Bennett and Skinner [1℄ proved the followingLemma 4. The only solution to the equationxl + yl = 2z2in integers x; y; z; l with gd(x; y; z) = 1, x > y, l � 4 is (x; y; z; l) = (3;�1;�11; 5).We shall also use the following onsequene of Lemma 4.Lemma 5. The equation xl � yl = 2z2in integers x; y; z; l with gd(x; y; z) = 1, x > y and l � 4 even with l 6= 6 has nosolution.Proof. Suppose that the equation holds. We may assume that x; y; z are positive.Let l = 2kl1 with k � 1, l1 odd. If k � 2, we arrive at a ontradition by (iii) ofLemma 7 below. Hene k = 1 and l1 � 5 odd. We now dedue that eitherxl1 + yl1 = 2z21 ; xl1 � yl1 = z22or xl1 + yl1 = z21 ; xl1 � yl1 = 2z22with some positive integers z1; z2, whih is impossible by Lemma 4. �We also need results on several ubi and quarti equations. Cubi equationswere extensively studied by Selmer [20℄ in a long paper. We present here resultson these ubi equations whih we ome aross in the proofs of our theorems. Thestudy of quarti equations dates bak to Euler. We refer to the book of Ribenboim[12℄, pp. 164{177, for the quarti equations we are interested in here.



6 K. Gy}ory, L. Hajdu and N. SaradhaLemma 6. The equationsx3 + 2y3 = 3z3; x3 + 4y3 = 3z3have no solution in non-zero integers x; y; z with gd(x; y; z) = 1 and jxyzj > 1,and the equationsx3 + y3 = 3z3; x3 + y3 = 4z3; x3 + 4y3 = 9z3have no solution in non-zero integers x; y; z with gd(x; y; z) = 1.Lemma 7. Let x; y; z be positive integers with gd(x; y; z) = 1 and � � 0 aninteger.(i) If x4 � 2�y4 = z2, then � � 1 mod 4.(ii) If 2�x4 � y4 = z2, then � � 1 mod 4.(iii) x4 � y4 = 2�z2 is impossible.(iv) If x4 + y4 = 2�z2, then x = y = z = 1.Lemma 8. Let (2.1) be valid, and suppose that l j �p(b) for eah prime p with3 � p � k. There exist indies i; j with 0 � i < j < k suh that in (3.1)(3.3) ai = �i2�i ; aj = �j2�j ; j � i = 2Æ for 2 � k � 18and(3.4) ai = �i; aj = �j ; j � i = 2%3" or 2%5" for 2 � k � 30 if d is even:Here �i; �j ; Æ; %; " denote some non-negative integers, and �i; �j may assume �1.Proof of Lemma 8. The assertion an be easily heked for k � 6. We explain thease k = 7 and d odd. We observe that in this ase 7 - ai for 0 � i < k. Further wehave either 5 not dividing any ai or 5 dividing a0; a5 or 5 dividing a1; a6. Suppose5 - ai for 0 � i < k. Then the statement follows with i = 0, j = 1 if 3 - a0a1; i = 1,j = 2 if 3 j a0; i = 0, j = 2 if 3 j a1. Hene we may assume that 5 divides eithera0; a5 or a1; a6. The assertion follows with i = 2, j = 3 if 3 - a2a3, with i = 3; j = 4if 3 j a2, and with i = 4; j = 5 if 3 j a3. This proedure has been programmedand (3.3) is heked. When d is even we observe that all the ai's are odd and wehek that (3.4) is valid for k � 30. The largest ases k = 29; 30 took 8 hours ofomputation. � 4. Proofs of Theorems 8-10We will use the notation introdued in the previous setion without any furthermention.Proof of Theorem 8. Suppose equation (2.1) holds. For k = 3; 4 and for k = 5 withl j �5(b), (3.2) an be modi�ed suh that n+ id = AiX li with(4.1) Ai = �i2�i3�i ; �i = �1; Xi > 0; gd(Xi; 6) = 1 for 0 � i < k:Let � = max(�0; : : : ; �k�1).



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 7(i) Let k = 3. First we show that in this ase l - �3(b). We assume that(4.2) (n; d; b; y) 62 f(�4; 3; 8; 1); (�2; 3;�8; 1)g:Suppose to the ontrary that l j �3(b). Then �i = lti with non-negative integers tiamong whih at least two are zero. By Lemma 1, we may suppose that n < 0 andn+ 2d > 0. In view of gd(n; d) = 1 we infer that (n; n+ d) = (n+ 2d; n+ d) = 1and (n; n+ 2d) = 1 or 2.If n+ d is even, then n; n+ 2d are odd and we dedue from (4.1) thatn+ d = �12�1(3t1X1)l; n = �(3t0X0)l; n+ 2d = (3t2X2)lwith �1 = �1 and �1 � 1. Then(4.3) �(3t0X0)l + (3t2X2)l = �12�1+1(3t1X1)l:By Lemma 2 we obtain that there is no solution in this ase.If n+d is odd then there are two subases to be distinguished. If n and n+2d arealso odd then we arrive at equation (4.3) with �1 = 0, whih leads to a ontradition.Assume now that n and n+ 2d are even. Then we get from (4.1) that(4.4) n+ d = �1(3t1X1)l; n = �2�0(3t0X0)l; n+ 2d = 2�2(3t2X2)lwhere �1 = �1, �0; �2 � 1 suh that one of �0; �2 equals 1, and 3t0X0; 3t1X1; 3t2X2are relatively prime odd positive integers. If �2 = 1, then we obtain that�2�0�1(3t0X0)l + (3t2X2)l = �1(3t1X1)l;whih by Lemma 2 gives �0 = 2, �1 = �1, ti = 0 for i = 0; 1; 2 and X0 = X1 =X2 = 1. We infer from (4.4) that (n; d; b; y) = (�4; 3; 8; 1) whih is exluded.Finally, if �0 = 1 then�(3t0X0)l + 2�2�1(3t2X2)l = �1(3t1X1)l;and Lemma 2 implies that �2 = 2, �1 = 1, ti = 0 for i = 0; 1; 2, X0 = X1 = X2 = 1.Then, by (4.4) we get (n; d; b; y) = (�2; 3;�8; 1) whih is exluded. So if (4.2)holds, then l - �3(b).Assume now that l has a prime fator > 3. We may suppose that d is odd sineotherwise �2(b) = 0. Further, we have(4.5) A0X l0 +A2X l2 = 2A1X l1:If � = 1, then learly �2(b) � 2. Assume that � > 1. We observe that(�0; �1; �2) 2 f(�; 0; 1); (1; 0; �); (0; �; 0)g:Now we apply Lemma 3 to (4.5) to get � � 4. Hene �2(b) � 5.(ii) Let k = 4. In ase of �3(b) = 0, i.e. if(�0; �1; �2; �3) = (0; 0; 0; 0)



8 K. Gy}ory, L. Hajdu and N. Saradhawe an use the results just proved for k = 3 to show that there is no solution. Hene�3(b) > 0. Further, we have(�0; �1; �2; �3) 2 f(0; 0; 0; 0); (�; 0; 1; 0); (1; 0; �; 0); (0; �; 0; 1); (0; 1; 0; �)g:If d is even, then �2(b) = 0. Suppose l j �3(b). Then we have(�0; �1; �2; �3) 2 f(tl � 1; 0; 0; 1); (1; 0; 0; tl� 1)gfor some integer t > 0. In both ases we see that�1�2(X1X2)l � �0�3(3tX0X3)l = (n+ d)(n+ 2d)� n(n+ 3d) = 2d2:As Xi > 0 (i = 0; 1; 2; 3), this equation has no non-trivial solution by Lemmas 4and 5. Thus l - �3(b).Let d be odd. Then � > 1, whene (�0; �1; �2; �3) 6= (0; 0; 0; 0). We take(�0; �1; �2; �3) = (�; 0; 1; 0), in the other ases the proof is similar. We applyLemma 3 to the equation2A0X l0 +A3X l3 = 2n+ (n+ 3d) = 3(n+ d) = 3A1X l1to get � � 2. As learly � � 2, thus �2(b) = 3 and part (ii) is proved.(iii) Let k = 5 and P (b) < 5. Then we have(�0; �1; �2; �3; �4) 2f(0; 0; 0; 0; 0); (�; 0; 1; 0; 2); (2; 0; 1; 0; �); (1; 0; �; 0; 1); (0; �; 0; 1; 0); (0; 1; 0; �; 0)g:Suppose (�0; �1; �2; �3; �4) = (0; 0; 0; 0; 0). Then we argue as in the ase k = 4 tosee that l - �3(b). In the next two possibilities, we observe that � > 2. On the otherhand, applying Lemma 3 to the equations obtained from the equalities2n+ (n+ 3d) = 3(n+ d) and (n+ d) + 2(n+ 4d) = 3(n+ 3d)we get � � 2, a ontradition. For the last three quintuples we apply Lemma 3 tothe equations obtained from(n+ id) + (n+ (i+ 2)d) = 2(n+ (i+ 1)d); i = 1; 0; 2;respetively, to �nd � � 2. As � � 2, we get �2(b) = 3 or 4.Further, if �i = 0 for i = 0; : : : ; 4, then by part (ii) of the theorem, (2.1) has nosolution with k = 5. Thus �3(b) > 0, and (iii) is also proved. �Proof of Theorem 9. Suppose that (2.1) holds. Sine k = 4 or 5, we an modify(3.2) so that n+ id = AiX li andAi = �i2�i3�i with �i = �1; Xi > 0; gd(Xi; 6) = 1 for i = 0; 1; : : : ; k � 1:Further, we have gd(Xi; Xj) = 1 whenever i 6= j.



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 9Assume �rst that k = 4. Let � = max(�0; �1; �2; �3), and observe that � = 0or � � 2. Moreover, we have(�0; �1; �2; �3) 2 f(0; 0; 0; 0); (�; 0; 1; 0); (1; 0; �; 0); (0; �; 0; 1); (0; 1; 0; �)g:Let l = 3. Suppose �rst that (�0; �1; �2; �3) = (0; 0; 0; 0). Then we may applypart (i) of Theorem 8 to the �rst three fators of the left hand side of (2.1) to provethat there is no solution in this ase. Thus we may assume that(�0; �1; �2; �3) 2 f(1; 0; 0; �); (�; 0; 0; 1); (0; �; 0; 0); (0; 0; �; 0)gwith � � 1.Using one of the equalitiesA0X30 +A2X32 = 2A1X31 ; A1X31 +A3X33 = 2A2X32 ;or 2A0X30 +A3X33 = 3A1X31 ; A0X30 + 2A3X33 = 3A2X32 ;we an redue eah of the 20 ases arising to one of the ubi equations in Lemma6. Hene by this lemma, we get all the solutions listed in the theorem in this ase.Let l = 4. If 4 j �i for some i and �j = 0 for eah j 6= i, then we may use againpart (i) of Theorem 8 to onlude that there is no solution. There remains the ase(�0; �1; �2; �3) = (�0; 0; 0; �3) with positive �0; �3 suh that 4 j (�0 + �3). Further,we have 3 - d. In what follows, we assume that �0 = 4t� 1 (t 2 N), �3 = 1. In theopposite ase �0 = 1, �3 = 4t� 1 (t 2 N), we an argue in a similar way.When (�0; �1; �2; �3) 2 f(0; 0; 0; 0); (1; 0; �; 0); (�; 0; 1; 0)g;by using the relation 2A0X40 +A3X43 = 3A1X41 , we get the equations2(32t�1X20 )2 = �0�1X41 � �0�3X43 ;4(32t�1X20 )2 = �0�1X41 � �0�3X43 ;2�+1(32t�1X20 )2 = �0�1X41 � �0�3X43 ;respetively, whih are all impossible by Lemma 7.In ase of (�0; �1; �2; �3) = (0; �; 0; 1) we apply A0X40 + 2A3X43 = 3A2X42 toobtain �034t�2X40 + �34X43 = �2X42 ;whih by 2 - Xi (i = 0; 1; 2; 3) leads to a ontradition mod 16.Finally, suppose that (�0; �1; �2; �3) = (0; 1; 0; �). We have (A0; A1; A2; A3) =(�034t�1; �12; �2; �32�3). By 2A0X40 +A3X43 = 3A1X41 , we get�034t�2X40 + �32��1X43 = �1X41 :As 2 - Xi, the equation mod 16 gives � = 4. However, the relation A0X40 +2A3X43 = 3A2X42 yields �034t�2X40 + �332X43 = �2X42 ;



10 K. Gy}ory, L. Hajdu and N. Saradhawhih is impossible mod 16.Now we take k = 5. If l = 3 then we may apply the statement proved above fork = 4 to the �rst four fators of the left hand side of (2.1) and the assertion follows.When l = 4, the problem an be redued to the ase k = 4 by onsidering the �rstor last four fators of the left hand side of (2.1), aording as 3 j n or 3 - n. Thenthe statement immediately follows from the result just proved above for k = 4. �Proof of Theorem 10. Suppose �rst that �2(d) < 4 and 2 � k � 18. Write d1 =2h1d2 with d2 odd. Hene d = 2h+lh1dl2; put h0 = h+ lh1. By Lemma 8, there existi; j with 0 � i < j < k suh that (3.1) and (3.3) hold. Further, if p� divides xi andxj for some prime p and integer � > 0, then p�l j (j � i)d implying p�l j (j � i).Hene p�l � 17 giving p = 2, � = 1, l = 3; p = 2, � = 1, l = 4. Thus we have�j2�jxlj � �i2�ixli = 2Æd = 2Æ+h0dl2:Now we write 2�ixli = 2tizli and 2�jxlj = 2tjzlj with zi and zj odd. Then by thepreeding observation we see that gd(zi; zj) = 1. Also2Æ+h0dl2 = �j2tjzlj � �i2tizli:Sine d2; zi; zj are all odd, it follows that exatly two among Æ+h0; ti; tj are equal,and the third is greater than the others. Suppose ti = tj . Then2Æ+h0�tidl2 = �jzlj � �izli:Hene by Lemma 2 we have d2 = zj = zi = 1, giving d = 2h0 ; Æ+h0�ti = 1; n+id =�i2Æ+h0�1, n+ jd = �j2Æ+h0�1.Suppose d is even. Then n+ id = �i, n+ jd = �j and Æ + h0 = 1. Hene h0 = 1giving d = 2, n + 2i = �1, n + 2j = 1. It is easy to hek that the only solutionto (2.1) is given by k = 2 and (n; d; b; y) = (�1; 2;�1; 1). Suppose d is odd. Thenh0 = 0 giving d = 1 and Æ � ti = 1, n + i = �i2Æ�1, n+ j = �j2Æ�1. Using Æ � 4,we get for k = 2 the solutions as (n; d; b; y) = (�2; 1; 2; 1) and (1; 1; 2; 1), and fork � 3 we hek that there exists a prime p > 2 with p jj �(n; 1; k). Hene equation(2.1) does not hold if k � 3. The argument for the ases Æ + h0 = ti or Æ + h0 = tjis similar.Now let �2(d) � 4 and 2 � k � 30, and suppose that l is divisible by a prime> 3. Then by (3.4) we have�jxlj � �ixli = 2%3"d or 2%5"d:We apply Lemma 3 to see that (2.1) has no solution in this ase. �5. Proofs of Theorems 1-5Proof of Theorem 1. Let k = 4; 5. When l = 2, the assertion is the result of Eulerfor k = 4 and of Obl�ath for k = 5. We observe from (1.1) that whenever l � 3,we may assume l to be a prime. The assertion for any prime l � 5 follows fromTheorem 8 and for l = 3 from Theorem 9. Hene the theorem follows for anyl � 2. �



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 11Proof of Theorem 2. (i) Let k = 4. Suppose (1.1) holds with l � 3 and P (b) � 2.From part (ii) of Theorem 8, we �nd that 8 jj � whenever l has a prime fator> 3. For l = 3; 4 we apply Theorem 9 to see that (1.1) annot hold with P (b) � 2.Hene the statement follows.(ii) Let k = 5. We apply part (iii) of Theorem 8 for l � 5 and Theorem 9 for l = 3; 4to obtain the assertion. �Proof of Theorem 3. Suppose 2 � k � 18, l � 3 with gd(l; k) = 1 and equation(1.2) holds. Then (1.3) is valid. Further, from the seond equality of (1.3) it followsthat d = 2hdl1 (h � 0) sine gd(l; k) = 1. By Theorem 10 we get that (1.2) hasonly the solutions(x; z; �) = (�1=2; 1=2; l� 2); (�2; 1; 1); (1; 1; 1);and the theorem is proved. �Proof of Theorem 4. Assume (1.2) with � = 0. Hene (1.3) is valid with � =  = 0.By Theorem 3, we need to onsider only the ases k = l = 3; 4; 5 and k = 2; l = 4.For k = l = 3, using part (i) of Theorem 8 we get (n; d) 2 f(�4; 3); (�2; 3)g, whihgives x = �4=3;�2=3. By part (ii) of Theorem 9 and part (iii) of Theorem 8 wean exlude the possibilities k = l = 4 and k = l = 5, respetively. Finally, letk = 2; l = 4. Then by (1.3) and (3.1) we geta1x41 � a0x40 = v2;with a0a1 = �1. However, by using Lemma 7 one an easily see that there is nosolution in this ase. �Proof of Theorem 5. Assume (1.2) with � > 0. Then (1.3) is valid. By Theorem3 we get all solutions for k = 2, l � 3 prime, and we need to onsider only k =l = 3; 4; 5 and k = 2; l = 8. Using part (i) of Theorem 8 we get that there is nosolution with k = l = 3. For k = l = 4 and k = l = 5 by part (ii) of Theorem 9 andpart (iii) of Theorem 8, respetively, we get that the former ase is exluded whilein the latter ase � = 3; 4.Finally, suppose that k = 2 and l = 8. Now (1.3) yields that n = �2�0x40 andn + d = �2�1x41 with (�0; �1) = (�; 0) or (0; �), x0; x1 > 0 and gd(x0; x1) = 1.Moreover,  is even, and v4 = 2=2d. Thus we obtain the equation�2�0x40 + 2�=2v4 = �2�1x41:By Lemma 2 we get x0 = x1 = v = 1, whene d = 1 and n = 1 or n = �2. Thuswe obtain the solutions (x; z; �) = (1; 1; 1); (�2; 1; 1) whih were already found, andthe theorem follows. �6. Proofs of Theorems 6 and 7Proof of Theorem 6. Sine k and l are �xed and the ai in (3.1) are l-th power freewith P (ai) � k, the oeÆients ai may assume only �nitely many values. Fix aifor i = 0; : : : ; k � 1.We take j onseutive terms from the produt �(n; d; k) in (1.1), say n+ id; n+(i + 1)d; : : : ; n + (i + j � 1)d with i = 0, j = k if k = 3 or 4, and i � 0, j = 5 ifk � 5. It follows from (3.1) and(n+ id) + (n+ (i+ 2)d) = 2(n+ (i+ 1)d)



12 K. Gy}ory, L. Hajdu and N. Saradhathat(6.1) (2ai+1xi+1)l = (2ai+1)l�1(aixli + ai+2xli+2):Further, if k � 4, then we get similarly(6.2) (2ai+3xi+3)l = (2ai+3)l�1(�aixli + 3ai+2xli+2);and if k � 5, then(6.3) (ai+4xi+4)l = (ai+4)l�1(�aixli + 2ai+2xli+2):Denote by F1(xi; xi+2), F2(xi; xi+2), F3(xi; xi+2) the right-hand side of (6.1), (6.2)and (6.3), respetively.By assumption, gd(n; d) = 1. Hene it is easy to see that gd(n+id; n+(i+2)d) j2, whih implies that gd(xi; xi+2) = 1.First onsider the ase when k � 5. Then, by assumption k + l > 6, hene weget l � 2. Multiplying the equations (6.1) to (6.3) and puttingF (xi; xi+2) = 3Yt=1Ft(xi; xi+2);we arrive at the equation(6.4) F (xi; xi+2) = zlwith z = 4ai+1ai+3ai+4xi+1xi+3xi+4. Here F is a homogeneous polynomial in xi,xi+2 with integral oeÆients and with 3l � 6 pairwise linearly independent linearfators over �Q . Hene by [2, Theorem 1℄ we see that xi, xi+2, z, and hene alsoxi+1, xi+3, xi+4 may assume only �nitely many integral values. Sine this is truefor any �ve onseutive terms in the produt �(n; d; k), we see that all xi with0 � i < k assume only �nitely many values. Thus n, d are bounded, and so b, yare also bounded.Next assume that k = 4. Then, by assumption, l � 3. In this ase (6.1) and(6.2) imply (6.4) with the hoie i = 0,F (x0; x2) = 2Yt=1Ft(x0; x2) and z = 4a1a3x1x3:Then Theorem 1 of [2℄ applies again to (6.4) and proves our theorem.Finally, if k = 3 and l � 4, then we an take in (6.4) F (x0; x2) = F1(x0; x2) andz = 2a1x1 and the assertion follows in the same way as before. �Proof of Theorem 7. We denote by 1; : : : ; 8 expliitly omputable absolute on-stants. We assume (1.1) with d > 1, k � 3 and l � 4. We take (n; d; k) 6= (2; 7; 3).Then by a theorem of Shorey and Tijdeman [24℄, P (�) > k, whene P (y) > k.By a result of Shorey [22℄, the ab-onjeture implies that k � 1. We �x k with3 � k � 1. For 0 � i < j < k � 1, we have(j � i)(n+ (k � 1)d) + (k � 1� j)(n+ id) = (k � 1� i)(n+ jd):



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 13It is easy to see that the greatest ommon divisor of these three terms is at mostk2. Now we use (3.1) in the above equality and divide by the greatest ommondivisor to get(6.5) ek�1xlk�1 + eixli = ejxlj ;where ek�1; ei; ej are oprime positive integers omposed only of primes not ex-eeding k. Sine P (y) > k, at least one of the numbers x0; : : : ; xk�1, say xi, hasa prime fator greater than k. Put X = max(xk�1; xi; xj). We now apply theab-onjeture to (6.5) with " = 1=4 to getX l � 20�Yp�k p1A5=40� Ypjxk�1xixj p1A5=4 � 3X3�5=4:Thus X l�3:75 � 3:As X > 1 and l � 4, we obtain l � 4 whene X l � 5. This means that in (6.5)xlk�1, xli and xlj an assume only �nitely many values. We �x suh possible valuesof xlk�1, xli and xlj . Then (6.5) beomes an S-unit equation for the set of primesS = fp j p � kg, whih equation has only �nitely many solutions in ek�1; ei; ej ,moreover max(ek�1; ei; ej) � 6 (f. [7℄). Consequently,n+ (k � 1)d = ak�1xlk�1 � k2ek�1xlk�1 � 7:Thus n; d; b; y are all bounded by 8. �Remark. In the above proof we used an e�etive version of the ab-onjeture,when 2 is expliitly omputable. For l � 7, we ould also use the weak ab-onjeture with " = 1 and 2=1.7. AknowledgementsWe are grateful to Professor Shorey for his useful omments on an earlier versionof the paper. We thank Professor Bennett for his kindness to provide us Lemma 4prior to its publiation. The third author wishes to thank the �rst two authors fortheir kind hospitality during her visit to Debreen in May, 2001.The authors are indebted to the referee for his valuable and helpful remarks.Referenes[1℄ M. Bennett and C. Skinner, Ternary Diophantine equations via Galois representations andmodular forms, Canad. J. Math. (to appear).[2℄ H. Darmon and A. Granville, On the equations zm = F (x; y) and Axp + Byq = Czr, Bull.London Math. So. 27 (1995), 513{543.[3℄ H. Darmon and L. Merel, Winding quotients and some variants of Fermat's Last Theorem,J. Reine Angew. Math. 490 (1997), 81{100.[4℄ P. Erd}os, Note on produts of onseutive integers (II), J. London Math. So. 14 (1939),194{198.[5℄ P. Erd}os and J. L. Selfridge, The produt of onseutive integers is never a power, Illinois J.Math. 19 (1975), 292{301.
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