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Abstract We investigate the function Pa,b;N (`) describing the number of `-th
powers among the first N terms of an arithmetic progression ax+ b. We com-
pletely describe the arithmetic progressions containing the most `-th powers
asymptotically. Based upon these results we formulate problems concerning
the maximum of Pa,b;N (`), and we give affirmative answers to these questions
for certain small values of ` and N .

Keywords perfect powers · arithmetic progressions

Mathematics Subject Classification (2010) 11B25 · 11N64 · 11G30 ·
11D25

1 Introduction

Let a, b, ` be integers with a > 0 and ` ≥ 2, and write Pa,b;N (`) for the
number of `-th powers among the first N terms b, . . . , a(N − 1) + b of the
arithmetic progression ax + b (x ≥ 0). Let PN (`) be the maximum of these
values taken over all arithmetic progressions ax + b. The case of squares has
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been intensively studied. An old conjecture of Erdős [7] predicted that PN (2) =
o(N) should hold. This was proved by Szemerédi [17]. Later, the bound has
been considerably improved. Bombieri, Granville and Pintz [1] showed that
PN (`) < O(N2/3+o(1)). This bound was refined to O(N3/5+o(1)) by Bombieri
and Zannier [2]. Both papers applied deep methods based upon elliptic and
higher genus curves, Falting’s theorem, the distribution of primes and other
ingredients; see also the neat short paper of Granville [10] for related results
and remarks. In fact, there is a conjecture due to Rudin (see [12], end of
paragraph 4.6) which predicts a much stronger behavior of PN (2), namely,
that PN (2) = O(

√
N) should be valid. A stronger form of this conjecture even

says that we have

PN (2) = P24,1;N (2) =

√
8

3
N +O(1), (1)

for N ≥ 6. The first equality here has been recently verified to be true up to
N ≤ 52 by González-Jiménez and Xarles [9]. Note that by a classical result
formulated by Fermat, with first published proof due to Euler, there are no
four squares in arithmetic progression. This in view of the progression 1, 25, 49
implies the first equality in (1) for N ≤ 4. (The case N = 5 is exceptional; for
details, see [9].)

As far as we know, except for a few related remarks in [1], the case of general
`-th powers has not been studied yet. In this paper we consider the problem
in this generality. First we establish a theorem which completely describes the
arithmetic progressions containing the most `-th powers asymptotically. It will
turn out that for every ` 6= 4, this progression is unique (up to trivial trans-
formations). In the case ` = 4 there are two ’best’ progressions. Based upon
this theorem, we suggest two problems, which are the extensions of Rudin’s
conjecture to the case of general exponents `. We think that the answer to the
questions proposed is affirmative. To support this, using elliptic and higher
genus curves we provide numerical results for ` = 3 (up to N < 20) and ` = 4
(up to N < 6).

The structure of the paper is the following. In the next section we give our
principal result (together with its proof) and formulate our problems. Then in
the last section we provide our numerical results supporting that the answer
to our questions should be affirmative.

2 Arithmetic progressions containing the most `-th powers
asymptotically

First we need to introduce some notation. Fix any exponent ` ≥ 2. Let a be a
positive integer (the difference of our progression), b be an integer, and put

Sa,b(`) = lim
N→∞

|{x : ax+ b is an `-th power, 0 ≤ x < N}|√̀
N

.
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It is clear that for any `, a, b this limit exists, but it will also be obvious from
our arguments. So in particular, we have Sa,b(`) = O(

√̀
N). Then we let

Sa(`) = max
b∈Z

Sa,b(`).

Note that clearly, Sa,b(`) does not actually depend on b, only on the residue
class of b modulo a. Thus the above maximum is taken only over a finite set,
hence it exists. Finally, set

S(`) = max
a∈N

Sa(`).

It is not that obvious that this maximum also exists. Our theorem below shows
that S(`) actually exists, it even provides a precise formula for it, furthermore,
it completely describes the arithmetic progressions on which it is taken.

For its smooth formulation we need a further notion. Let ` ≥ 2 and let ax+b
be an arithmetic progression. By an `-transformation of this progression we
mean an arithmetic progression of the shape

(az`)x+ (b+ ta)z`,

where z is a positive integer and t is an arbitrary integer.

Theorem 1 S(`) exists for any ` ≥ 2 and we have

S(`) =


√

8
3 , if ` = 2,∏

p prime, p−1|`,
log p

log p−log(p−1)
>`

(p− 1)p
1
`−1, otherwise.

Further, for the arithmetic progression ax + b we have Sa,b(`) = S(`) if and
only if it is an `-transformation of

a∗x+ b∗

with

a∗ =


24, if ` = 2,

5 or 80, if ` = 4,∏
p prime, p−1|`,

log p
log p−log(p−1)

>`

p, otherwise,

and

b∗ =

{
0, if a∗ = 1,

1, otherwise.
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Remarks. First note that clearly, we could take b∗ = 1 for a∗ = 1 as well.
Our choice for b∗ in the theorem in this case is just to keep the convention
0 ≤ b∗ < a∗.

Observe that for ` odd, the products in the statement are empty, so we
have

S(`) = a∗ = 1

in this case. That is, for odd values of `, the ’best’ progression (in the above
sense) is the trivial one x, or any of its `-transformations. On the other hand,
there are infinitely many even values of ` with S(`) > 1 and a∗ > 1. For
example, taking ` = p − 1 with any odd prime p, a simple calculation shows
that p | a∗ and S(`) ≥ `(`+ 1)

1
`−1 > 1.

We also mention that the expression log p/(log p − log(p − 1)) appearing
in the products above is strictly monotone increasing. So after a certain point
all primes p with p − 1 | ` will be included in these products. One can easily
construct (even) values of ` such that a∗ is divisible ’many’ primes. We omit the
details, and just say that it could be interesting to explore further properties
of the values a∗ and the sequence S(`). As a concrete question, we propose the
following. Is it true that

lim
`→∞

S(`) = 1 ?

We think that the answer is affirmative, and probably it is not that difficult
to check this assertion.

Extending the problems and conjectures concerning ` = 2 to the general
case ` ≥ 2, one may wonder whether the asymptotically ’best’ progression for
`-th powers is also the ’best’ up to any N , or at least up to any N which is
large enough. More precisely, we suggest the following problems.

Problem 1. For fixed ` ≥ 2, for any arithmetic progression ax+ b and N ≥ 1
set

Pa,b;N (`) = |{x : ax+ b is an `-th power, 0 ≤ x < N}|.
Is it true that there exists an N0 such that for any N > N0

max
a>0, b≥0

Pa,b;N (`) = Pa∗,b∗;N (`)

holds? Here for the special case ` = 4 we use the convention that

Pa∗,b∗;N (4) = max(P5,1;N (4), P80,1;N (4)).

Problem 2. Use the notation from Problem 1, and for ` odd and N ≥ 1 let
b× be the largest `-th power being at most (N − 1)/2, that is

b× =

⌊√̀
N − 1

2

⌋
.

Is it true that for any odd ` there exists an N0 such that for any N > N0

max
a>0, b∈Z

Pa,b;N (`) = P1,−b×;N (`)



Powers in arithmetic progressions 5

holds?

Remarks. First we note that affirmative answers for the questions in the
above problems would yield that

max
a>0, b∈Z

Pa,b;N (`) = O(
√̀

(N)),

providing a positive answer to the conjecture of Rudin, extended to any expo-
nent `.

We also mention that in case of ` = 4 none of the two ’best’ progressions
is ’better’ then the other. In fact, though

|P5,1;N (4)− P80,1;N (4)| ≤ 1

for any N ,
P5,1;N (4)− P80,1;N (4)

changes sign infinitely often. These assertions can be easily verified. This is
the reason of the exceptional case of ` = 4 in Problem 1.

Our next point here concerns why we distinguish Problems 1 and 2. The
reason is that when ` is odd, then a shift to the negative direction may increase
the value of Pa,b;N (`). For example, for ` = 3, the progression x−1 will contain
more cubes then the progression x for x = 0, 1, . . . , N − 1, for any N ≥ 1. On
the other hand, a shift into the positive direction does not seem to be ’wise’
heuristically: the reason is that close to zero the ’density’ of `-th powers is
larger than away from zero. So it seems to be the best to keep b in the interval
0 ≤ b < a for given a in this case.

We mention that in Problem 1 one certainly needs to take N0 > 2, at least
for many `. Indeed, if a∗ > 1 and a∗+ 1 is not an `-th power then we have e.g.

P1,0;2(`) = 2 > 1 = Pa∗,b∗;2(`).

Finally, we note that in case of Problem 2 it might be the case that N0 = 1
is a good choice. However, here we do not have a fixed progression: we always
(or at least time to time) ’shift’ the ’asymptotically best’ progression x to the
left to get the ’best’ progression for N : our b× depends also on N . (As ` is
odd, we know that now a∗ = 1.)

We shall be concerned with Problems 1 and 2 in the next section, now
we head forward the proof of Theorem 1. For this we shall need the following
lemma. (See [11] Corollaries 2.42 and 2.44, or Lemma 6 of [8] for a formulation
similar to the one below.)

Lemma 1 Let ` and n be positive integers greater than one, and write U`(n)
for the number of `-th roots of unity modulo n. Further, let νp(`) denote the
exponent of a prime p in the factorization of `.

i) We have U`(2) = 1, and if ` is odd, then U`(2
α) = 1 for any α ≥ 1. If ` is

even, then we have
U`(2

α) = 2min(ν2(`)+1,α−1)

for any α ≥ 2.
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ii) Let p be an odd prime. Then for any α ≥ 1 we have

U`(p
α) = pmin(νp(`),α−1) gcd(`, p− 1)

.

Proof (Proof of Theorem 1.) Let a, b be integers with a > 0. As we mentioned
earlier, without loss of generality we may assume that 0 ≤ b < a. In what
follows, we shall always use this convention, unless stated differently. The total
number of `-th powers between the first term b and the N -th term a(N−1)+b
of the progression ax+ b (x ≥ 0) is clearly

√̀
aN + o(1). The question is that

how many of these (roughly)
√̀
aN `-th powers belong to the progression ax+b,

for a given b. Obviously, any `-th power belongs to some progression ax + b
with 0 ≤ b < a. In what follows, we shall use these observations without any
further mentioning.

To determine Sa(`) for given a, we should decide which is the ’best’ choice
for b. Clearly, those `-th powers u` will belong to the progression ax + b for
which

u` ≡ b (mod a).

That is, we should find the b for which

Ma,b(`) := |{u : 0 ≤ u < a, u` ≡ b (mod a)}|

is maximal. Write
Ma(`) = max

0≤b<a
Ma,b(`)

for this maximum. Observe that these quantities are of utmost importance for
us indeed, as we clearly have

Sa,b(`) =
Ma,b(`)

a

√̀
aN

√̀
N

= Ma,b(`)a
1
`−1

and hence
Sa(`) = Ma(`)a

1
`−1.

To get S(`) for an arbitrary but fixed ` ≥ 2, we need to maximize the above
expression as a runs through N.

We make two simple, but important observations. Firstly, note that we
have

S(`) = max
a∈N

Sa(`) ≥ S1(`) = M1(`) · 1 1
`−1 = 1,

when our progression is just 1 · x + 0 = x. Secondly, observe that Sa(`), or
equivalently, Ma(`) is multiplicative in a, for any fixed `. To see this, write a =
a1a2 with gcd(a1, a2) = 1. In this part of the argument it is more convenient
to work with general b ∈ Z instead of b-s with 0 ≤ b < a. So let b ∈ Z be such
that Ma(`) = Ma,b(`). Clearly,

u` ≡ b (mod a)
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if and only if

u` ≡ b (mod a1) and u` ≡ b (mod a2).

This by the Chinese Remainder Theorem shows that

Ma(`) = Ma,b(`) = Ma1,b(`)Ma2,b(`) ≤Ma1(`)Ma2(`). (2)

Let now b1, b2 ∈ Z be such that

Ma1(`) = Ma1,b1(`) and Ma2(`) = Ma2,b2(`).

Let b be such that {
b ≡ b1 (mod a1),

b ≡ b2 (mod a2).

Now if
u` ≡ b1 (mod a1) and v` ≡ b2 (mod a2),

and w is such that {
w ≡ u (mod a1),

w ≡ v (mod a2)

then
w` ≡ b (mod a).

This by the Chinese Remainder Theorem implies that

Ma(`) ≥Ma,b(`) ≥Ma1,b1(`)Ma2,b2(`) = Ma1(`)Ma2(`). (3)

Then (2) and (3) together give

Ma(`) = Ma1(`)Ma2(`),

so Ma(`) is multiplicative, indeed. As we clearly also have

Sa(`) = Ma(`)a
1
`−1 = Ma1(`)Ma2(`)a1

1
`−1a2

1
`−1 = Sa1(`)Sa2(`),

we see that Sa(`) is multiplicative, as well.
Thus to find S(`), and the a-s which provide

S(`) = Sa(`),

and ultimately the b-s which provide

Sa(`) = Sa,b(`)

for these a-s, we may restrict our attention to arithmetic progressions ax + b
with a = pα and

Spα,b(`) ≥ 1.

From this point on we switch back to use the convention 0 ≤ b < a again. (As
Sa,b(`) and Ma,b(`) depend on b only through its residue modulo a, we can do
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that without any problem.) For any b with 0 ≤ b < pα, by the definition of
Mpα,b(`) there exist integers

0 ≤ u1 < · · · < uMpα,b(`) < pα

such that
u`1 ≡ · · · ≡ u`Mpα,b(`)

≡ b (mod pα). (4)

To find those values of pα and b for which Spα,b(`) ≥ 1, we distinguish
three cases.

CASE 1. Suppose first that p - b. Then of course we also have p - ui (i =
1, . . . ,Mpα,b(`)). Thus multiplying the sequence of congruences (4) with u−`1

modulo pα, we see that Mpα,b(`) = Mpα,1(`). So for any b with p - b Lemma 1
shows that

Spα,b(`) =


2α( 1

`−1), if p = 2 and ` is odd,

2min(ν2(`)+1,α−1) · 2α( 1
`−1), if p = 2 and ` is even,

pmin(νp(`),α−1) gcd(`, p− 1) · pα( 1
`−1), if p is an odd prime.

(5)
We (naturally) distinguish two subcases. Take first p = 2. If Spα,b(`) ≥ 1

then by (5) we clearly have that ` is even, α > 1 and

min(ν2(`) + 1, α− 1) + α

(
1

`
− 1

)
≥ 0. (6)

If
ν2(`) + 1 ≥ α− 1

then on the one hand
` ≥ 2α−2,

and on the other hand, by (6)
α ≥ `.

Hence we get that
(pα, `) = (4, 2), (8, 2), (16, 4)

in this case, with equality in (6) for the first and third pairs and strict inequality
in (6) for the second one. Otherwise, if

ν2(`) + 1 < α− 1

then as (6) implies

ν2(`) +
α

`
≥ α− 1, (7)

we get
α > `.

As ` ≥ 2ν2(`) this gives

ν2(`) <
logα

log 2
.
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So as ` ≥ 2, inequality (7) by a simple calculation yields that α ≤ 8. Hence we
easily get that the only possible value of pα and ` with Spα(`) ≥ 1 is given by

(pα, `) = (16, 2),

when in fact we have S16(2) = 1.
Let now p be an odd prime. Then by (5) we know that Spα,b(`) ≥ 1 if and

only if

min(νp(`), α− 1) + logp gcd(`, p− 1) + α

(
1

`
− 1

)
≥ 0. (8)

Suppose first that

νp(`) ≥ α. (9)

Then (8) implies that

pα ≥
(

p

gcd(`, p− 1)

)`
,

whence by (9)

` ≥
(

p

gcd(`, p− 1)

)`
.

This gives that
p

gcd(`, p− 1)
< 2,

therefore

gcd(`, p− 1) = p− 1,

that is

p− 1 | `.

Write ` = t(p − 1) with t ≥ 1, and let t = pβs with p - s. Thus, obviously,
νp(`) = β. In view of (9), as α ≥ 1, we have β ≥ 1. Hence from (8) and (9) we
obtain

β

pβs(p− 1)
≥ logp

p

p− 1
,

so
β log p

pβ
≥ log

(
1 +

1

p− 1

)p−1
.

As β ≥ 1, a simple calculation yields that the above inequality is impossible,
so we cannot have Spα(`) ≥ 1 in this case.

Suppose next that

νp(`) < α. (10)

Then (as νp(`) ≤ α− 1) (8) implies that

νp(`) + logp gcd(`, p− 1) + α

(
1

`
− 1

)
≥ 0. (11)
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If we would have νp(`) + 1 < α, then certainly νp(`) + 2 ≤ α, which by the
above inequality yields

logp gcd(`, p− 1) +
α

`
≥ 2.

Hence

α > `

in this case. As ` ≥ 3νp(`), this gives

logα

log 3
> νp(`).

Then using (11) we easily obtain a contradiction. That is, we are left with the
only possibility

α = νp(`) + 1.

Then (11) implies that

νp(`) + 1

`
≥ logp

p

gcd(`, p− 1)
.

Set d = gcd(`, p− 1), ` = dt and t = pβs with p - s. Then we have

β + 1

dpβs
≥ logp

p

d
. (12)

We show that (12) implies that β = 0. For this, observe that for any β ≥ 1 we
have

2

dp
≥ β + 1

dpβs
.

So to prove that (12) implies β = 0 indeed, it is sufficient to check that

gp(d) := 1− log d

log p
− 2

dp
> 0

for any odd prime p and 1 ≤ d ≤ p− 1. Taking the derivative (in d) of gp(d),
one can easily see that gp(d) is strictly monotone decreasing in d (even as a
positive real variable). So to check the above inequality, it is sufficient to verify
that

gp(p− 1) = 1− log(p− 1)

log p
− 2

(p− 1)p
> 0.

We rewrite the above inequality as

log

(
1 +

1

p− 1

)p−1
>

2 log p

p
.

Since the left hand side is strictly monotone increasing (and tends to 1) while
the right hand side is strictly monotone decreasing (and tends to 0), and the
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assertion is valid for p = 3, our claim follows. That is, we get β = 0, whence
νp(`) = 0 and α = 1. So (12) reads as

1

ds
≥ logp

p

d
.

We show that it is possible only for d = p − 1. Observe that d = 1 can be
immediately excluded, since then by ` ≥ 2, s > 1 must hold. Thus the case
p = 3 is done: then we can only have d = p− 1 = 2. So it is sufficient to prove
that

hp(d) := 1− 1

d
− log d

log p
> 0

for all odd primes p with p ≥ 5 and d with 2 ≤ d ≤ (p − 1)/2. Taking the
derivative of hp(d) in d, we get that it it is strictly monotone increasing for
2 ≤ d < log p and strictly monotone decreasing for d > log p. Thus to show
our claim, we only need to verify that

hp(2) > 0 and hp

(
p− 1

2

)
> 0,

that is

1

2
− log 2

log p
> 0 and 1− 2

p− 1
− log(p− 1)− log 2

log p
> 0,

respectively. Recalling that p ≥ 5, the first inequality trivially holds. The sec-
ond inequality can be directly checked for p = 5, and for p ≥ 7 it immediately
follows from the stronger assertion

(p− 1) log 2− 2 log p > 0

which is easy to check. That is, altogether we get that d = p − 1 must hold.
Thus (12) gives

` ≤ log p

log p− log(p− 1)
.

Summarizing, Spα,b(`) ≥ 1 for an odd prime p for some b with p - b if and only
if the following properties hold:

α = 1, p - `, p− 1 | `, log p

log p− log(p− 1)
≥ `,

and Spα(`) > 1 precisely when the inequality is strict in the last point. A
simple calculation shows that the last two assertions imply the second one.
Indeed, if both p− 1 | ` and p | ` would hold, then writing ` = `0p(p− 1), the
last assertion would give

log

(
1 +

1

p− 1

)p−1
≤ log p

`0p

with `0 ≥ 1. However, this does not hold for p ≥ 3. Further, observe that we
cannot have equality in the last assertion. That is, altogether we have that
Spα,b(`) ≥ 1 for an odd prime p for some b with p - b if and only if:
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(i) α = 1,
(ii) p− 1 | `,
(iii) log p

log p−log(p−1) > `.

Further, if (i), (ii), (iii) are valid than in fact we have with Spα(`) > 1.
To close this case, we make the following simple, but important observation.

If Spα,b(`) ≥ 1 with p - b then we have b = 1 with the sole exception of
(pα, `, b) = (16, 2, 9). This can be directly checked for p = 2. When p ≥ 3, then
recalling α = 1, this assertion follows by noting that as p− 1 | `, we have

u` ≡ 1 (mod p)

whenever p - u.

CASE 2. Consider next the case where p | b, but b 6= 0. Then writing u1 = pβv1
with p - v1 in (4), we clearly have `β < α and certainly also ui = pβvi with
p - vi (i = 1, . . . ,Mpα,b(`)). Thus

v`1 ≡ · · · ≡ v`Mpα,b(`)
≡ b′ (mod pα−`β)

where b′ = b/p`β , that is, this case is reduced to CASE 1. There are precisely
Mpα−`β ,b′(`) such vi-s modulo pα−`β . Hence as we may assume that vi < pα−β

(i = 1, . . . ,Mpα,b(`)), we conclude that

Mpα,b(`) = Mpα−`β ,b′(`)p
(`−1)β . (13)

We distinguish two cases. If p = 2 then (13) by (5) gives

Spα,b(`) =

{
2(`−1)β · 2α( 1

`−1), if ` is odd,

2min(ν2(`)+1,α−`β−1) · 2(`−1)β · 2α( 1
`−1), if ` is even.

This shows that if Spα,b(`) ≥ 1 in this case, then ` must be even. If ` is even,
then we get

Spα,b(`) = 2min(ν2(`)+1,α−`β−1) · 2(α−`β)(
1
`−1) = Spα−`β ,1(`).

In the second equality we used what we got in CASE 1. So applying again our
results obtained in CASE 1, we get that Spα,b(`) ≥ 1 in this case implies that
we have one of

(pα−`β , `) = (4, 2), (8, 2), (16, 2), (16, 4),

and Spα,b(`) > 1 only in the second case. Further, b = 2`β in all cases except
the third one, when b = 9 · 2`β is also possible.

Let now p > 2. Then (13) through (5) gives

Spα,b(`) = pmin(νp(`),α−`β−1) gcd(`, p− 1)pα( 1
`−1)p(`−1)β =

= pmin(νp(`),α−`β−1) gcd(`, p− 1)p(α−`β)(
1
`−1).
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Thus by what we have proved in CASE 1, Spα,b(`) ≥ 1 implies that α−`β = 1
and b = p`β , and p satisfies the points (ii) and (iii) at the end of CASE 1. In
fact, for these values of the parameters we have Spα,b(`) > 1.

CASE 3. Finally, assume that pα | b, that is, b = 0. Then in (4), u1, . . . , uMpα,0(`)

are just the multiples of pdα/`e. Thus Mpα,0(`) = pα−dα/`e and we have

Spα,0(`) ≤ 1,

with equality if and only if ` | α.
Now we can build the ’best’ modulus a, and even the ’best’ arithmetic

progressions ax+b based upon the information we gained. For given `, in view
of that Sa(`) is multiplicative, if

S(`) = Sa(`)

then a must be divisible by all prime powers pα for which Spα(`) > 1. By what
we have proved so far, if we take a to be the product of these prime powers
(taking e.g. the smallest possible exponent for all these primes) then Sa(`) is
maximal indeed; in particular, S(`) exists, and its value is just what is given
in the statement. To show that the ’best’ a is essentially unique, we need some
further discussion. From CASE 1 we see that for ` = 4 there are two possible
choices for the ’best’ a, given by a∗ = 5, 80, while in all the other cases from
here we get only one possibility, given by a∗ = 23 · 3 = 24 for ` = 2 and

a∗ =
∏

p is an odd prime

p−1|`, log p
log p−log(p−1)

>`

p

for the other choices of `. In all cases with a∗ 6= 1 we have b = b∗ = 1.
When a∗ = 1, we could choose b freely. We take b = b∗ = 0 in this case,
to keep our convention 0 ≤ b < a. Observe that in the above expression for
a∗, the condition that the prime p is odd in the product is superfluous: the
inequality log p/(log p− log(p− 1)) > ` does not hold with p = 2 for any `. So
these parameters just provide the progressions in the statement. Observe that
CASES 2 and 3 show that these progressions (both a∗ and b∗) can be multiplied
by any `-th power - and then the value Sa∗,b∗(`) just remains unchanged. Note
that this is obvious: a∗x+b∗ is an `-th power if and only if (a∗z`)x+b∗z` is an
`-th power (for x ≥ 0), for any z ≥ 1. Finally, as we already noted, Sa∗,b∗(`)
depends on b∗ only through its residue class modulo a∗, so b∗ can be shifted
by any multiple of a∗. Hence the theorem follows. ut

3 Numerical results concerning Problems 1 and 2

In this section we deal with Problems 1 and 2, for ` = 3, 4 for small values of
N . We shall start with Problem 2 in case of ` = 3, with N < 20. For these
values of N Problem 2 suggests that the ’best’ progression (containing the
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most cubes among its first N terms b, . . . , a(N − 1) + b) is given by a = 1 and
b = −b×, with

b× =

⌊√̀
N − 1

2

⌋
.

In particular, for N < 20 we have

b = −b× =


0 if N = 1, 2

−1 if 3 ≤ N ≤ 16,

−8 if 17 ≤ N < 20,

and the number of cubes in these progressions among the first N terms are
given by

P1,−b×;N (3) =



1 if N = 1,

2 if N = 2,

3 if 3 ≤ N ≤ 9,

4 if 10 ≤ N ≤ 16,

5 if 17 ≤ N < 20.

(14)

Our first result in this section verifies that the above progressions are really
the ’best’ for N < 20, hence providing an affirmative answer for Problem 2 in
these cases.

Theorem 2 Let a, b be integers with a > 0. Then for any N < 20 we have

Pa,b;N (3) ≤ P1,−b×;N (3).

Proof For N ≤ 3 the statement is obvious, so we may assume that 4 ≤ N ≤ 19.
To prove the statement, by (14) we need to check that

Pa,b;N (3) ≤


3 if 4 ≤ N ≤ 9,

4 if 10 ≤ N ≤ 16,

5 if 17 ≤ N < 20.

So it is natural to split the proof into three subcases.
Suppose first that 4 ≤ N ≤ 9, and assume to the contrary that among

the first N terms of the progressions there are four cubes. Then there exists
integers n0, n1, n2, n3 with 0 ≤ n0 < n1 < n2 < n3 < N such that

ani + b = x3i (i = 0, 1, 2, 3) (15)

with some integers x0, x1, x2, x3. The system (15) yields four genus one curves
of the form

(nj − ni)X3 + (ni − nk)Y 3 + (nk − nj)Z3 = 0, (16)

where 0 ≤ i < j < k ≤ 3. We shall check all the possible systems (15). However,
some of them can be easily excluded. First, observe that if the indices ni, nj , nk
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form an arithmetic progression, then the corresponding genus one curve (16)
is just

X3 − 2Y 3 + Z3 = 0.

By a classical result of Dénes [6] we know that this equation has the only
solutions

(X,Y, Z) = (−u, 0, u), (u, u, u) (u ∈ Z).

So by N ≤ 9, in this case we cannot have four cubes among the first N terms
of our progression. That is, we may assume that n0, n1, n2, n3 does not contain
an arithmetic progression. By symmetry, we may clearly assume further that
n3 − n2 ≥ n1 − n0, moreover, by shifting the terms that n0 = 0, too. There
are 18 quadruples (n0, n1, n2, n3) with 0 ≤ n0 < n1 < n2 < n3 ≤ 8 with
these properties. If we can exclude them all, then we may conclude that our
statement is valid for 4 ≤ N ≤ 9 indeed. For such a given tuple (n0, n1, n2, n3)
(recalling that we may assume that n0 = 0) we get three genus one curves as
follows:

C1 : n1x
3
2 − n2x31 + (n2 − n1)x30 = 0,

C2 : n1x
3
3 − n3x31 + (n3 − n1)x30 = 0,

C3 : n2x
3
3 − n3x32 + (n3 − n2)x30 = 0.

In fact we could get a fourth equation as well - however, that is a consequence
of the above three ones. We use ideas from [4] (see p. 293) to construct genus
two quotients of curves defined by two equations from the above system. Define
morphisms

ζ0 : (x0 : x1 : x2 : x3)→ (ζx0 : x1 : x2 : x3),

ζ1 : (x0 : x1 : x2 : x3)→ (x0 : ζx1 : x2 : x3),

ζ2 : (x0 : x1 : x2 : x3)→ (x0 : x1 : ζx2 : x3),

ζ3 : (x0 : x1 : x2 : x3)→ (x0 : x1 : x2 : ζx3),

where ζ denotes a primitive cube root of unity. We will use subgroups of
the form Hi,j = 〈ζ0ζi, ζ0ζj〉 with 1 ≤ i < j ≤ 3. For example, if we take
the first two genus one curves C1 and C2 defined above with the subgroup
H1,2 = 〈ζ0ζ1, ζ0ζ2〉, then the corresponding quotient is isomorphic to the genus
two hyperelliptic curve given by

C1,2
H1,2

: y2 = ((n2 − n1)(n3 − n1)n3)2x6 +

+2((n3 − n1)n3)2(2n1n2 − n1n3 − n2n3)x3 + ((n3 − n1)n23)2.

For given n1, n2, n3 one can compute the quotient by using the Magma [3]
procedure CurveQuotient and having many numerical examples the general
pattern is not too difficult to guess and to prove afterwards. We note that
(1, (n3 − n1)(n1 + n2 − n3)n3) is a point on C1,2

H1,2
(and similarly, we can

always find a parametric point on the other curves arising), so we cannot use
local arguments to eliminate cases. We use the following strategy. For every
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tuple (n0, n1, n2, n3) we construct all genus two curves Ci,jHk,m with i, j, k,m ∈
{1, 2, 3}, i < j, k < m and select those having Mordell-Weil group of rank
at most one. For these curves we can apply the classical Chabauty’s method
[5] to determine all rational points. For this, and all the other computations
we use the program package Magma [3]. We provide some details only for
(n0, n1, n2, n3) = (0, 1, 3, 8), the other cases are similar. We obtain the three
genus one curves

C1 : x32 − 3x31 + 2x30 = 0,

C2 : x33 − 8x31 + 7x30 = 0,

C3 : 3x33 − 8x32 + 5x30 = 0.

We get the hyperelliptic curve

C1,2
H1,2

: y2 = 12544x6 − 163072x3 + 200704,

which is isomorphic to

C ′ : y2 = 784x6 − 10192x3 + 12544.

Based on Stoll’s articles [14], [15], [16] one computes generators for the Mordell-
Weil group. We get that the rank of the Jacobian of the curve is one and

Jac(C ′)(Q) = 〈(x2,−112, 2), (x, 28x3 + 112, 2), (x− 1, 28x3 − 84, 2)〉,

where the first two generators are of order three and the last generates the
free part. A standard application of Chabauty’s method yields that the only
affine rational points on C ′ are given by

{(0,±112), (1,±56)}.

These points do not give rise to non-constant arithmetic progressions. In a sim-
ilar way we could eliminate all the other possible quadruples (n0, n1, n2, n3).

Suppose next that 10 ≤ N ≤ 16, and assume to the contrary of our claim
that among the first N terms of a progressions ax+b there are five cubes. Then
there exists integers n0, n1, n2, n3, n4 with 0 ≤ n0 < n1 < n2 < n3 < n4 < N
such that

ani + b = x3i (i = 0, 1, 2, 3, 4) (17)

with some integers x0, x1, x2, x3, x4. Following the steps provided in the case
4 ≤ N ≤ 9, we obtain the six genus one curves

C1 : (n1 − n0)x32 + (n0 − n2)x31 + (n2 − n1)x30 = 0,

C2 : (n1 − n0)x33 + (n0 − n3)x31 + (n3 − n1)x30 = 0,

C3 : (n2 − n0)x33 + (n0 − n3)x32 + (n3 − n2)x30 = 0,

C4 : (n1 − n0)x32 + (n0 − n4)x31 + (n4 − n1)x30 = 0,

C5 : (n2 − n0)x32 + (n0 − n4)x31 + (n4 − n2)x30 = 0,

C6 : (n3 − n0)x32 + (n0 − n4)x31 + (n4 − n3)x30 = 0.
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In fact, we could get more curves, but these are sufficient for our purposes.
Using the same morphisms and subgroups Hi,j = 〈ζ0ζi, ζ0ζj〉 as earlier, we
construct genus two curves. If we can find the rational points on one of these
curves, then we are finished. However, to do this can be rather troublesome.
The question is how to select the ’right’ curves for which the computation is
feasible and relatively fast. We applied the following method. For a given tuple
(n0, n1, n2, n3, n4) we considered the collection of genus two curves described
above. We computed an upper bound for the rank of the Mordell-Weil group
by the Magma procedure RankBounds. If the bound was larger than one, or
the computation took more than three minutes (when it was interrupted) then
we put the curve into a set called ’BadCurves’. Otherwise we computed the
Minkowski bound for the maximal order of the number field defined by the
degree six polynomial related to the genus two curve and we determined the
height constant bound corresponding to the naive height and the canonical
height. In the first round we only considered curves with Minkowski bound
less than 40000 and height constant at most 16. Having a curve satisfying all
the previous conditions we tried to determine generators of the Mordell-Weil
group and apply Chabauty’s method. Again, we stopped the computation after
three minutes if no output had appeared and we enlarged the set ’BadCurves’.
If everything went fine, i.e. the rank of the curve (quickly) proved to be at most
one, then we included the curve into the set ’GoodCurves’ to speed up later
computations. In this way, in case of every tuple (n0, n1, n2, n3, n4) we could
find an arising curve for which all its rational points could be determined. We
found that these points do not lead to any arithmetic progression with the
required properties, and our statement follows also in this case.

Finally, when 17 ≤ N ≤ 19, then we may already assume that there are
at least six cubes among the first N terms of the progression. In this case we
followed the method described in the previous situation. We omit the details,
and only mention that now we selected curves having Minkowski bound less
than 300000 and height constant bound at most 22. Ultimately, we could
exclude all the tuples (n0, . . . , n5), so we came to a similar conclusion also in
this case as before.

The total computational time was 16.6 hours on a Core I7 computer. As a
result of them, we concluded that the theorem is valid. ut

Now we turn to Problem 1 in case of ` = 4. For this value of ` Problem
1 suggests that there are two ’best’ progressions (containing the most fourth
powers among its first N terms b, . . . , a(N − 1) + b), given by (a, b) = (5, 1)
and (80, 1). A simple calculation shows that for 1 ≤ N ≤ 5 we have

P5,1;N (4) ≤ P80,1;N (4),

and the number of fourth powers in the latter progression among its first N
terms is given by

P80,1;N (4) =

{
1 if N = 1,

2 if 2 ≤ N ≤ 5.
(18)
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Our last result verifies that this progression is the ’best’ indeed for N ≤ 5,
hence providing an affirmative answer for Problem 1 for these values of N .
In fact we prove more: we allow the initial term b of the progression be an
arbitrary integer. The reason that in this case we go only up to N ≤ 5 is that
following a similar method as in the proof of Theorem 2, we just could not
handle some cases (curves) appearing for N = 6.

Theorem 3 Let a, b be integers with a > 0. Then for any N ≤ 5 we have

Pa,b;N (4) ≤ P80,1;N (4).

Proof The statement is obvious for N = 1, 2, so we may assume that 3 ≤ N ≤
5. In view of (18), we need to show that

Pa,b;N (4) ≤ 2

for these values of N . Assume to the contrary that for a progression ax + b
there are at least three fourth powers among its first N terms (3 ≤ N ≤ 5).
So let (n0, n1, n2) with 0 ≤ n0 < n1 < n2 ≤ N be such that

ani + b = x4i (i = 0, 1, 2). (19)

If n0, n1, n2 is an arithmetic progression, then we get

x40 + x42 = 2x41.

Again, by the classical result of Dénes [6] implies that then x0 = x1 = x2, a
contradiction. So by symmetry, we may assume that we only need to consider
the cases

(n0, n1, n2) = (0, 1, 3), (0, 1, 4).

We shall handle these tuples separately. However, before that it is important
to show that here without loss of generality we may assume that x0, x1, x2 are
pairwise coprime. (It will play an important technical role in our arguments
below.) First we show that we may restrict our attention to coprime arithmetic
progressions, i.e. to the case gcd(a, b) = 1. For this, assume that there is a
prime p with p | a, p | b. Then, as n0 = 0 and n1 = 1 in both cases, (19) with
i = 0, 1 implies that p4 | x40, x41, and then p4 | a, b. Hence we can cancel p4 from
a and b, since a term of the arithmetic progression (a/p4)x+(b/p4) obtained is
a fourth power if and only if the corresponding term of the original progression
ax+b was a fourth power itself. So we can gradually get rid of all the common
prime factors of a, b. Hence we may assume that gcd(a, b) = 1 indeed. Assume
now that x0, x1, x2 in (19) are not pairwise coprime. Certainly, gcd(x0, x1) = 1,
since otherwise (as n0 = 0, n1 = 1) by (19) we obtain gcd(a, b) > 1, which
is excluded. So assume that gcd(xj , x2) > 1 where j = 0, 1. Let p be a prime
with p | xj , x2. Then, certainly p4 | x4j , x42, and (19) with i = j, 2 easily gives

p4 | (2− j)a, (2− j)b.
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However, then of course p | a, b, which is excluded. Consequently, we may
assume without loss of generality that gcd(a, b) = 1 and x0, x1, x2 are pairwise
coprime, indeed.

If (n0, n1, n2) = (0, 1, 3) then from (19) we get

3x41 − 2x40 = x42.

The pairwise coprime integral solutions of the above equation can be parametrized
by standard arguments (see e.g. [13], Chapter IV.4). In our case we get

rx20 = −2p2 − 2pq + q2,

rx21 = 2p2 + q2,

rx22 = 2p2 − 4pq − q2,

where p, q, r ∈ Z and r | 12. From the second equation we immediately get
that r > 0. If r ∈ {1, 3, 4, 12}, then the equation

rx22 = 2p2 − 4pq − q2 = 6p2 − (2p+ q)2

has only the trivial solution (p, q, x2) = (0, 0, 0). This follows from that 6p2

cannot be the sum of two squares if r = 1, 4. By checking the exponents of 3
in the three terms (and ultimately from that u2 ≡ 2v2 (mod 3) is not solvable
if 3 - uv) if r = 3, 12. Further, if r = 2 then the equation

rx20 = −2p2 − 2pq + q2 = (q − p)2 − 3p2

has only the trivial solution. (This follows again by checking the exponents of
3 in the three terms.) So we are left with r = 6 as the only possibility. In this
case multiplying the three equations above, after dividing by q6 and writing
x = p, y = 36x0x1x2 we obtain the genus two hyperelliptic curve

D : y2 = −48x6 + 48x5 + 120x4 + 60x2 − 12x− 6.

Using Magma [3] we compute generators of its Mordell-Weil group. We get
that

Jac(D)(Q) = 〈(x2 +
1

2
, 0, 2), (x2 + x− 1

2
, 0, 2), (x2 + x+

1

4
, 12x+

3

2
, 2)〉,

where the first two elements are of order two and the last one generates the
free part. Finally, using the Magma function Chabauty we obtain that

D(Q) = {(−1

2
,±9

2
)}.

This gives rise to the trivial solution with (x40, x
4
1, x

4
2) = (1, 1, 1). The case with

(n0, n1, n2) = (0, 1, 4) can be excluded in a similar way, so we omit the details.
Thus the proof of the theorem is complete. ut
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