
POLYNOMIAL VALUES OF FIGURATE NUMBERS

LAJOS HAJDU AND NÓRA VARGA

Abstract. There are a lot of effective, ineffective and explicit
results concerning power values and polynomial values of binomial
coefficients. Also, many papers deal with generalizations of these
problems, involving polygonal numbers and pyramidal numbers. In
this paper we prove effective and ineffective theorems concerning
polynomial values of figurate numbers. Our results yield common
extensions and generalizations of several previous theorems from
the literature.

1. Introduction

Problems related to polynomial values of binomial coefficients have
a long history and a vast literature. It was proved by Erdős [15] (cases
k ≥ 4) and Győry [19] (cases k = 2, 3) that the only non-trivial solution
of the Diophantine equation (

x

k

)
= yℓ

is given by (x, k, y, ℓ) = (50, 3, 140, 2). Yuan [39] proved that apart
from certain explicitly given cases, the Diophantine equation(

x

k

)
= ayℓ + b (a, b ∈ Q)

for any fixed k ≥ 3 has only finitely many solutions in x, y, ℓ, and these
solutions can be explicitly bounded. Stoll and Tichy [37] investigated
the number of solutions of the Diophantine equation

α

(
x

m

)
+ β

(
y

n

)
= γ,
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where α, β, γ ∈ Q, m, n ∈ N,m ̸= n and they obtained several results.
The general equation

(1)

(
x

k

)
= g(y)

where g(y) ∈ Q[y] is an arbitrary polynomial was taken up by Kulkarni
and Sury [26]. They proved that this equation, up to certain completely
described cases, has only finitely many solutions. Because of the in-
effective nature of the methods they applied, this result is ineffective.
(Note that in [26] the results are formulated for products of consecutive
integers in place of binomial coefficients - however, the two statements
are equivalent.) We mention that there are many further related re-
sults in the literature, concerning binomial coefficients and products of
consecutive integers. Since their survey would be an enormous task,
we only suggest the interested reader to consult the papers [16], [25],
[8], [27], [32], [28], [33], [10], [11], [3], [21], [35], [4], [5], [30], [31], [20],
[2] and in particular, the excellent survey papers [38], [17], [36], [18]
and the references given there.

Let now k,m be integers with k ≥ 2 and m ≥ 2, and write

fk,m(x) =
x(x+ 1) . . . (x+ k − 2)((m− 2)x+ k + 2−m)

k!

for the xth figurate number with parameters k and m. For the intro-
duction and basic properties of these numbers see e.g. the books [13]
and [12]. Observe that as for m = 2, 3 we get back the binomial coeffi-
cients

(
x+k−2
k−1

)
,
(
x+k−1

k

)
, respectively, these numbers can be considered

as generalizations of the binomial coefficients. Further, in the special
cases when k = 2 and 3, we get the so-called xth polygonal number
and pyramidal number, respectively. For some open problems and the-
orems related to these families of combinatorial numbers, we refer to
the books [13] and [12] again. The power values and equal values of
fk,m(x) for certain special choices of the parameters have been stud-
ied intensively, see e.g. the papers [1], [9], [24], [26], [29], [14], [22]
and the references therein. In particular, the present authors together
with Pintér and Tengely [22] gave effective finiteness statements for the
equation

(2) fk,m(x) = f2,n(y)

in integers x and y and provided numerical results for small values of
the parameters (k,m, n).

In the present paper we deal with the general equation

fk,m(x) = g(y),
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where g is a polynomial with rational coefficients. Observe that it is an
essential generalization of the equations studied earlier, indeed: e.g.,
it includes (1), and contains an extra variable. We describe precisely
and completely those polynomials g for which the above equation has
infinitely many solutions in x, y ∈ Z. In the cases where deg(g) = 2 or g
is of the form g(y) = ayℓ + b (a, b ∈ Q, ℓ ≥ 2) we give effective bounds
for the solutions of the above equation, as well. These results are
common extensions and generalizations of many theorems mentioned
earlier; among others the ones from [39], [9], [3], [26], [31], [37], [22]
and the related ones from [4].

Our proofs ultimately rely on Baker’s method (via results of Brindza
[7] and Schinzel and Tijdeman [34]) and a theorem of Bilu and Tichy
[6]. For their use we need to understand well the root structures of
the shifts fk,m(x) + t of our polynomials. So our tools are similar to
the ones applied e.g. in the papers [39], [26]. However, because of
the extra factor (parameter) in our case the situation requires a much
more careful analysis than in case of the earlier similar statements.
In particular, the polynomials fk,m(x) do not enjoy the so-called two
interval monotonicity property (see e.g. [37]). So to get the required
assertions, we need to apply a much more involved argument than say
in [3] or [37] - see our Proposition 4.1.

2. Main results

Let g(x) ∈ Q[x] be an arbitrary polynomial, and consider the Dio-
phantine equation

(3) fk,m(x) = g(y)

in x, y ∈ Z.
Our first result gives a general (partly effective) finiteness theorem

for equation (3). The second part of the statement involves Dickson
polynomials; they will be discussed in the beginning of Section 4.

Theorem 2.1. Let k ≥ 4 and m ≥ 4.
(i) For deg g ∈ {0, 2}, there exists an effectively computable constant

C1(k,m, g) depending only on k,m and g such that max(|x|, |y|) <
C1(k,m, g) for each integer solution of equation (3), unless k = 4 and
m = 4, 6.

(ii) For deg g ≥ 3, equation (3) has only finitely many integer solu-
tions x, y, unless we are in one of the following cases:

• g(x) = fk,m(S(x)), where S(x) ∈ Q[x] with deg(S) > 0,

• m = 4, k is even and g(x) = φ(T (x)) with φ(x) = 2
k!

∏ k−2
2

i=0 (x−
i2) and T (x) ∈ Q[x] has at most two roots of odd multiplicity,
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• k = m = 4 and g(x) is one of the polynomials

1

192u4t
Dt(cx+ d, u8)− 1

96
, − 1

192ut
D2t(cx+ d, u)− 1

96
,

where u, c, d are arbitrary rationals with uc ̸= 0 and t ≥ 3 is
an odd integer. Here Ds(x, α) is the Dickson polynomial with
parameters s and α.

Remark 1. Obviously, in the exceptional cases deg g = 1 and g(x) =
fk,m(h(x)), equation (3) can have infinitely many integer solutions x, y.
From our proofs it will be clear that the same is true for the other
exceptional choices of g(x). We also note that our assumption m ≥ 4
is not a real restriction. As we mentioned already, for m = 2, 3 we have
fk,m(x) =

(
x+k−2
k−1

)
,
(
x+k−1

k

)
, respectively. Hence in these cases parts (i)

and (ii) of the above theorem are given by the results of Yuan [39] and
Kulkarni and Sury [26], respectively. Further, the condition k ≥ 4 is
necessary. Indeed, for k = 2 we have

f2,m(x) =
1

2
x((m− 2)x+ 4−m),

and one could easily find counterexamples in both cases (i) and (ii).
Also, in the case k = 3 the equation has infinitely many solutions which
can be easily described. In fact we get that the equation f3,m(x) =

ay2 + b has infinitely many solutions if and only if b = 37m2−274m+481
36(m−2)2

.

Finally, the cases k = 4, m = 4, 6 must also be excluded from part
(i). This could be easily demonstrated by concrete examples, leading
to Pellian equations.

We also mention that in the proof of part (ii) of our Theorem 2.1
we use the ineffective finiteness criterion of Bilu and Tichy [6] com-
bined with Theorem 2.3 and other considerations. Thus, part (ii) is an
ineffective statement.

Consider now the equation

(4) fk,m(x) = ayℓ + b,

in integers x, y, ℓ with ℓ ≥ 2, where a, b are fixed rational numbers with
a ̸= 0.

The following theorem gives effective bounds for the solutions of (4).

Theorem 2.2. Let k ≥ 3 and m ≥ 4. Then for all solutions x, y, ℓ
of equation (4) with |y| > 1 we have ℓ < C2(k,m, a, b). Further, for
any fixed ℓ ≥ 2 for the solutions x, y of (4) we have max(|x|, |y|) <
C3(k,m, a, b), unless (k, ℓ) = (3, 2) or (k,m, ℓ) = (4, 4, 2), (4, 6, 2),
(4, 4, 4). Here, C2(k,m, a, b) and C3(k,m, a, b) are effectively computable
constants depending only on k,m, a and b.
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Remark 2. Similarly to the case of Theorem 2.1 also in the above
theorem the conditions are natural and/or necessary. (See also Remark
1.)

Our last theorem concerns the decomposability of the polynomials
fk,m(x). This plays an important role in the proof of part (ii) of The-
orem 2.1. By a decomposition of a polynomial F (x) over a field K we
mean writing F (x) as

F (x) = G(H(x)) (G(x), H(x) ∈ K[x]),

which is nontrivial if degG(x) > 1 and degH(x) > 1. Two decom-
positions F (x) = G1(H1(x)) and F (x) = G2(H2(x)) are said to be
equivalent if there exists a linear polynomial λ(x) ∈ K[x] such that
G1(x) = G2(λ(x)) and H1(x) = λ−1(H2(x)). The polynomial F (x) is
called decomposable over K if it has at least one nontrivial decomposi-
tion over K; otherwise it is said to be indecomposable.

Theorem 2.3. Let k ≥ 3,m ≥ 4. Then the polynomial fk,m(x) is
indecomposable over C, unless k is even and m = 4, when any non-
trivial decomposition is equivalent to

fk,m(x) =
2

k!

k−2∏
i=0

((
x+

k − 2

2

)2

− i2

4

)
.

Remark 3. Note that once again, the assumption m ≥ 4 is not a
real restriction. The cases m = 2, 3 have been settled by Theorem 1 of
Kulkarni and Sury [26]. The case k = 2 is trivial.

3. Proof of the effective results

In this section we prove part (i) of Theorem 2.1 and Theorem 2.2.
For this we need some lemmas and notations.

Let f(x) = a0x
N + . . .+aN = a0

∏n
i=1(x−γi)

ri be a polynomial with
integer coefficients, with a0 ̸= 0 and γi ̸= γj for i ̸= j, where γi (i =
1, . . . , n) are the distinct roots of f(x) with multiplicities r1, . . . , rn,
respectively. Obviously for the degree N of the polynomial f(x) we
have N = r1 + . . . + rn. Let H(f) be the naive height of f , i.e. the
maximum of the absolute values of its coefficients.

Consider the equation

(5) f(x) = ayℓ

in integers x, y, ℓ with ℓ ≥ 2, where a is a non-zero rational number.
Our first lemma is a well-known result of Schinzel and Tijdeman [34].
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Lemma 3.1. If f(x) has at least two distinct zeros then for all solutions
x, y, ℓ of equation (5) with |y| > 1 we have

ℓ < C5(H(f), N, a),

where C5(H(f), N, a) is an effectively computable constant depending
only on H(f), N and a.

Proof. The statement is the main result of [34]. �

The following lemma is a theorem of Brindza [7]. To its formulation,
we need furher notation. For any finite set S of primes, write ZS for
those rationals whose denominators are composed exclusively from the
primes in S. By the height h(s) of a rational number s we mean the
maximum of the absolute values of the numerator and the denominator
of s.

Lemma 3.2. Let ℓ ≥ 2 be fixed and put qi =
ℓ

gcd(ℓ,ri)
. Suppose that

(q1, . . . , qn) is not a permutation of any of the tuples (q, 1, . . . , 1) (q ≥ 1)
and (2, 2, 1, . . . , 1). Then all solutions of (x, y) ∈ ZS of equation (5)
satisfy

max{h(x), h(y)} < C4(H(f), N, a, ℓ, S)

where C4(H(f), N, a, ℓ, S) is an effectively computable constant depend-
ing only on H(f), N, a, ℓ and S.

Proof. The statement is an immediate consequence of the main result
of [7]. �

Let k ≥ 2 and z be a rational number, and put

Fk,z(x) = x(x+ 1) · · · (x+ k − 2)(x+ z).

In the following part of this section we give some lemmas concerning
the roots of the derivative of the polynomial Fk,z(x), which are needed
to prove our results. Obviously, all the roots of Fk,z(x) are simple if
z /∈ {0, 1, . . . , k − 2}, and Fk,z(x) has exactly one double root with all
its other roots being simple if z ∈ {0, 1, . . . , k − 2}.

Lemma 3.3. Let k ≥ 2 and z ∈ Q. Then all the roots of F ′
k,z(x)

are real and simple. Further, writing α1 > · · · > αk−1 for the roots
of F ′

k,z(x), the polynomial Fk,z(x) has local minimum at αi if i is odd,
and local maximum at αi if i is even (i = 1, . . . , k − 1). Finally, if
z ∈ {0, 1, . . . , k − 2}, say z = i then

0 > α1 > −1 > . . . > −i+ 2 > αi−1 > −i+ 1 > αi = −i > αi+1 >

> −i− 1 > . . . > −k + 3 > αk−1 > −k + 2,
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while if z /∈ {0, 1, . . . , k − 2} then writing c0 > c1 > . . . > ci = z >
. . . > ck−1 for the roots of Fk,z we have

c0 > α1 > c1 > α2 > . . . > ci−1 > αi >

> ci = z > αi+1 > ci+1 > . . . > ck−2 > αk−1 > ck−1.

Proof. The statement trivially follows from Rolle’s theorem and stan-
dard calculus. �
Corollary 3.1. For any k ≥ 2 and m ≥ 4 the roots of f ′

k,m(x) are real
and simple.

Proof. Observe that fk,m(x) = wFk,z(x) with w = m−2
k!

and z = k
m−2

−1.
Thus the statement immediatley follows from Lemma 3.3. �

The next lemma deals with the sign of the function |Fk,z(x)| −
|Fk,z(x+1)|. It plays a key role in the proof of part (i) of Theorem 2.1.

Lemma 3.4. Let k ≥ 12 and z ≥ k−2
2
. Then

h(x) := |Fk,z(x)| − |Fk,z(x+ 1)| < 0

for all −5 < x < 0 with x /∈ {−4,−3,−2,−1}.

Proof. We can write

h(x) = |(x+ 1) · · · (x+ k − 2)|h∗(x),

where
h∗(x) = |x(x+ z)| − |(x+ k − 1)(x+ z + 1)|.

As −5 < x < 0 and z ≥ k−2
2

we have

h∗(x) = −x(x+z)−(x+k−1)(x+z+1) = −2x2−(2z+k)x−(k−1)(z+1).

The roots of h∗(x) are given by

−(2z + k)±
√
(2z + k)2 − 8(k − 1)(z + 1)

4
.

Using −5 < x < 0 and z ≥ k−2
2
, a simple calculation shows that if

these roots are real, then they are at most −5. Hence the statement
immediately follows. �

Now we are ready to prove part (i) of Theorem 2.1 and Theorem 2.2.

Proof of part (i) of Theorem 2.1. The case deg g = 0 is trivial, so as-
sume that deg g = 2. First we prove that for k ≥ 12, z ≥ (k− 2)/2 and
any rational t, the polynomial Fk,z(x) + t is not of the form

(6) Fk,z(x) + t = P (x)Q2(x),

where P,Q ∈ Q[x], degP ≤ 2 and Fk,z(x) is defined earlier.
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Assume to the contrary that with some k ≥ 12 and z ≥ (k − 2)/2
(6) is valid. Then we have

F ′
k,z(x) = Q(x)(P ′(x)Q(x) + 2P (x)Q′(x)),

so the roots of Q(x) are roots of F ′
k,z(x), too. (Recall that by Lemma

3.3, the roots of F ′
k,z(x) are real and simple.) On the other hand, (6)

implies that for any root β of Q(x) we have Fk,z(β) = −t. That is, for
degQ roots of F ′

k,z(x), the local maxima/minima of Fk,z(x) taken at
them should be equal. Observe that degQ = k/2 or (k − 2)/2 if k is
even, and degQ = (k−1)/2 if k is odd. Further, Lemma 3.3 shows that
if k is even, then Fk,z(x) has k/2 local minimum values and (k − 2)/2
local maximum values, while if k is odd then the number of both such
values is (k − 1)/2. Putting these all together, we conclude that we
have one of the following possibilities:

• k is even, and either all the local maximum values of Fk,z(x) are
equal, or all the local minimum values of Fk,z(x) with at most
one exception are equal,

• k is odd and either all the local maximum values of Fk,z(x) are
equal, or all the local minimum values of Fk,z(x) are equal.

By our assumptions Lemma 3.4 shows that none of the above cases may
occur. Hence for k ≥ 12 and z ≥ (k− 2)/2, the polynomial Fk,z(x) + t
is not of the form (6), indeed.

Now we claim that for any k ≥ 12 and rational t, the polynomial
fk,m(x) + t is also not of the form

(7) fk,m(x) + t = P (x)Q2(x),

where P,Q ∈ Q[x], degP ≤ 2. If k/(m− 2)− 1 ≥ (k − 2)/2, then this
immediately follows from that (6) does not hold for Fk,z(x) + t with
k ≥ 12 and z ≥ (k − 2)/2. In case of k/(m − 2) − 1 < (k − 2)/2, on
applying the substitution x → k−2−x, the assertion also follows from
(6).

Now the statement is an immediate consequence of Lemma 3.2,
whenever k ≥ 12.

So we are left with the cases 4 ≤ k ≤ 11. We can write

fk,m(x) + t =
m− 2

k!
(Fk,z(x) + t∗),

where z = k
m−2

− 1, t∗ = tk!
m−2

. By Lemma 3.2 it is sufficient to show
that Fk,z(x) + t∗ is not of the form (6). As the argument is similar
for the values 4 ≤ k ≤ 11, we illustrate our method only for k = 6.
In this case we should show that F6,z(x) + t∗ is neither of the form
(x2+ax+ b)(x2+ cx+d)2, nor of the shape (x3+ax2+ bx+ c)2, where
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a, b, c, d ∈ Q. We consider only the first possibility, the second one is
similar (even simpler). Assume to the contrary that we have

F6,z(x) + t∗ = (x2 + ax+ b)(x2 + cx+ d)2.

Comparing the coefficients in the above equation and eliminating the
unknowns a, b, c, d, z successively (using Maple [23]), ultimately we get
the equation −27t∗2 − 320t∗ + 2304 = 0. However, it has no rational
solution in t∗. Hence our claim follows in this case.

Altogether we get that under our assumptions k ≥ 4, m ≥ 4 and
(k,m) ̸= (4, 4), (4, 6) the polynomial Fk,z(x)+ t∗ is not of the form (6).
Hence the theorem follows. �

Proof of Theorem 2.2. We rewrite equation (4) as

(8) fk,m(x)− b = ayℓ.

As (fk,m(x) − b)′ = fk,m(x)
′, by Corollary 3.1 we see that fk,m(x) − b

has at most double roots. Thus for any k ≥ 3, fk,m(x) − b has two
distinct roots. Thus the bound for ℓ immediately follows by applying
Lemma 3.1 to (8).

Now we give a bound for max{|x|, |y|}. If |y| ≤ 1 then this expression
is trivially bounded by the required parameters. So we may assume
that |y| > 1. Then, by what we have already proved, we have ℓ <
C2(k,m, a, b). Observe that by part (i) of Theorem 2.1, we may suppose
that ℓ ≥ 3. Recall that all the roots of fk,m(x)− b are at most double.
So the required bound immediately follows from Lemma 3.2, unless
k = 4 and ℓ = 4. To check this remaining case, we only need to find
those values of m and b for which f4,m(x) − b has two double roots.
A simple calculation with Maple [23] gives that the only possibility is
given by m = 4 (and b = −1/48). Since the case k = m = ℓ = 4 is
excluded, the theorem follows. �

4. Proof of the ineffective results

In this section we prove part (ii) of Theorem 2.1 and Theorem 2.3.
In the first lemma we reformulate a famous theorem of Bilu and Tichy
from [6]. For this, we need some notation. Following [6] we define five
kinds of standard pairs of polynomials.

Let α and β be nonzero rational numbers, q, s and t positive integers,
r a nonnegative integer and v(x) ∈ Q[x] a nonzero polynomial, which
may be constant. Denote by Ds(x, α) the sth Dickson polynomial,
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defined by, the formula

Ds(x, α) =

⌊s/2⌋∑
i=0

s

s− i

(
s− i

i

)
(−α)ixs−2i.

A standard pair of the first kind is (xq, αxrv(x)q) (or switched), where
0 ≤ r < q, (r, q) = 1 and deg v(x) + r > 0.
A standard pair of the second kind is (x2, (αx2+β)v(x)2) (or switched).

A standard pair of the third kind is (Ds(x, α
t), Dt(x, α

s)), where
gcd(s, t) = 1.
A standard pair of the fourth kind is ((α−s/2(Ds(x, α)),−β−t/2(Dt(x, β)))
(or switched), where gcd(s, t) = 2.
A standard pair of the fifth kind is ((αx2−1)3, 3x4−4x3) (or switched).

Lemma 4.1. Let f(x), g(x) ∈ Q[x] be non-constant polynomials. Then
the following two assertions are equivalent.
(1) The equation f(x) = g(y) has infinitely many rational solutions
with a bounded denominator.
(2) We have f = φ ◦ f1 ◦ λ and g = φ ◦ g1 ◦ µ where λ and µ ∈ Q[x]
are linear polynomials, φ(x) ∈ Q[x] and (f1(x), g1(x)) is a standard
pair over Q such that the equation f1(x) = g1(y) has infinitely many
rational solutions with a bounded denominator.

Proof. This is the main result of Bilu and Tichy [6]. �
Theorem 2.3 is an immediate consequence of the following more gen-

eral result, which can be of independent interest. Recall the notation

Fk,z(x) = x(x+ 1) . . . (x+ k − 2)(x+ z).

Proposition 4.1. Let k ≥ 3 and z ∈ Q. Then the polynomial Fk,z(x) is
decomposable over C if and only if k is even and z = −1, (k−2)/2, k−1.
In the exceptional cases any non-trivial decomposition is equivalent to

Fk,z(x) =
(x+ s)2 − i2

4
· (x+ s)2 − (i+ 2)2

4
· · · (x+ s)2 − (i+ k − 2)2

4
with

(s, i) =

(
k − 3

2
,
1

2

)
,

(
k − 2

2
, 0

)
,

(
k − 1

2
,
1

2

)
,

respectively.

Proof. Suppose that we have Fk,z(x) = G(H(x)) with some G,H ∈
C[x], such that deg(G) ≥ 2 and deg(H) ≥ 2. We may clearly assume
that here G,H are monic polynomials. Write β1, . . . , βt for the roots of
G(x).Observe that they must be simple. Indeed, otherwise (H(x)−βi)

u
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would divide Fk,z(x) with some i ∈ {1, . . . , t} and u ≥ 2, implying
deg(H(x)) = 1. Thus we have

t∏
i=1

(H(x)− βi) = Fk,z(x).

Without loss of generality we may assume that (x + z) | (H(x)− β1).
Write

(9) H(x)− β1 = (x+ z)(x+ a1) . . . (x+ as)

and
H(x)− β2 = (x+ b1) . . . (x+ bs+1)

with some s ≥ 1 where ai, bj are pairwise distinct elements of {0, . . . , k−
2} (1 ≤ i ≤ s, 1 ≤ j ≤ s+ 1). Then we have

(x+ z)(x+ a1) . . . (x+ as)− (x+ b1) . . . (x+ bs+1) = β2 − β1,

whence z ∈ Z.
By symmetry, we may clearly assume that z ≥ (k − 2)/2. We prove

that the degree of gcd(Fk,z(x)+ t, F ′
k,z(x)) is at most two for any t ∈ C.

For this, as in Lemma 3.3 we write α1, . . . , αk−1 for the roots of F
′
k,z(x),

and investigate the numbers

|Fk,z(αi)| (i = 1, . . . , k − 1).

It is convenient to distinguish two subcases.
I) Suppose first that z ≥ k − 1. Then Lemma 3.3 gives that

0 > α1 > −1 > α2 > −2 > · · · > −k+3 > αk−2 > −k+2 > αk−1 > −z.

We investigate the sign of the function

h(x) := |Fk,z(x)| − |Fk,z(x+ 1)|.
Note that a similar analysis can be found in [3] for the polynomial
Fk,z(x)

x+z
. However, here - just because of the extra factor - the situation

is much more complicated, and a more involved analysis is needed.
As in Lemma 3.4, we can write

h(x) = |(x+ 1) . . . (x+ k − 2)|h∗(x).

with

(10) h∗(x) = |x(x+ z)| − |(x+ k − 1)(x+ z + 1)|.
Observe that if h∗ is positive for −i < x < −i + 1 then |Fk,z(αi)| >
|Fk,z(αi−1)|, while if h∗ is negative for −i < x < −i+1 then |Fk,z(αi)| <
|Fk,z(αi−1)| (i ∈ {2, . . . , k − 2}). Indeed, in the first case we have

|Fk,z(αi)| ≥ |Fk,z(αi−1 − 1)| > |Fk,z(αi−1)|,
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while in the second case

|Fk,z(αi)| < |Fk,z(αi + 1)| ≤ |Fk,z(αi−1)|
holds. Further, for any x with −k + 1 ≤ x ≤ 0 we have

h∗(x) = −x(x+z)−(x+k−1)(x+z+1) = −2x2−(k+2z)x−(k−1)(z+1).

The roots of h∗(x) are given by

(11)
−(2z + k)±

√
(2z + k)2 − 8(k − 1)(z + 1)

4
.

One can easily check that now these roots are real. Further, one of them
is at most −z, while the other root belongs to the interval [−k/2, (1−
k)/2]. Thus, writing

i0 =

{
(k − 2)/2 if k is even,

(k − 1)/2 if k is odd

we have

|Fk,z(αk−1)| > · · · > |Fk,z(αi0)| and |Fk,z(αi0−1)| < · · · < |Fk,z(α1)|.
This shows that for any t ∈ C there are no three distinct indices
i1, i2, i3 ∈ {1, . . . , k − 1} with

Fk,z(αi1) = Fk,z(αi2) = Fk,z(αi3).

That is, we have deg(gcd(Fk,z(x)+ t, F ′
k,z(x))) ≤ 2 for any t ∈ C in this

case. Thus as it is well-known (see e.g. the proof of Theorem 4.3 of
[4]) we obtain deg(H) ≤ 2. Write

H(x) = x2 + Ax+B (A,B ∈ C).
Now k must be even, and there must exist a partition

{a1, a2}, . . . , {ak/2−1, ak/2}
of {0, 1, . . . , k − 2, z} such that

a2j−1 + a2j = A (j = 1, . . . , k/2).

This by a simple calculation yields that z = k − 1, and the above
partition is given by

{0, k − 1}, . . . , {(k − 2)/2, k/2}.
Now the statement immediately follows from Theorem 4.3 of [4].

II) Assume next that z < k−1. Recall that z ∈ Z and z ≥ (k−2)/2.
We follow a similar strategy as in case I). Now Lemma 3.3 gives that
for the roots α1, . . . , αk−1 of F ′

k,z(x) we have

0 > α1 > −1 > · · · > −z − 1 > αz > −z = αz+1 =
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= −z > αz+2 > −z − 1 > · · · > −k + 3 > αk−1 > −k + 2.

We define h∗(x) with (10), as in case I). Consider first h∗(x) for −z <
x < 0. Then we have

h∗(x) = −x(x+z)−(x+k−1)(x+z+1) = −2x2−(k+2z)x−(k−1)(z+1).

The roots of h∗(x) are given by (11) again. It is easy to check that
now they are either non-real complex numbers, or they belong to the
interval (−z,−k/2). If h∗(x) has no real roots then we have h∗(x) < 0
for all x ∈ R. Hence in this case

|Fk,z(αz)| < · · · < |Fk,z(α1)|.
If the roots x1, x2 of h∗(x) with x1 ≤ x2 are in (−z,−k/2), then find
the uniqe i1, i2 ∈ {0, 1, . . . , k − 2} with

−z ≤ −i1 ≤ x1 < −i1 + 1 ≤ −k/2

and

−z ≤ −i2 ≤ x2 < −i2 + 1 ≤ −k/2.

Now we have

|Fk,z(αz)| < · · · < |Fk,z(αi1)|, |Fk,z(αi1−1)| < · · · < |Fk,z(αi2)|,

|Fk,z(αi2−1)| < · · · < |Fk,z(α1)|.
Note that in both cases, as Fk,z(αz+1) = Fk,z(−z) = 0, we have

|Fk,z(αz+2)| > |Fk,z(αz+1)| < |Fk,z(αz)|.
Consider now h∗(x) for −k + 2 < x < −z − 1. Then we have

h∗(x) = x(x+z)+(x+k−1)(x+z+1) = 2x2+(k+2z)x+(k−1)(z+1).

So the roots of h∗(x) are again given by (11). Now by what we have
proved above, we have that

|Fk,z(αk−1)| > · · · > |Fk,z(αz+2)|.
We conclude that for any t ∈ C there are no five distinct indices i1, i2,
i3, i4, i5 ∈ {1, . . . , k − 1} with

Fk,z(αi1) = Fk,z(αi2) = Fk,z(αi3) = Fk,z(αi4) = Fk,z(αi5).

Hence deg(gcd(Fk,z(x) + t, F ′
k,z(x))) ≤ 4 for any t ∈ C in this case.

Thus now we get deg(H) ≤ 4. We show that deg(H) = 3, 4 is not
possible. Assume first that deg(H) = 3, and write

H(x) = x3 + Ax2 +Bx+ C (A,B,C ∈ C).
In this case k must be divisible by 3, and there must exist a partition

{a1, a2, a3}, . . . , {ak/3−2, ak/3−1, ak/3}
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of the set {0, 1, . . . , k − 2, z} such that

a3j−2 + a3j−1 + a3j = A

and
a3j−2a3j−1 + a3j−1a3j + a3j−2a3j = B

for j = 1, . . . , k/3. Here we used the convention that z occurs in the
set {0, 1, . . . , k−2, z} twice. Further, observe that (x+z)2 must divide
H(x) − β1 in (9). Indeed, otherwise (x + z) | H(x) − βi would hold
with some i ̸= 1, which by β1 = H(z) = βi would contradict βi ̸= β1.
So we may assume that one of the classes in the above partition is of
the form {z, z, u}. Since the sums of the elements and the sums of the
squares of the elements in each set of the above partition must be the
same, we get

(k − 2)(k − 1)

2
+ z − k(2z + u)

3
= 0

and
(k − 2)(k − 1)(2k − 3)

6
+ z2 − k(2z2 + u2)

3
= 0.

Solving this system, we obtain that

z =
6k2 − 21k + 18± k

√
6k2 − 21k + 18

12k − 18
.

However, it is easy to check that then z is an integer only for k = 3,
which by deg(G) > 1 cannot be the case. Hence deg(H) = 3 is not
possible. Suppose next that deg(H) = 4. In this case k must be
divisible by four, and we must have a partition of {0, 1, . . . , k−2, z} into
sets having four elements, with equal sums, square sums and cube sums.
(It follows from the fact that the values of the first three symmetric
polynomials of these quadruples must coincide.) Again, it is easy to
check that one of the subsets should be of the form {z, z, u, v}. Now a
simple calculation yields that

(k − 2)(k − 1)

2
+ z − k(2z + u+ v)

4
= 0,

(k − 2)(k − 1)(2k − 3)

6
+ z2 − k(2z2 + u2 + v2)

4
= 0,(

(k − 2)(k − 1)

2

)2

+ z3 − k(2z3 + u3 + v3)

4
= 0.

Solving this system for z, we obtain that either z = (k − 2)/2, or

z =
3k2 − 10k + 8± k

√
3k2 − 10k + 8

6k − 8
.
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However, the second expression is an integer only if

k2(k − 2)

12k − 16

is an integer square, whence k = 4. But this by deg(G) > 1 is impos-
sible. So z = (k − 2)/2. Consider now the set in the above partition
containing 0; let it be given by {0, a, b, c}. Then we have

k(k − 2)

2
− k(a+ b+ c)

4
= 0,

k(k − 2)(4k − 7)

12
− k(a2 + b2 + c2)

4
= 0,

k(k − 2)2(2k − 3)

8
− k(a3 + b3 + c3)

4
= 0.

However, a simple calculation shows that this system does not allow
a solution in positive integers a, b, c for k > 4. Namely, from the first
equation we get

k =
a+ b+ c+ 4

2
.

Substituting it into the second and third equations, and then taking
resultant in a, we obtain that

(6b2 − 6bc+ 2c2 − c)(2b2 − 2bc+ 2c2 − b− c)(2b2 − 6bc+ 6c2 − b) = 0.

One can easily check that this implies (b, c) = (1, 1), (1, 2), (2, 1), whence
we get that (a, b, c) is a permutation of (1, 1, 2), and k = 4. Thus
deg(H) = 4 is also impossible. So we are left with the case deg(H) = 2.
Then k must be even, and we must have a partition of {0, 1, . . . , k−2, z}
into pairs having equal sums. It is easy to check that it is possible only
if z = (k − 2)/2, when the partition is given by

{0, k − 2}, . . . , {(k − 2)/2, (k − 2)/2}.

In this case we have

Fk,z(x) =

(k−2)/2∏
i=0

((
x+

k − 2

2

)2

− i2

)
.

As we showed, in any other decomposition of Fk,z(x) with z = (k−2)/2
of the form G0(H0(x)), we must have deg(H0) = 2. Writing H0(x) =
α(x − β)2 + γ, this decomposition is equivalent to Fk,z(x) = P ((x −
β)2) with some polynomial P (x) ∈ C[x]. As the roots of Fk,z(x) are
symmetric to β, we get β = (2− k)/2 and the theorem follows. �
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Proof of Theorem 2.3. Using the method of Proposition 4.1, we have
fk,m(x) = wFk,z(x) with w = m−2

k!
and z = k

m−2
− 1. Thus observing

that z ̸= −1, k−1, the statement immediately follows form Proposition
4.1. �
Proof of Theorem 2.1 part (ii). Assume that (3) has infinitely many
solutions. Then fk,m(x) = φ ◦ F ◦ λ, where φ is arbitrary, λ is a
linear polynomial, and F belongs to one of the five standard pairs of
polynomials.

In view of Theorem 2.3, we need to distinguish only three cases,
namely degφ = k, k/2 and 1.

If degφ = k, the polynomials φ(x) and fk,m(x) are equivalent (i.e.
fk,m(x) is of the form φ(ax+ b)). So in this case the statement imme-
diately follows.

When degφ = k/2, the k is necessarily even. By Theorem 2.3 we get

that m = 4, and φ(x) is a linear transformation of 2
k!

∏(k−2)/2
i=0 (x− i)2.

Hence g is of the form g(x) = φ(T (x)) with some T (x) ∈ Q[x]. As
fk,m(x) = φ((x + k−2

2
)2), Lemma 4.1 and Lemma 3.2 show that the

equation fk,m(x) = g(y) can have infinitely many solutions only if T (x)
has at most two roots of odd multiplicity. Hence the theorem follows
also in this case.

Finally, let degφ = 1.
First, consider the case when F belongs to a standard pair of the

first kind over Q. If F is the first entry of this pair, then with some
a, b, A,B ∈ Q we have

fk,m(x) = A(ax+ b)q +B.

However, as by Corollary 3.1 all the roots of f ′
k,m(x) are simple, here q

is at most 2. But as k ≥ 4 this is not possible.
If F is the second entry of a standard pair of the first kind, then

fk,m(x) = A(ax+ b)r(v(ax+ b))q +B.

Here a, b, A,B ∈ Q, 0 ≤ r < q with gcd(r, q) = 1, v(x) ∈ Q[x] and
r + deg v > 0. The derivative of the polynomial on the right hand side
is

Aa(ax+ b)r−1(v(ax+ b))q−1 (rv(ax+ b) + q(ax+ b)v′(ax+ b)) .

As by Corollary 3.1 we know that f ′
k,m(x) has only simple roots, we

obtain that r ≤ 2, and either deg v = 0, or q ≤ 2. Since the case
deg v = 0 reduces to the previous one, we may assume that deg v > 0.
Also, the case r = 2 can be excluded as 0 ≤ r < q ≤ 2. Thus either
r = 0, q = 1 or r = 1, q = 2. If r = 0, q = 1 we get that fk,m(x) and v(x)
are equivalent, and g(x) is linear. However, this possibility is excluded.



POLYNOMIAL VALUES OF FIGURATE NUMBERS 17

So we are left with the case (r, q) = (1, 2). But, then deg g = 2. This
case is discussed in part (i) of the theorem and is excluded from part
(ii).

Now let F (x) belong to a standard pair of the second kind. In view
of k ≥ 4, F (x) must be of the form

(αx2 + β)(v(x))2.

But then deg g = 2, which is discussed in part (i) of the statement,
and is excluded from part (ii). Assume next that F (x) belongs to a
standard pair of the fifth kind. Observe that then

fk,m(x) = AF (ax+ b) +B

with a, b, A,B ∈ Q implies that f ′
k,m(x) has a double root. However,

this contradicts Corollary 3.1.
Finally, consider the cases where F (x) belongs to a standard pair of

the third or fourth type. Observe that then F (x) is a constant multiple
of a Dickson-polynomial of degree k, and we can write

(12) fk,m(ax+ b) = ADk(x, δ) +B

with some a, b, A,B, δ ∈ Q, where aAδ ̸= 0. As the coefficients of xk−1

and xk−3 of Dk(x, δ) are both zero if k ≥ 4, we get

(13) wak−1

(
z + kb+

(k − 2)(k − 1)

2

)
= 0

and

(14) wak−3

(
(b+ z)

k−2∑
i1=1

(
(b+ i1)

i1−1∑
i2=0

(b+ i2)

)
+

+
k−2∑
i1=2

(
(b+ i1)

i1−1∑
i2=1

(
(b+ i2)

i2−1∑
i3=0

(b+ i3)

)))
= 0,

respectively, where w = m−2
k!

and z = k
m−2

− 1. After simplification,
expressing z from (13) and substituting it to (14) we get

−1

24
k(k − 1)(k − 2)(2b+ k − 1)(2b+ k − 2)(2b+ k − 3) = 0

which yields

b ∈
{
−1

2
k +

1

2
,−1

2
k + 1,−1

2
k +

3

2

}
and then

z = k − 1,
1

2
k − 1,−1,
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respectively. The cases z = −1 and z = k− 1 have been considered by
Theorem 4.3. in [4] and are excluded from Theorem 2.2.

So we are left with the case z = 1
2
k − 1 and b = −1

2
k + 1. Then

m = 4.
If k is even we have

fk,4(ax+
1

2
k − 1) =

2

k!
(ax)2

1
2
k−1∏
i=1

(
ax− 1

2
k + i

)(
ax+

1

2
k − i

)
.

Writing out the first few terms of the Dickson-polynomial we get

Dk(x, δ) = xk − δkxk−2 +
1

2
k(k − 3)δ2xk−4 − 1

6
k(k − 4)(k − 5)δ3xk−6+

+
1

24
k(k − 5)(k − 6)(k − 7)δ4xk−8 − . . .

Now, we deal with some nonzero coefficients of equation (12). Com-
paring the coefficients of xk, xk−2 and xk−4 in (12) for k ≥ 5 we get the
following three equations:

wak = A,
−1

24
wak−2k(k − 1)(k − 2) = A(−δ)k,

1

5760
wak−4k(k − 1)(k − 2)(k − 3)(k − 4)(5k + 2) =

1

2
Ak(k − 3)δ2.

They give k = −6, 0, 1, 2, 3, which cannot hold.
If k is odd, we have

fk,4(ax+
1

2
k − 1) =

2

k!
(ax)

1
2
k− 1

2∏
i=1

(
ax− 1

2
k + i

)(
ax+

1

2
k − i

)
,

and the statement follows by a similar argument.

So we are left with the case k = 4. We already know that now in
equation (12) we have k = m = 4, b = −1. Comparing the coefficients
of x4 and x2 and the constant terms in (12) we obtain the following
equations:

a4

12
= A, −a2

12
= −4Aδ, 0 = 2Aδ2 +B.

By a simple calculation these yield that

(15) A =
a4

12
, B = − 1

96
, δ =

1

4a2
.

If F belongs to a standard pair of the third kind, then (15) gives

φ(x) =
1

192u4t
x− 1

96
, G(x) = Dt(x, u

8), µ(x) = cx+ d,
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where u, c, d are arbitrary rationals with uc ̸= 0 and t ≥ 3 is an odd
integer. This implies

g(x) =
1

192u4t
Dt(cx+ d, u8)− 1

96
.

Finally, suppose that F belongs to a standard pair of the fourth kind.
Then (15) yields

φ(x) = ± 1

192
x− 1

96
, G(x) = ∓u−tD2t(x, u), µ(x) = cx+ d,

where u, c, d are arbitrary rationals with uc ̸= 0 and t ≥ 3 is an odd
integer. This gives

g(x) = − 1

192ut
D2t(cx+ d, u)− 1

96
.

Hence the theorem follows. �
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[28] Á. Pintér, A note on the Diophantine equation
(
x
4

)
=
(
y
2

)
, Publ. Math. De-

brecen, 47 (1995), pp. 411–415.
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