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Abstract. The classic majority voting model can be extended to the
spatial domain e.g. to solve object detection problems. However, the de-
tector algorithms cannot be considered as independent classifiers, so a
good ensemble cannot be composed by simply selecting the individually
most accurate members. In classic theory, diversity measures are recom-
mended that may help to explore the dependencies among the classifiers.
In this paper, we generalize the classic diversity measures for the spatial
domain within a majority voting framework. We show that these mea-
sures fit better to spatial applications with a specific example on object
detection on retinal images. Moreover, we show how a more efficient de-
scriptor can be found in terms of a weighted combination of diversity
measures which correlates better with the accuracy of the ensemble.

Keywords: classifier combination, majority voting, spatial domain, di-
versity measures, biomedical imaging

1 Introduction

In decision making, the accuracy of the decision can be increased by composing
ensembles from individual classifiers. In our previous work [1], we generalized the
classical majority voting model to be applicable in the spatial domain. Namely,
we introduced the terms 0 ≤ pn,k ≤ 1 describing the probability of a correct
decision if k correct votes are present among the total number of n. This gen-
eralization was motivated by object detection problems in digital images, where
image processing algorithms (detectors) are the members of the ensemble. Each
individual algorithm votes in terms of a single pixel/region as its candidate for
the center/object in the image domain. The region matching the geometry of
the object with maximal number of candidates included is considered as the
decision. Only the votes falling inside a proper region can vote together for the
object. A good decision can be made even if the false candidates have majority,
while bad decision is made only when a subset of false candidates with larger
cardinality than the number of correct ones can be covered by a region matching
the geometry of the object.
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In classic majority voting, only the correctness of the votes influences the
decision. However, in the object detection scenario, the spatial behavior of the
votes are also important. Majority voting can be applied in the generalized model
with further geometrical constraints (e.g. the spatial closeness of the candidates)
that can be described by the terms pn,k.

We applied the generalized model for the detection of the optic disc (OD) in
retinal images. The OD is a bright region with circular shape having diameter
dOD (clinically predetermined constant). For the output of each detector for the
OD center we consider the minimal bounding circles for all subgroups of the
candidates. The circle with maximal number of candidates, having diameter less
than or equal to dOD is chosen for the OD as it is illustrated in Fig. 1.

ROI

OD

Correct OD Cand.

Incorrect OD Cand.

d
OD

Fig. 1. Optic disc detection using spatial majority voting, where the black circles show
the possible hotspots containing different number of OD candidates. The black dots
and the black crosses represent the true and false OD candidates respectively.

In our application, the participating OD detector algorithms have individual
respective accuracies p1 = 0,6472; p2 = 0,9765; p3 = 0,3205; p4 = 0,7593; p5 =
0,3153; p6 =0,2276; p7 = 0,9582; p8 = 0,7671, [2] on the Messidor dataset [3]
containing 1200 retinal images with resolution 2240*1488 pixels. All the quanti-
tative results presented later in the paper correspond to these.

In the literature of classic majority voting, several results are achieved for
independent voters, but in object detection problems, the individual algorithms
can hardly be expected to be independent. Besides the individual accuracies of
the detector algorithms, the dependencies among them should also be taken into
consideration, when an ensemble is composed from them.

In decision making theory, a possible simple approach to estimate depen-
dency of the members is to consider diversity measures. These measures are de-
fined between classifiers in [4]. In [5], it is proposed that we can reach optimally
performing classifier combination by making up classifiers with high individual
accuracies and sufficient level of diversity at the same time. Several earlier works
(e.g. [6, 8]) confirmed that neither individual performances nor diversity alone
can guarantee that the ensemble outperforms all the individual classifiers. Recent
works (e.g.[4]) have been focused on finding suitable diversity measures, when
majority voting is considered as a decision rule. Our motivation is to check the
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reliability of these diversity measures in the spatial domain and to generalize
them for better performance. The generalization is done in a natural way: we
follow similar principles here that are considered also in the generalization of
majority voting to the spatial domain.
The rest of the paper is organized as follows. In section 2 we list the diversity
measures recommended in classic theory. Section 3 is dedicated to the generaliza-
tion of the classic diversity measures. In section 4, we compare the performance
of the classic and generalized measures in our spatial application. Section 5 in-
troduces a novel methodology to derive a combined diversity measures from the
individual ones. Finally, in section 6, we draw some conclusions.

2 Diversity measures in classic voting theory

Depending on whether it assesses the pairwise or groupwise dissimilarity, two
types of diversity measures are considered. If a system of M classifiers D =
{D1, . . . , DM} is given, let yij denote the classifier output of the j-th classifier
for the i-th input sample. Let yi = [yi1, . . . , yiM ]T denote the joint output of a
system for the i-th input sample xi. Assuming that the output has binary form,
yij = 1 means correct, while yij = 0 means incorrect classification. As the mea-
sures are mainly based on simple binary algebra, the following simplifications
can be introduced, if we compare two classifiers with a diversity measure. Let
Nab, a, b ∈ {0, 1, ∗} denote the number of input samples, where ∗ stands for any
of the output 0 or 1. Here a belongs to the first classifier and b to the second
one; i.e. Nab and N ba are different. The number of classifiers producing error on
the input sample xi (i = 1, . . . , n) is denoted by m(xi) which can be expressed

as m(xi) =
∑N

i=1
(1− yij). Finally the error rate of the j-th classifier can be

calculated as ej =
1

N

∑N

i=1
(1− yij).

In the literature (see [4, 8]) the following diversity measures are defined:
minimum individual error, mean error, majority voting error, majority voting
improvement, correlation coefficient, product-moment correlation measure, Q-
statistics, disagreement measure, double-fault measure, entropy measure, mea-
sure of difficulty, Kohavi-Wolpert variance, interrater agreement measure, fault
majority measure. Now we give a brief overview of some diversity measures from
those can be considered for generalization to our spatial model.

– The correlation coefficient C2: it is a well known and frequently used statis-
tical measure. For binary classifier output its definition takes the form:

C2ij =
N11N00 −N01N10

√
N1∗N0∗N∗1N∗0

.

– The disagreement measure D2: it depends on the number of samples for
which the classifiers disagreed and the total number of observations. It is
calculated as:
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D2ij =
N01 +N10

N
.

– Mean error ME: this measure takes the average of individual classifier error
rates within the ensemble and can be defined by the following formula:

ē =
1

M

M
∑

i=1

ej .

– Interrater agreement measure IA: this measure characterizes the level of
agreement. With the notation presented above it can be expressed as:

IA = 1−
∑N

i=1
m(xi)(M −m(xi))

NM(M − 1)ē(1− ē)
.

3 Generalized diversity measures for the spatial domain

The diversity measures in section 2 give useful information on how to select the
members to achieve the highest ensemble performance. More specifically, we can
consider the correlation between the diversity measures and the system accu-
racy. In the literature, the case when the classifier decision making method is
not the majority rule is rarely examined. These measures can be modified to the
non-majority voting case in the spatial domain. In many image processing appli-
cations, more algorithms are used to detect the same object in the image. These
algorithms can be considered as classifiers in a fusion method and the output of
the algorithms (pixels/regions) as votes. In this voting method the good votes
have to fulfill some geometrical constrains. Good decision can be made even in
that case when the number of good votes is less than the half of the total votes.
To achieve the best performance, the algorithms not making coincident error
have to be combined. It can be proved that the modified diversity measures for
the non-majority case can provide the possibility for better classifier selection.
The aim of modifying the diversity measures is to reach higher correlation be-
tween them and the system accuracy. We could modify the calculation of the
classic measures so that the original coherence in our specific environment is de-
scribed. In this way, the generalized diversity measures consider the geometrical
constraints, adopting them with getting close to each other.

This modification is logical, since close votes outside the good area cause
the main problem. Some other interpretations of the pairwise diversity measures
were investigated, as well. In some cases all, the variants correlated more with
the system accuracy than the original diversity measure. The following formulas
correlated most with the system accuracy are introduced here as generalized
diversity measures for the spatial domain:

– The generalized correlation coefficient C2
′

:

C2
′

ij =
N11N0

′
0
′ −N01N10

√
N1∗N0∗N∗0

.



Diversity measures for and majority voting in the spatial domain 5

To handle spatial behavior of votes, now we consider also the notation N0
′
0
′

.
This figure stands for the number of cases, where for a pair of classifiers
both of them made bad decision and these votes also fulfill the geometric
constraint (that is, close to each other). Similarly, N00 means that though
both algorithms give bad candidates, it does not mean a problem, because
the geometrical constraints are not satisfied, so the chance for a final bad
decision is not increased.

The modification of the other diversity measures, defined between two classi-
fiers, can be interpreted in the same way. For the disagreement measure and that
numbers describing the whole system of classifiers, (e.g. the interrater agreement
measure), the generalization for our model needs some further modifications.

– The generalized disagreement measure D2
′

: it depends on the number of
samples for which the classifiers disagreed and the total number of observa-
tions. In this case all possible disagreement situations have to be described
in the modified formula. It can be written as:

D2
′

ij =
N01 +N10 +N0

′
1 +N10

′

+N0
′
0 +N00

′

N
,

where for example N0
′
1 describes the number of the situations where one

of the classifiers give bad vote fulfilling the geometrical constraints and the
other give good vote.

– The interrater agreement measure IA
′

: this measure characterizes the level
of agreement. With the notation presented above it can be expressed as:

IA
′

= 1−
∑N

i=1
m′(xi)(M −m′(xi))

NM(M − 1)ē(1− ē)
.

In the classic formula m(xi) is the number of classifiers producing error
for the input sample, and m′(xi) expresses the number of bad votes which
are relevant in making the final decision, so the bad candidates fulfill the
geometrical constraints, as well.

The plots in Fig. 2 (a), (b), (c) and (d) show examples about the effectiveness
of the generalized diversity measures. Each dashed line shows the correlation
between the system accuracy and the modified diversity measures. It can be
observed that after modification this correlation is increased for each diversity
measure.
Another interesting fact is that in the spatial domain we can handle ensembles
consisting of an even number of voters, as well. Namely, in most of the classic
studies the results are presented only for odd number of classifiers. The reason
is that in classical majority voting, adding a new classifier can drop the system
accuracy, so we cannot guarantee to achieve better performance because the
parity of the number of the classifiers changes. This phenomena can be observed
by the correlation curve of the diversity measures, as well.
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(b) Disagreement measure
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(c) Interrater Agreement measure
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(d) Ensemble mean error

Fig. 2. Comparison of the generalized (dashed line) and the original (solid line) pairwise
(a),(b) and non-pairwise (c),(d) diversity measures. The x-axis represents the number
of the classifiers in the ensemble, while the y-axis the correlation value. The higher
the absolute value of the correlation is, the better the effectiveness of the diversity
measures is.

4 Distortion of the ensemble members

For generating the most accurate ensemble, the distortion of the algorithms is
a relevant issue for applications. The distortion can be described as the differ-
ence between the optimal (real), and the actual output of the algorithms. If in
such cases, the reason or the magnitude of the distortion is known, the inverse
distortion vector can be calculated. By the help of this vector, the deviation
can be reduced and the actual output can get closer to the optimal (real) value.
The diversity measures can be built in our generalized model which is used for
optic disc detection as an application. Using the inverse distortion, the achieved
performance of the ensemble system is relevantly higher than the original (dis-
torted) one. In this section we show, that for the diversity measures the inverse
distortion step cannot be ignored.

The main problem with the diversity measures for a majority voting system
is the amount of available training data. The high performance of the ensemble-
based system generates few amount of data regarding bad votes, but the most
of the diversity measures are built upon this information. For instance, the most
important situation for our application is when the bad votes fulfilling the geo-
metrical constraints may cause wrong final decision. Without appropriate num-
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ber of such situations, the diversity measures generate incorrect values, which
results in high distortion and low correlation with the system accuracy. By low
correlation, the recommendation for the ensemble system is not satisfied. While
the main motivation of the usage of diversity measures is to find the system with
the best performance, sufficient number of special situations is not available, but
can be interpolated. In our proposed model and in the application, all the di-
versity measures are smoothed to suppress the lack of data. Fig. 3 (a), (b) show
the result of the smoothing step. This step is required not just for our modified
diversity measure, but for the original ones, as well.
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(a) Ensemble mean error interpo-
lation for the original diversity
measure.
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(b) Disagreement measure interpo-
lation for the modified diversity
measure.

Fig. 3. Comparison of the diversity measures before and after interpolating the missing
cases. After interpolation, the curves are strongly smoothed i.e. abnormal values are
removed. The x-axis represents the number of combinations of classifiers (247 different
situations exist regarding 8 classifiers, where the diversity can be measured), while the
y-axis the value of the diversity measure.

Fig. 4 (a) and (b) show, that after the interpolation step, the correlation be-
tween the system accuracy and the diversity measures is increased dramatically
in both cases. The dashed lines show that after applying the interpolation, the
correlation values are considerably increased independently whether a modifica-
tion was applied or not. In case of non-pairwise diversity measure, Fig. 4 (c),
and (d) show the similar results as Fig. 4 (a), and (b).

5 A weighted combination of diversity measures

While in most cases the dependencies between the assembled classifiers are un-
known (e.g. between the algorithms in our OD application), by generating an
ensemble from the classifiers having the highest accuracies the optimal perfor-
mance may not be achieved. Although the diversity measures suggested by the
literature are extended successfully in section 3, and their performance is im-
proved by applying the interpolation, it cannot be guaranteed to choose the
ensemble having the best accuracy regarding diversity measures. For solving
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(a) Original disagreement mea-
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ter interpolation.
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(b) Modified disagreement mea-
sure correlations improvement af-
ter interpolation.
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(c) Ensemble mean error value of
interpolation for the original diver-
sity measure.
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(d) Ensemble mean error value of
interpolation for the modified di-
versity measure.

Fig. 4. Comparison of the diversity measures before and after interpolating the missing
cases. After interpolation, the absolute value of the correlations are strongly higher,
which is better for effectiveness of the diversity measures, with the system accuracy.
The x-axis represents the number of the classifiers in the ensemble, while the y-axis
the correlation value.

this problem the diversity measures can be considered as feature selectors and
a weighted linear combination scheme can be applied for them. That is suppose
that M classifiers and I diversity measures are given and the aim is to compose
a system from the classifiers with the best performance regarding the diversity
measures. This problem can be formulated as:

GDj =

I
∑

i=1

αijdij , j = 1, . . . ,

(

M

k

)

, k = (1, . . . ,M),

where αij ∈ R>0 are the weights, dij are the values of the diversity measures,
and GDj is the value describing how good the specified system is considered as
the diversity measures. In this case, the system with the maximal GDj value
will be choose:

GD = max
j

(GDj) =
I

∑

i=1

αidi.
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The appropriate selection of the weights αi are well-known from the literature for
independent feature selectors. Namely, the optimal weights can be determined
from the individual accuracies of the feature selectors [8]. In this special case,
the correlation values show the performance of the diversity measures as feature
selectors. If we consider independent feature selectors (D1, D2, . . . , DI) with ac-
curacies (p1, p2, . . . , pI), then GD can be maximized by assigning the following
weights

αi = ln
pi

1− pi
, (i = 1, . . . , I).

In our application, the accuracy pi is the average correlation of the i-th diver-
sity measure with the system accuracy regarding all possible assembled systems
having the same number of members.

As an example for a special case because of the size of the full table, the
optimal weights for the first nine diversity measures are shown in Fig. 5.

DivM1 DivM2 DivM3 DivM4 DivM5 DivM6 DivM7 DivM8 DivM9

PossComb 2,73 4,02 5,01 2,98 2,46 3,84 2,10 3,62 1,93

Fig. 5. The applied weights in optimal weighted linear combination for the OD detec-
tion problem where the weights αi were calculated as mentioned above. Every column
contains a weight for a diversity measure (DivM) regarding a special case (PossComb).

In Fig. 6. the recommended combinations of algorithms for the weighted lin-
ear combination of the diversity measures are shown. It can be observed that the
combined diversity measure(GD) well correlates with the system accuracy(Q).

Q (%) GD

97,74 1 2 5 7 0 0 0 0 85,68

97,65 1 2 3 4 5 7 8 0 86,35

97,83 1 2 4 5 6 7 8 0 86,35

97,74 1 2 5 6 7 8 0 0 89,88

98,00 1 2 4 5 7 8 0 0 89,88

Recommended combina"on (a!er inverse distor"on)

Fig. 6. The recommended combinations of the algorithms (expressed by sequential
numbers of the algorithms in the middle of the table) using weighted linear combination
of inverse distorted diversity measures. The first column (Q) shows the system accuracy,
while the last column (GD) is the weighted combination of the diversity measures.

The ensemble system of the OD detector algorithms having the best accu-
racies can be found by applying our proposed method, and the selection can
be made by GD value. The proposed weighted linear combination of diversity
measures is novel for our extended model in the spatial domain.
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6 Conclusion

In this paper the diversity measures introduced in classical majority voting are
generalized for our voting model in spatial domain. We tested the generalized
diversity measures for OD detection on the Messidor database of retinal images.
Without having any information about the dependencies among the applied al-
gorithms, the aim is to choose the best ensemble system having the highest accu-
racy. In case of missing training data, interpolation should be applied. Moreover,
the generalized diversity measures outperform the classic ones, and the most ac-
curate ensemble system can be found by an optimally weighted combination of
diversity measures. We tested our proposed method on the Messidor database
[3] because it is the largest public dataset, the others contain not enough images
to evaluate these measures properly.
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0001 supported by the European Union, co-financed by the European Social
Fund; the OTKA grants K100339 and NK101680; the project TÁMOP 4.2.1./B-
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