
On the diophantine equation n(n+d):::(n+(k�1)d)=byl 1
ON THE DIOPHANTINE EQUATION n(n+ d) : : : (n+ (k � 1)d) = bylK. Gy}ory1;2, L. Hajdu1;3 and N. SaradhaDedi
ated to Professor P. Ribenboim on the o

asion of his 75th birthdayAbstra
t. We show that the produ
t of four or �ve 
onse
utive positive terms inarithmeti
 progression 
an never be a perfe
t power whenever the initial term is
oprime to the 
ommon di�eren
e of the arithmeti
 progression. This is a general-ization of the results of Euler and Obl�ath for the 
ase of squares, and an extensionof a theorem of Gy}ory on three terms in arithmeti
 progressions. Several other re-sults 
on
erning the integral solutions of the equation of the title are also obtained.We extend results of Sander on the rational solutions of the equation in n; y whenb = d = 1. We show that there are only �nitely many solutions in n; d; b; y whenk � 3, l � 2 are �xed and k + l > 6.

1. Introdu
tionIn this paper we 
onsider the diophantine equation(1.1) � = �(n; d; k) = n(n+ d) : : : (n+ (k � 1)d) = bylin positive integers n; d; y; b, l � 2, k � 2 with g
d(n; d) = 1, P (b) � k, where forany integer u with juj > 1 we write P (u) for the greatest prime fa
tor of u and weput P (�1) = 1. We also take b to be l-th power free.First we take l = 2. In this 
ase, if k = 3, d = 1, then (1.1) has no solutionex
ept when n 2 f1; 2; 48g. We refer to [17℄ for the details and history. Fermatshowed that there are no four squares in arithmeti
 progression. Euler proved themore general result that a produ
t of four terms in an arithmeti
 progression 
annever be a perfe
t square. Obl�ath [11℄ extended this result to the 
ase k = 5. Erd}os[4℄ and Rigge [14℄, independently showed that a produ
t of two or more 
onse
utiveintegers is never a perfe
t square. Re
ently, Saradha and Shorey [19℄ proved that aprodu
t of four or more terms in an arithmeti
 progression 
an never be a perfe
tsquare provided that d is a power of a prime number.Now we take l � 3. Erd}os and Selfridge [5℄ proved the remarkable result that aprodu
t of two or more 
onse
utive integers 
an never be a perfe
t power. When2000 Mathemati
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2 K. Gy}ory, L. Hajdu and N. Saradhad = 1, it was proved by Saradha [16℄ for k � 4 and by Gy}ory [8℄ for k = 2; 3 that(1.1) has no solution with P (y) > k. Gy}ory [9℄ showed that (1.1) for k = 3 does nothold whenever P (b) � 2. His proof depends on the works of Wiles [26℄, Darmon andMerel [3℄ and Ribet [13℄ on generalized Fermat equations. In this result of Gy}oryP (b) � 2 
annot be repla
ed by P (b) � 3; for (k; l) = (3; 3) equation (1.1) hasin�nitely many solutions with P (b) = 3, see Tijdeman [25℄. Saradha and Shorey[18℄ showed that (1.1) with k � 4, P (b) < k implies that d has a prime fa
tor � 1mod l. Thus (1.1) with k � 4, P (b) < k and l � 3 has no solution, if d has onlythe prime fa
tors 2, 3 and 5.In this paper we show that, for k = 4; 5 and b = 1, (1.1) has no solution. Inother words,Theorem 1. Equation (1.1) with k = 4; 5 and b = 1 does not hold.This gives an answer to a problem proposed by Guy; see D17 in his book [6℄.In fa
t, for l � 3 we show more.Theorem 2. (i) Let k = 4. Then (1.1) with l � 3 and P (b) � 2 implies that l hasa prime fa
tor > 3 and 8 jj �.(ii) Let k = 5. Then (1.1) with l � 3 and P (b) � 2 implies that l has a prime fa
tor> 3. Further, we have either 8 jj � or 16 jj �.As will be seen below, for 
ertain appli
ations equation (1.1) is interesting alsoin the 
ase when n and b are not ne
essarily positive integers, and P (b) � 3. Wepresent some results (
f. Theorems 8 to 10) with these more general settings inSe
tion 2. Theorems 1 and 2 will be simple 
onsequen
es of our Theorems 8 and 9.Now we 
onsider the equation(1.2) x(x+ 1) : : : (x+ k � 1) = �2�zlin rational numbers x and z � 0, and integers k � 2, l � 2 and � with �l < � < l.We may restri
t ourselves to the 
ase 0 � � < l by repla
ing in (1.2) �; z byl � �; z=2, respe
tively. If x and z are integers and � = 0, then by the result ofErd}os and Selfridge, we see that x = �j, z = 0 for 0 � j < k are the only solutions.These are also the solutions of (1.2) for ea
h �; they will be 
alled trivial. Inwhat follows, we shall deal only with non-trivial solutions. Equation (1.2) was �rst
onsidered by Sander [15℄, who studied it for 2 � k � 4 and � = 0. By puttingx = n=d and z = y=y1 with g
d(n; d) =g
d(y; y1) = 1, d > 0, y � 0 and y1 > 0, wesee that (1.2) redu
es to(1.3) n(n+ d) : : : (n+ (k � 1)d) = �2�ul; vl = 2
dkwhere (u; v) = (y; y1) and � + 
 = � for some non-negative integers � and 
. Thussolving (1.2) for rational values x and z � 0 is equivalent to solving equation (1.1)with P (b) � 2 for integers n, y � 0 and d > 0 with the additional restri
tion that2
dk is an l-th power. With the help of our general Theorems 8 to 10 we shall proveTheorem 3. Let 2 � k � 18 and l � 3 with g
d(l; k) = 1. Then (1.2) with z 6= 0implies k = 2 and (x; z; �) = (�1=2; 1=2; l� 2), (�2; 1; 1), (1; 1; 1).For small values of k we 
an remove the 
ondition g
d(l; k) = 1. In the 
asesk = 2; 3; 4 and � = 0, Sander [15℄ proved that (1.2) has no solution. We �nd,



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 3however, in Theorem 4 below that for k = l = 3 there are two solutions whi
h aremissing from the 
orresponding Proposition 2 of [15℄. Hen
e Conje
ture 1 of Sander[15℄ stating that for k � 3, (1.2) with � = 0 has only the trivial solutions, shouldbe modi�ed a

ordingly. We also 
ompletely solve (1.2) with � = 0 for k = 5, anew result. Thus we haveTheorem 4. Let 2 � k � 5 and l � 3. Then the only non-trivial solutions of (1.2)with � = 0 are given by k = l = 3 and (x; z) = (�2=3; 2=3), (�4=3; 2=3).For (1.2) when � 6= 0 we showTheorem 5. Let k and l be as in Theorem 4, with the assumption that l 6= 4 ifk = 2. Let � > 0.(i) If k = 2, then equation (1.2) has the only non-trivial solutions (x; z; �) =(�1=2; 1=2; l� 2), (�2; 1; 1), (1; 1; 1).(ii) If k = 3; 4 then (1.2) has no non-trivial solution.(iii) If k = 5, then (1.2) implies that l = 5 and � 2 f3; 4g.Remark. The assumption that l 6= 4 if k = 2 is ne
essary. It is well-known thatthere are in�nitely many triples (p; q; r) of positive integers with g
d(p; q; r) = 1satisfying 2p4 � q4 = r2 (see e.g. [12℄, pp. 152{164). By putting x = q4=r2, we seethat (1.2) with k = 2, � = 1 and l = 4 has in�nitely many solutions in (x; z).So far we have given 
omplete solutions of (1.1) or (1.2) for small values of k. Nowwe present some �niteness results on (1.1). For a 
omplete survey on su
h resultswe refer to [2℄, [9℄, [22℄, [23℄ and [25℄. By applying Faltings' theorem, Darmon andGranville [2℄ showed that (1.1) with b = 1, k � 3, l � 4 �xed has only �nitely manysolutions in n; d; y. We re�ne this result and extend it to the 
ase b > 1.Theorem 6. For �xed k � 3 and l � 2 with k + l > 6, equation (1.1) has only�nitely many solutions in n; d; b; y.Theorem 6 is best possible in the sense that for �xed k � 3, l � 2 with k+ l � 6,(1.1) has in ea
h 
ase in�nitely many solutions; 
f. Tijdeman [25℄. From the proofof Theorem 6, we observe that the above result is valid for the solutions of (1.1)with n < 0 as well.Shorey [22℄ proved that if d > 1 and l � 4 then the ab
-
onje
ture implies thatk is bounded by an absolute 
onstant. We re�ne this result asTheorem 7. The ab
-
onje
ture implies that (1.1) with d > 1, k � 3 and l � 4has only �nitely many solutions in n; d; k; b; y; l.We note that if we use an e�e
tive variant of the ab
-
onje
ture, then the abovetheorem is also e�e
tive. The restri
tion d > 1 is obviously ne
essary; for d = 1and n = 1, (1.1) is solvable for every k � 2.2. A generalization of equation (1.1)In this se
tion we 
onsider the following generalization of equation (1.1):(2.1) � = �(n; d; k) = n(n+ d) : : : (n+ (k � 1)d) = bylin non-zero integers n; b and in d > 0; y > 0, l � 2, k � 2 with g
d(n; d) = 1,P (b) � k. Further, to make the representation byl unique we assume here and in



4 K. Gy}ory, L. Hajdu and N. SaradhaTheorems 8 to 10 that y is not divisible by primes � k. Thus while 
onsidering(2.1), b is not taken as l-th power free. We note that if n; d; b; y is a solution of(2.1) then so is �n� (k � 1)d; d; (�1)kb; y.In what follows, �p(u) denotes the order of p in u for any prime p and non-zerointeger u.Theorem 8. Suppose equation (2.1) holds.(i) Let k = 3 and l � 3. Then either(n; d; b; y) 2 f(�4; 3; 8; 1); (�2; 3;�8; 1)g;or l - �3(b). Moreover, if P (l) > 3, then �2(b) � 5.(ii) Let k = 4 and suppose that P (l) > 3. Then �3(b) > 0, and either �2(b) = 0,l - �3(b) or �2(b) = 3.(iii) Let k = 5. Suppose that P (l) > 3, and that l j �5(b). Then �3(b) > 0, andeither �2(b) = 0, l - �3(b) or �2(b) = 3 or 4.Remark. For k = 3, �2(b) � 5 is sharp as is shown by the example2(2 + 7)(2 + 2 � 7) = 32 � 25:Similarly, for k = 4, �2(b) = 3 is sharp sin
e1 � 2 � 3 � 4 = 3 � 23:For (k; l) = (3; 3) and �3(b) = 1; 2, it is known that (2.1) has in�nitely manysolutions whi
h 
an be seen by taking b = 3; 6; 36; 
f. Tijdeman [25℄.For the 
ases l = 3; 4 we proveTheorem 9. (i) Let l = 3. Then equation (2.1) with k = 4 has only the solutions(n; d; b; y) = (�6; 5; 216; 1); (�9; 5; 216; 1); (�3; 2; 9; 1); (1; 1; 24; 1); (�4; 1; 24; 1):Further, (2.1) has no solution with k = 5, 3 j �5(b).(ii) Let l = 4 and 4 j �3(b), 4 j �5(b). Then equation (2.1) does not hold withk = 4; 5.Theorem 10. Let d = 2hdl1 (h � 0), l j �p(b) for ea
h prime p with 3 � p � k.Suppose that 2 � k � 18 if �2(d) < 4, and let 2 � k � 30 otherwise, i.e. if�2(d) � 4. Further, in the latter 
ase we suppose that l has a prime fa
tor > 3.Then the only solutions of (2.1) are as follows: k = 2 and (n; d; b; y) = (�2; 1; 2; 1),(1; 1; 2; 1), (�1; 2;�1; 1). 3. Notation and lemmasBy equation (2.1), we observe that if a prime p > k divides �, then it dividesonly one term in � and �p(�) � 0 mod l. Hen
e we dedu
e that(3.1) n+ id = aixliwith P (ai) � max(P (b); k � 1), xi > 0, ai l-th power free for 0 � i < k. Also wehave g
d(xi; xj) = 1 for ea
h i 6= j if 2l � k. Further,(3.2) n+ id = AiX liwith P (Ai) � k, Xi > 0, g
d Xi; Qp�k p! = 1 for 0 � i < k. Note thatg
d(Xi; Xj) = 1 for ea
h i 6= j. We need several lemmas for the proofs of ourtheorems. We begin with a result of Gy}ory [9℄.



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 5Lemma 1. Equation (1.1) with k = 3, l > 2 and P (b) � 2 has no solution.Gy}ory derives the above result as a 
onsequen
e of the following statement (
f.[9℄, Theorem G) on a generalized Fermat equation.Lemma 2. Let l � 3, � � 0 be integers. Then the equationxl + yl = 2�zlin relatively prime integers x; y; z � 1 has no solution for � 6= 1, and for � = 1 theequation has only the trivial solution x = y = z = 1. Further, the equationxl � yl = 2�zlhas no solution in relatively prime integers x; y; z � 1.The above result was established by Wiles [26℄ for � � 0 mod l, by Darmon andMerel [3℄ for � � 1 mod l, and by Ribet [13℄ for � 6� 0; 1 mod l and l � 5 prime.For the other 
ases, see Gy}ory [9℄.In [18℄, Saradha and Shorey gave the following result on a more general Fermatequation by using the 
ontributions of Wiles [26℄, Ribet [13℄ and others. The �rstsu
h results were due to Serre [10℄ and Kraus [21℄; see also Sander [15, p. 432℄.Lemma 3. Let l be a positive integer having a prime fa
tor > 3. Suppose thata; b; 
 are non-zero integers su
h that either P (ab
) � 3 or a; b; 
 are 
omposed ofonly 2 and 5. Then the equation axl + byl = 
zlin non-zero integers x; y; z with g
d(axl; byl; 
zl) = 1, �2(byl) � 4 has no solution.Bennett and Skinner [1℄ proved the followingLemma 4. The only solution to the equationxl + yl = 2z2in integers x; y; z; l with g
d(x; y; z) = 1, x > y, l � 4 is (x; y; z; l) = (3;�1;�11; 5).We shall also use the following 
onsequen
e of Lemma 4.Lemma 5. The equation xl � yl = 2z2in integers x; y; z; l with g
d(x; y; z) = 1, x > y and l � 4 even with l 6= 6 has nosolution.Proof. Suppose that the equation holds. We may assume that x; y; z are positive.Let l = 2kl1 with k � 1, l1 odd. If k � 2, we arrive at a 
ontradi
tion by (iii) ofLemma 7 below. Hen
e k = 1 and l1 � 5 odd. We now dedu
e that eitherxl1 + yl1 = 2z21 ; xl1 � yl1 = z22or xl1 + yl1 = z21 ; xl1 � yl1 = 2z22with some positive integers z1; z2, whi
h is impossible by Lemma 4. �We also need results on several 
ubi
 and quarti
 equations. Cubi
 equationswere extensively studied by Selmer [20℄ in a long paper. We present here resultson these 
ubi
 equations whi
h we 
ome a
ross in the proofs of our theorems. Thestudy of quarti
 equations dates ba
k to Euler. We refer to the book of Ribenboim[12℄, pp. 164{177, for the quarti
 equations we are interested in here.



6 K. Gy}ory, L. Hajdu and N. SaradhaLemma 6. The equationsx3 + 2y3 = 3z3; x3 + 4y3 = 3z3have no solution in non-zero integers x; y; z with g
d(x; y; z) = 1 and jxyzj > 1,and the equationsx3 + y3 = 3z3; x3 + y3 = 4z3; x3 + 4y3 = 9z3have no solution in non-zero integers x; y; z with g
d(x; y; z) = 1.Lemma 7. Let x; y; z be positive integers with g
d(x; y; z) = 1 and � � 0 aninteger.(i) If x4 � 2�y4 = z2, then � � 1 mod 4.(ii) If 2�x4 � y4 = z2, then � � 1 mod 4.(iii) x4 � y4 = 2�z2 is impossible.(iv) If x4 + y4 = 2�z2, then x = y = z = 1.Lemma 8. Let (2.1) be valid, and suppose that l j �p(b) for ea
h prime p with3 � p � k. There exist indi
es i; j with 0 � i < j < k su
h that in (3.1)(3.3) ai = �i2�i ; aj = �j2�j ; j � i = 2Æ for 2 � k � 18and(3.4) ai = �i; aj = �j ; j � i = 2%3" or 2%5" for 2 � k � 30 if d is even:Here �i; �j ; Æ; %; " denote some non-negative integers, and �i; �j may assume �1.Proof of Lemma 8. The assertion 
an be easily 
he
ked for k � 6. We explain the
ase k = 7 and d odd. We observe that in this 
ase 7 - ai for 0 � i < k. Further wehave either 5 not dividing any ai or 5 dividing a0; a5 or 5 dividing a1; a6. Suppose5 - ai for 0 � i < k. Then the statement follows with i = 0, j = 1 if 3 - a0a1; i = 1,j = 2 if 3 j a0; i = 0, j = 2 if 3 j a1. Hen
e we may assume that 5 divides eithera0; a5 or a1; a6. The assertion follows with i = 2, j = 3 if 3 - a2a3, with i = 3; j = 4if 3 j a2, and with i = 4; j = 5 if 3 j a3. This pro
edure has been programmedand (3.3) is 
he
ked. When d is even we observe that all the ai's are odd and we
he
k that (3.4) is valid for k � 30. The largest 
ases k = 29; 30 took 8 hours of
omputation. � 4. Proofs of Theorems 8-10We will use the notation introdu
ed in the previous se
tion without any furthermention.Proof of Theorem 8. Suppose equation (2.1) holds. For k = 3; 4 and for k = 5 withl j �5(b), (3.2) 
an be modi�ed su
h that n+ id = AiX li with(4.1) Ai = �i2�i3�i ; �i = �1; Xi > 0; g
d(Xi; 6) = 1 for 0 � i < k:Let � = max(�0; : : : ; �k�1).



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 7(i) Let k = 3. First we show that in this 
ase l - �3(b). We assume that(4.2) (n; d; b; y) 62 f(�4; 3; 8; 1); (�2; 3;�8; 1)g:Suppose to the 
ontrary that l j �3(b). Then �i = lti with non-negative integers tiamong whi
h at least two are zero. By Lemma 1, we may suppose that n < 0 andn+ 2d > 0. In view of g
d(n; d) = 1 we infer that (n; n+ d) = (n+ 2d; n+ d) = 1and (n; n+ 2d) = 1 or 2.If n+ d is even, then n; n+ 2d are odd and we dedu
e from (4.1) thatn+ d = �12�1(3t1X1)l; n = �(3t0X0)l; n+ 2d = (3t2X2)lwith �1 = �1 and �1 � 1. Then(4.3) �(3t0X0)l + (3t2X2)l = �12�1+1(3t1X1)l:By Lemma 2 we obtain that there is no solution in this 
ase.If n+d is odd then there are two sub
ases to be distinguished. If n and n+2d arealso odd then we arrive at equation (4.3) with �1 = 0, whi
h leads to a 
ontradi
tion.Assume now that n and n+ 2d are even. Then we get from (4.1) that(4.4) n+ d = �1(3t1X1)l; n = �2�0(3t0X0)l; n+ 2d = 2�2(3t2X2)lwhere �1 = �1, �0; �2 � 1 su
h that one of �0; �2 equals 1, and 3t0X0; 3t1X1; 3t2X2are relatively prime odd positive integers. If �2 = 1, then we obtain that�2�0�1(3t0X0)l + (3t2X2)l = �1(3t1X1)l;whi
h by Lemma 2 gives �0 = 2, �1 = �1, ti = 0 for i = 0; 1; 2 and X0 = X1 =X2 = 1. We infer from (4.4) that (n; d; b; y) = (�4; 3; 8; 1) whi
h is ex
luded.Finally, if �0 = 1 then�(3t0X0)l + 2�2�1(3t2X2)l = �1(3t1X1)l;and Lemma 2 implies that �2 = 2, �1 = 1, ti = 0 for i = 0; 1; 2, X0 = X1 = X2 = 1.Then, by (4.4) we get (n; d; b; y) = (�2; 3;�8; 1) whi
h is ex
luded. So if (4.2)holds, then l - �3(b).Assume now that l has a prime fa
tor > 3. We may suppose that d is odd sin
eotherwise �2(b) = 0. Further, we have(4.5) A0X l0 +A2X l2 = 2A1X l1:If � = 1, then 
learly �2(b) � 2. Assume that � > 1. We observe that(�0; �1; �2) 2 f(�; 0; 1); (1; 0; �); (0; �; 0)g:Now we apply Lemma 3 to (4.5) to get � � 4. Hen
e �2(b) � 5.(ii) Let k = 4. In 
ase of �3(b) = 0, i.e. if(�0; �1; �2; �3) = (0; 0; 0; 0)



8 K. Gy}ory, L. Hajdu and N. Saradhawe 
an use the results just proved for k = 3 to show that there is no solution. Hen
e�3(b) > 0. Further, we have(�0; �1; �2; �3) 2 f(0; 0; 0; 0); (�; 0; 1; 0); (1; 0; �; 0); (0; �; 0; 1); (0; 1; 0; �)g:If d is even, then �2(b) = 0. Suppose l j �3(b). Then we have(�0; �1; �2; �3) 2 f(tl � 1; 0; 0; 1); (1; 0; 0; tl� 1)gfor some integer t > 0. In both 
ases we see that�1�2(X1X2)l � �0�3(3tX0X3)l = (n+ d)(n+ 2d)� n(n+ 3d) = 2d2:As Xi > 0 (i = 0; 1; 2; 3), this equation has no non-trivial solution by Lemmas 4and 5. Thus l - �3(b).Let d be odd. Then � > 1, when
e (�0; �1; �2; �3) 6= (0; 0; 0; 0). We take(�0; �1; �2; �3) = (�; 0; 1; 0), in the other 
ases the proof is similar. We applyLemma 3 to the equation2A0X l0 +A3X l3 = 2n+ (n+ 3d) = 3(n+ d) = 3A1X l1to get � � 2. As 
learly � � 2, thus �2(b) = 3 and part (ii) is proved.(iii) Let k = 5 and P (b) < 5. Then we have(�0; �1; �2; �3; �4) 2f(0; 0; 0; 0; 0); (�; 0; 1; 0; 2); (2; 0; 1; 0; �); (1; 0; �; 0; 1); (0; �; 0; 1; 0); (0; 1; 0; �; 0)g:Suppose (�0; �1; �2; �3; �4) = (0; 0; 0; 0; 0). Then we argue as in the 
ase k = 4 tosee that l - �3(b). In the next two possibilities, we observe that � > 2. On the otherhand, applying Lemma 3 to the equations obtained from the equalities2n+ (n+ 3d) = 3(n+ d) and (n+ d) + 2(n+ 4d) = 3(n+ 3d)we get � � 2, a 
ontradi
tion. For the last three quintuples we apply Lemma 3 tothe equations obtained from(n+ id) + (n+ (i+ 2)d) = 2(n+ (i+ 1)d); i = 1; 0; 2;respe
tively, to �nd � � 2. As � � 2, we get �2(b) = 3 or 4.Further, if �i = 0 for i = 0; : : : ; 4, then by part (ii) of the theorem, (2.1) has nosolution with k = 5. Thus �3(b) > 0, and (iii) is also proved. �Proof of Theorem 9. Suppose that (2.1) holds. Sin
e k = 4 or 5, we 
an modify(3.2) so that n+ id = AiX li andAi = �i2�i3�i with �i = �1; Xi > 0; g
d(Xi; 6) = 1 for i = 0; 1; : : : ; k � 1:Further, we have g
d(Xi; Xj) = 1 whenever i 6= j.



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 9Assume �rst that k = 4. Let � = max(�0; �1; �2; �3), and observe that � = 0or � � 2. Moreover, we have(�0; �1; �2; �3) 2 f(0; 0; 0; 0); (�; 0; 1; 0); (1; 0; �; 0); (0; �; 0; 1); (0; 1; 0; �)g:Let l = 3. Suppose �rst that (�0; �1; �2; �3) = (0; 0; 0; 0). Then we may applypart (i) of Theorem 8 to the �rst three fa
tors of the left hand side of (2.1) to provethat there is no solution in this 
ase. Thus we may assume that(�0; �1; �2; �3) 2 f(1; 0; 0; �); (�; 0; 0; 1); (0; �; 0; 0); (0; 0; �; 0)gwith � � 1.Using one of the equalitiesA0X30 +A2X32 = 2A1X31 ; A1X31 +A3X33 = 2A2X32 ;or 2A0X30 +A3X33 = 3A1X31 ; A0X30 + 2A3X33 = 3A2X32 ;we 
an redu
e ea
h of the 20 
ases arising to one of the 
ubi
 equations in Lemma6. Hen
e by this lemma, we get all the solutions listed in the theorem in this 
ase.Let l = 4. If 4 j �i for some i and �j = 0 for ea
h j 6= i, then we may use againpart (i) of Theorem 8 to 
on
lude that there is no solution. There remains the 
ase(�0; �1; �2; �3) = (�0; 0; 0; �3) with positive �0; �3 su
h that 4 j (�0 + �3). Further,we have 3 - d. In what follows, we assume that �0 = 4t� 1 (t 2 N), �3 = 1. In theopposite 
ase �0 = 1, �3 = 4t� 1 (t 2 N), we 
an argue in a similar way.When (�0; �1; �2; �3) 2 f(0; 0; 0; 0); (1; 0; �; 0); (�; 0; 1; 0)g;by using the relation 2A0X40 +A3X43 = 3A1X41 , we get the equations2(32t�1X20 )2 = �0�1X41 � �0�3X43 ;4(32t�1X20 )2 = �0�1X41 � �0�3X43 ;2�+1(32t�1X20 )2 = �0�1X41 � �0�3X43 ;respe
tively, whi
h are all impossible by Lemma 7.In 
ase of (�0; �1; �2; �3) = (0; �; 0; 1) we apply A0X40 + 2A3X43 = 3A2X42 toobtain �034t�2X40 + �34X43 = �2X42 ;whi
h by 2 - Xi (i = 0; 1; 2; 3) leads to a 
ontradi
tion mod 16.Finally, suppose that (�0; �1; �2; �3) = (0; 1; 0; �). We have (A0; A1; A2; A3) =(�034t�1; �12; �2; �32�3). By 2A0X40 +A3X43 = 3A1X41 , we get�034t�2X40 + �32��1X43 = �1X41 :As 2 - Xi, the equation mod 16 gives � = 4. However, the relation A0X40 +2A3X43 = 3A2X42 yields �034t�2X40 + �332X43 = �2X42 ;
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h is impossible mod 16.Now we take k = 5. If l = 3 then we may apply the statement proved above fork = 4 to the �rst four fa
tors of the left hand side of (2.1) and the assertion follows.When l = 4, the problem 
an be redu
ed to the 
ase k = 4 by 
onsidering the �rstor last four fa
tors of the left hand side of (2.1), a

ording as 3 j n or 3 - n. Thenthe statement immediately follows from the result just proved above for k = 4. �Proof of Theorem 10. Suppose �rst that �2(d) < 4 and 2 � k � 18. Write d1 =2h1d2 with d2 odd. Hen
e d = 2h+lh1dl2; put h0 = h+ lh1. By Lemma 8, there existi; j with 0 � i < j < k su
h that (3.1) and (3.3) hold. Further, if p� divides xi andxj for some prime p and integer � > 0, then p�l j (j � i)d implying p�l j (j � i).Hen
e p�l � 17 giving p = 2, � = 1, l = 3; p = 2, � = 1, l = 4. Thus we have�j2�jxlj � �i2�ixli = 2Æd = 2Æ+h0dl2:Now we write 2�ixli = 2tizli and 2�jxlj = 2tjzlj with zi and zj odd. Then by thepre
eding observation we see that g
d(zi; zj) = 1. Also2Æ+h0dl2 = �j2tjzlj � �i2tizli:Sin
e d2; zi; zj are all odd, it follows that exa
tly two among Æ+h0; ti; tj are equal,and the third is greater than the others. Suppose ti = tj . Then2Æ+h0�tidl2 = �jzlj � �izli:Hen
e by Lemma 2 we have d2 = zj = zi = 1, giving d = 2h0 ; Æ+h0�ti = 1; n+id =�i2Æ+h0�1, n+ jd = �j2Æ+h0�1.Suppose d is even. Then n+ id = �i, n+ jd = �j and Æ + h0 = 1. Hen
e h0 = 1giving d = 2, n + 2i = �1, n + 2j = 1. It is easy to 
he
k that the only solutionto (2.1) is given by k = 2 and (n; d; b; y) = (�1; 2;�1; 1). Suppose d is odd. Thenh0 = 0 giving d = 1 and Æ � ti = 1, n + i = �i2Æ�1, n+ j = �j2Æ�1. Using Æ � 4,we get for k = 2 the solutions as (n; d; b; y) = (�2; 1; 2; 1) and (1; 1; 2; 1), and fork � 3 we 
he
k that there exists a prime p > 2 with p jj �(n; 1; k). Hen
e equation(2.1) does not hold if k � 3. The argument for the 
ases Æ + h0 = ti or Æ + h0 = tjis similar.Now let �2(d) � 4 and 2 � k � 30, and suppose that l is divisible by a prime> 3. Then by (3.4) we have�jxlj � �ixli = 2%3"d or 2%5"d:We apply Lemma 3 to see that (2.1) has no solution in this 
ase. �5. Proofs of Theorems 1-5Proof of Theorem 1. Let k = 4; 5. When l = 2, the assertion is the result of Eulerfor k = 4 and of Obl�ath for k = 5. We observe from (1.1) that whenever l � 3,we may assume l to be a prime. The assertion for any prime l � 5 follows fromTheorem 8 and for l = 3 from Theorem 9. Hen
e the theorem follows for anyl � 2. �



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 11Proof of Theorem 2. (i) Let k = 4. Suppose (1.1) holds with l � 3 and P (b) � 2.From part (ii) of Theorem 8, we �nd that 8 jj � whenever l has a prime fa
tor> 3. For l = 3; 4 we apply Theorem 9 to see that (1.1) 
annot hold with P (b) � 2.Hen
e the statement follows.(ii) Let k = 5. We apply part (iii) of Theorem 8 for l � 5 and Theorem 9 for l = 3; 4to obtain the assertion. �Proof of Theorem 3. Suppose 2 � k � 18, l � 3 with g
d(l; k) = 1 and equation(1.2) holds. Then (1.3) is valid. Further, from the se
ond equality of (1.3) it followsthat d = 2hdl1 (h � 0) sin
e g
d(l; k) = 1. By Theorem 10 we get that (1.2) hasonly the solutions(x; z; �) = (�1=2; 1=2; l� 2); (�2; 1; 1); (1; 1; 1);and the theorem is proved. �Proof of Theorem 4. Assume (1.2) with � = 0. Hen
e (1.3) is valid with � = 
 = 0.By Theorem 3, we need to 
onsider only the 
ases k = l = 3; 4; 5 and k = 2; l = 4.For k = l = 3, using part (i) of Theorem 8 we get (n; d) 2 f(�4; 3); (�2; 3)g, whi
hgives x = �4=3;�2=3. By part (ii) of Theorem 9 and part (iii) of Theorem 8 we
an ex
lude the possibilities k = l = 4 and k = l = 5, respe
tively. Finally, letk = 2; l = 4. Then by (1.3) and (3.1) we geta1x41 � a0x40 = v2;with a0a1 = �1. However, by using Lemma 7 one 
an easily see that there is nosolution in this 
ase. �Proof of Theorem 5. Assume (1.2) with � > 0. Then (1.3) is valid. By Theorem3 we get all solutions for k = 2, l � 3 prime, and we need to 
onsider only k =l = 3; 4; 5 and k = 2; l = 8. Using part (i) of Theorem 8 we get that there is nosolution with k = l = 3. For k = l = 4 and k = l = 5 by part (ii) of Theorem 9 andpart (iii) of Theorem 8, respe
tively, we get that the former 
ase is ex
luded whilein the latter 
ase � = 3; 4.Finally, suppose that k = 2 and l = 8. Now (1.3) yields that n = �2�0x40 andn + d = �2�1x41 with (�0; �1) = (�; 0) or (0; �), x0; x1 > 0 and g
d(x0; x1) = 1.Moreover, 
 is even, and v4 = 2
=2d. Thus we obtain the equation�2�0x40 + 2�
=2v4 = �2�1x41:By Lemma 2 we get x0 = x1 = v = 1, when
e d = 1 and n = 1 or n = �2. Thuswe obtain the solutions (x; z; �) = (1; 1; 1); (�2; 1; 1) whi
h were already found, andthe theorem follows. �6. Proofs of Theorems 6 and 7Proof of Theorem 6. Sin
e k and l are �xed and the ai in (3.1) are l-th power freewith P (ai) � k, the 
oeÆ
ients ai may assume only �nitely many values. Fix aifor i = 0; : : : ; k � 1.We take j 
onse
utive terms from the produ
t �(n; d; k) in (1.1), say n+ id; n+(i + 1)d; : : : ; n + (i + j � 1)d with i = 0, j = k if k = 3 or 4, and i � 0, j = 5 ifk � 5. It follows from (3.1) and(n+ id) + (n+ (i+ 2)d) = 2(n+ (i+ 1)d)



12 K. Gy}ory, L. Hajdu and N. Saradhathat(6.1) (2ai+1xi+1)l = (2ai+1)l�1(aixli + ai+2xli+2):Further, if k � 4, then we get similarly(6.2) (2ai+3xi+3)l = (2ai+3)l�1(�aixli + 3ai+2xli+2);and if k � 5, then(6.3) (ai+4xi+4)l = (ai+4)l�1(�aixli + 2ai+2xli+2):Denote by F1(xi; xi+2), F2(xi; xi+2), F3(xi; xi+2) the right-hand side of (6.1), (6.2)and (6.3), respe
tively.By assumption, g
d(n; d) = 1. Hen
e it is easy to see that g
d(n+id; n+(i+2)d) j2, whi
h implies that g
d(xi; xi+2) = 1.First 
onsider the 
ase when k � 5. Then, by assumption k + l > 6, hen
e weget l � 2. Multiplying the equations (6.1) to (6.3) and puttingF (xi; xi+2) = 3Yt=1Ft(xi; xi+2);we arrive at the equation(6.4) F (xi; xi+2) = zlwith z = 4ai+1ai+3ai+4xi+1xi+3xi+4. Here F is a homogeneous polynomial in xi,xi+2 with integral 
oeÆ
ients and with 3l � 6 pairwise linearly independent linearfa
tors over �Q . Hen
e by [2, Theorem 1℄ we see that xi, xi+2, z, and hen
e alsoxi+1, xi+3, xi+4 may assume only �nitely many integral values. Sin
e this is truefor any �ve 
onse
utive terms in the produ
t �(n; d; k), we see that all xi with0 � i < k assume only �nitely many values. Thus n, d are bounded, and so b, yare also bounded.Next assume that k = 4. Then, by assumption, l � 3. In this 
ase (6.1) and(6.2) imply (6.4) with the 
hoi
e i = 0,F (x0; x2) = 2Yt=1Ft(x0; x2) and z = 4a1a3x1x3:Then Theorem 1 of [2℄ applies again to (6.4) and proves our theorem.Finally, if k = 3 and l � 4, then we 
an take in (6.4) F (x0; x2) = F1(x0; x2) andz = 2a1x1 and the assertion follows in the same way as before. �Proof of Theorem 7. We denote by 
1; : : : ; 
8 expli
itly 
omputable absolute 
on-stants. We assume (1.1) with d > 1, k � 3 and l � 4. We take (n; d; k) 6= (2; 7; 3).Then by a theorem of Shorey and Tijdeman [24℄, P (�) > k, when
e P (y) > k.By a result of Shorey [22℄, the ab
-
onje
ture implies that k � 
1. We �x k with3 � k � 
1. For 0 � i < j < k � 1, we have(j � i)(n+ (k � 1)d) + (k � 1� j)(n+ id) = (k � 1� i)(n+ jd):



On the diophantine equation n(n+d):::(n+(k�1)d)=byl 13It is easy to see that the greatest 
ommon divisor of these three terms is at mostk2. Now we use (3.1) in the above equality and divide by the greatest 
ommondivisor to get(6.5) ek�1xlk�1 + eixli = ejxlj ;where ek�1; ei; ej are 
oprime positive integers 
omposed only of primes not ex-
eeding k. Sin
e P (y) > k, at least one of the numbers x0; : : : ; xk�1, say xi, hasa prime fa
tor greater than k. Put X = max(xk�1; xi; xj). We now apply theab
-
onje
ture to (6.5) with " = 1=4 to getX l � 
20�Yp�k p1A5=40� Ypjxk�1xixj p1A5=4 � 
3X3�5=4:Thus X l�3:75 � 
3:As X > 1 and l � 4, we obtain l � 
4 when
e X l � 
5. This means that in (6.5)xlk�1, xli and xlj 
an assume only �nitely many values. We �x su
h possible valuesof xlk�1, xli and xlj . Then (6.5) be
omes an S-unit equation for the set of primesS = fp j p � kg, whi
h equation has only �nitely many solutions in ek�1; ei; ej ,moreover max(ek�1; ei; ej) � 
6 (
f. [7℄). Consequently,n+ (k � 1)d = ak�1xlk�1 � k2ek�1xlk�1 � 
7:Thus n; d; b; y are all bounded by 
8. �Remark. In the above proof we used an e�e
tive version of the ab
-
onje
ture,when 
2 is expli
itly 
omputable. For l � 7, we 
ould also use the weak ab
-
onje
ture with " = 1 and 
2=1.7. A
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