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PARALLEL LLL-REDUCTION FOR BOUNDING THE INTEGRAL
SOLUTIONS OF ELLIPTIC DIOPHANTINE EQUATIONS

L. HAJDU AND T. KOVÁCS

Abstract. Stroeker and Tzanakis [18] gave convincing numerical and heuris-

tic evidence for that in their Ellog method a certain parameter λ plays a

decisive role in the size of the final bound for the integral points on elliptic
curves. Further, they provided an algorithm to determine that Mordell-Weil

basis of the curve which corresponds to the optimal choice of λ. In this paper

we show that working with more Mordell-Weil bases simultaneously, the final
bound for the integral points can be further decreased.

1. Introduction

Elliptic Diophantine equations have a long history. Even the effective theory of
such equations have an extremely rich literature. A classical result of Baker [1]
yields that an elliptic equation can have only finitely many integer solutions, and
the size (absolute value) of the solutions can be effectively bounded. Later, this
result has been extended and improved by several authors, see e.g. [16], [14], [13],
[12], [22], [3], [8], [4] and the references given there. For related results see also the
book [15] and the references there.

However, to explicitly find all integral solutions another method has been de-
veloped, which uses the arithmetic properties of elliptic curves. This algorithm
combines many deep ingredients, due to several authors. Here we only refer to the
papers of Stroeker, Tzanakis [17] and Gebel, Pethő, Zimmer [6], where the first
complete versions of this method are independently given. (See also the references
in these papers.) Later, the method of Stroeker and Tzanakis, the so-called Ellog
method has been developed further. The most recent version is already capable to
find (at least in principle) all integral points on genus one curves (see [19], and also
the references given there for certain important intermediate steps). To summarize
the method in one sentence, what happens is that first the maximum N of the co-
efficients of the integral points (in some Mordell-Weil basis) is bounded, and then
this bound is gradually decreased to a size where the actual points can already be
identified by an exhaustive search. (Of course, in fact the method is much more
general and complicated.) To get the final bound Nfinal for N , the LLL-algorithm
is applied. In [18], Stroeker and Tzanakis observed and gave convincing numerical
and heuristic evidence for that in getting Nfinal, a certain parameter λ plays a
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decisive role. In fact this λ is the smallest eigenvalue of the height-pairing ma-
trix of the underlying Mordell-Weil basis. Further, they provided an algorithm for
determining a Mordell-Weil basis which corresponds to the optimal choice of λ.
Hence to minimize the final bound for the solutions, one should use such a ”best”
basis of the curve. We shall call such a basis Stroeker-Tzanakis basis, or shortly
ST-basis. In [18] it is shown through several examples that using an ST-basis one
can get a (much) better bound Nfinal than with other bases. This point is im-
portant in particular if the rank of the elliptic curve is ”large”, as then already a
small improvement of the final bound can considerably shrink the region of possible
solutions, and hence the final search can be done much faster.

The purpose of this paper is to show that even the ”best” final bound Nfinal

received by using an ST-basis, can be further improved if one uses more bases
simultaneously, and combines the information obtained for the solutions in the
different bases. As we will also see, elementary linear algebra tells us that it takes
only a very little extra time to get this improvement.

In the next section, in order to present our method, first we need to (schemati-
cally) outline the main steps of the Ellog method, with particular emphasize on the
parameter λ. Then we explain our method, as well. In the third section we give
some examples to illustrate how our method works.

Finally, we mention that in case of S-unit equations one faces an analogous
situation. There the fundamental systems of S-units play a similar role as the
Mordell-Weil bases. Further, it turns out that also there a particular parameter
plays a decisive role in the size of the reduced bound for the solutions, and it
is possible to define and construct a ”best” system of fundamental S-units with
respect to this parameter (see [7]). Further, the final bound obtained by using any
(even the ”best”) system, can be developed by using more systems of fundamental
S-units simultaneously (cf. [9]). We do not go into details here.

2. Bounding integral solutions of genus one equations

In this section first we briefly summarize the main steps of the Ellog method
of Stroeker and Tzanakis. We follow the presentation in [19], without any further
reference.

Let f ∈ Z[u, v] and define the curve C by

C : f(u, v) = 0.

Suppose that C is of genus one. Then C is birationally equivalent (over a number
field) to some elliptic curve

E : x3 + Ax + B = y2

with A,B ∈ Q. Let r be the rank of E, and let P1, . . . , Pr be a Mordell-Weil basis
of E. Then any rational point P of E can be written as

(1) P = P0 + n1P1 + . . . + nrPr,

where P0 is some torsion point of E, and ni ∈ Z (i = 1, . . . , r).
Now on the one hand, using estimates of David [5] concerning linear forms in

elliptic logarithms, one gets a lower bound of the form

(2) |L(P )| ≥ exp(−c1(log N + c2)(log log N + c3)r+3).
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Here L(P ) is a certain (well-defined) linear form in elliptic logarithms (”roughly”
the elliptic logarithm of P ), N = max

1≤i≤r
|ni| and c1, c2, c3 are constants depending

only on the curves C and E. On the other hand, supposing that P is the image of
an integral point of C under the above birational transformation, using standard
arguments (including Puiseux-expansions, elliptic integrals and height estimates of
points of E) we get an inequality of the form

(3) |L(P )| ≤ c4 exp(−c5λN2).

Here c4, c5 are again constants, which depend only on C and E. Further, most
importantly from our point of view, λ is the least eigenvalue of the height pairing
matrix of the basis P1, . . . , Pr occurring in (1). That is, λ certainly depends on the
choice of the Mordell-Weil basis. As it is demonstrated by Stroeker and Tzanakis
[18], the size of λ has a great impact on the final bound Nfinal for N . As it turns
out, Nfinal is almost linear in λ−1/2 so it is worth to pay attention to this point.
We shall return here a little later.

Combining estimates (2) and (3) we get an initial upper bound N0 for N . How-
ever, this upper bound is usually extremely huge. Due to an observation of Stroeker
and Tzanakis [18], N0 should be around 10(5r2+5r+28)/2. Hence to explicitly deter-
mine the integral points on C, this initial bound N0 should be reduced. This can
be done by lattice reduction techniques due to de Weger [23], based on the LLL-
algorithm. We use a variant due to Tzanakis [21]. To apply this result, one starts
with (3), together with the inequality N < N0. Using the appropriate Proposition
from Section 5 of Tzanakis [21], one gets a new lower bound of the shape

N <
c6√
c5λ

for N , where c6 is an explicitly computable constant depending on some parameters
of E, and also on the length of the shortest vector of an LLL-reduced basis of a
certain lattice. As one can see, this new bound is linear in λ−1/2, which shows the
importance of this parameter. Stroeker and Tzanakis [18] have considered several
examples which indicate this phenomenon in a rather convincing way. Summarizing
the results in [18], to get the best possible reduced bound Nfinal for N one should
definitely choose an ST-basis of the curve E in (1). Subsequently, Stroeker and
Tzanakis [18] have also worked out an efficient algorithm for finding an ST-basis of
the curve.

However, in the sequel it turns out that the bound obtained by using an ST-
basis, can still be improved further, if one works with several Mordell-Weil bases
simultaneously. It is important to note that following our method the use of more
bases shall increase only by a fraction the total time needed to get a better Nfinal.
As we mentioned in the introduction, already a small gain in Nfinal may lead
to a large improvement in the searching time for finding the small solutions - in
particular, if r is large. The reason is simply that the region where we have to look
for the small solutions is of size (2Nfinal + 1)r. Note that a similar ”size” notion
was used also in [18] to compare the final bounds obtained in different Mordell-Weil
bases.

Now we briefly outline how to work in several bases simultaneously. To explain
our ideas in fact it is sufficient to use two bases. So assume that B1 = (P1, . . . , Pr) is
a Mordell-Weil basis of E, and let S be an integral unimodular matrix of size r× r.
Let B2 = (Q1, . . . , Qr) be the basis of E obtained from B1 by using S as a basis
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transformation matrix. Let P be a rational point on E with the representation (1),
and assume that we also have

(4) P = Q0 + m1Q1 + . . . + mrQr,

with some torsion point Q0 and integers m1, . . . ,mr. Put M = max
1≤i≤r

|mi|, and

recall that by elementary linear algebra we have

(5) S−1

n1

...
nr

 =

m1

...
mr

 .

This implies M ≤ sN , where s = ||S−1|| is the row norm of S−1. (The row norm

of a k × ` type real matrix A = (aij)1≤i≤k
1≤j≤`

is defined by ||A|| = max
1≤i≤k

∑̀
j=1

|aij |.) In

particular, this means that one does not have to go through the Ellog method both
for B1 and B2, it is sufficient to use it with B1 say. Indeed, take for example B1 to
be an ST-basis of E, and suppose that after applying the Ellog method (together
with the reduction stage) we have the bound N < Nfinal. Then by M ≤ sN , we
automatically have M ≤ M0 := sNfinal. As s is typically ”small” (it will be at most
around ten), M0 is not too large - and of course, it can also be reduced. Importantly,
we can get the final bound Mfinal very easily and quickly. The reason is that the
reduction steps are difficult and time consuming only if the initial bound is large,
as then e.g. high precision is needed. However, as s will be small, the reduction
steps leading from M0 to Mfinal are made very easily. The final bounds Nfinal and
Mfinal yield simultaneous upper bounds for the coefficients of P , in two different
bases. Combining these two bounds by (5), we can decrease the domain where the
final search has to be done. As one may predict (which turns out to be true), the
gain starts getting more and more significant as the rank r is getting larger and
larger.

In our calculations we choose B1 to be an ST-basis of E, and we choose the other
bases according to two different strategies.

Strategy 1. We try to decrease N
(1)
final (corresponding to B1), componentwise. For

this purpose, choose distinct indices i, j with 1 ≤ i, j ≤ r and a positive integer t,
and consider the bases B2 and B3 obtained by replacing Pi by Pi + tPj and Pi− tPj

in B1, respectively (leaving the other basis elements untouched). With the bases
B2 and B3 the reduction process starts from the quite small bound (t + 1)N (1)

final

and gives, respectively, the final bounds, say, N
(2)
final and N

(3)
final. Then a simple

calculation yields that

|ni| ≤
N

(2)
final + N

(3)
final

2t

holds. If the right hand side happens to be less than N
(1)
final, then we get a new,

improved bound for |ni|. To make this principle work, for each fixed i we (heuris-
tically) choose that j, for which the sum of the λ values (corresponding to B2 and
B3) is maximal with t = 1. Then for simplicity (and also because we try to keep
the time consumption of the method low), instead of checking several values, we
take the fixed value t = 10 in the computations. The procedure can be iterated,
and the iteration leads to further improvement in some cases.
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Note that the ”one-sided” version of this approach could also be used (i.e. when
we work only with one of B2 or B3), but our experiences suggest that this ”two-
sided” version is more efficient. Further, we have some reasons for the choice of
t = 10. If λt denotes the value of λ corresponding to t (either in B2 or in B3), then
t+1

t

√
λt

λt+1
is close to 1, if t is ”large”. The value t = 10 seems to be large enough

to make the λ-s corresponding to B2 and B3 more or less close to each other, and
it seems to have some good effect on the outcome. Still, obviously at this point the
method can have many variants.

Strategy 2. Using the algorithm of Stroeker and Tzanakis [18], we determine the
”best” ten Mordell-Weil bases Bj (j = 1, . . . , 10) i.e. ten Mordell-Weil basis cor-
responding to the ten largest λ-values. (Note that by the algorithm we get all
the basis transformation matrices with respect to B1, as well, and also that the
calculation of ten basis takes only a little extra time than calculating only B1.)
Then we compute the initial upper bounds N

(j)
0 (j = 1, . . . , 10) for the coordinates

of the integral points in these bases, respectively. (As we mentioned, out of these
only the calculation of N

(1)
0 is time consuming (but it has to be calculated even

if we use only B1), the other bounds come very quickly and easily.) Having these
bounds, using the basis transformation matrices, we get several extra information
for the coefficients of P in B1. In fact we get a system of inequalities defining
a convex body, which contains much less integral points than the one implied by
|ni| ≤ N

(1)
final (i = 1, . . . , r).

Finally, we mention that altogether it seems that Strategy 2 yields more im-
provement than Strategy 1.

3. Examples

In this section we give some examples, to illustrate how Strategy 1 and Strategy 2
work. For this purpose we borrow some curves from the papers [18] and [10]. As we
mentioned, the problem discussed in the paper is interesting when the rank of the
underlying elliptic curve is not too small, so we consider curves of ranks 5 and 6. In
fact we have worked out a number of other examples (from [20], [18] and [10]), which
can be found on the homepage http://www.math.klte.hu/algebra/hajdu.htm.

In each example we illustrate both Strategy 1 and Strategy 2. We always start
with giving the underlying curve and the basic information corresponding to it.
In case Strategy 1, we give the index j for each i, the two corresponding linear
inequalities (with t = 10, using the notation (1)), and also indicate the final bound
obtained for |ni|. Finally, we calculate the improvement ratio, as well.

In case of Strategy 2 we provide the following data. We give the best ten Mordell-
Weil bases (in the sense explained above), by using the algorithm of Stroeker and
Tzanakis [18]. (Note that the best basis is of course an ST-basis.) The bases are
represented by the basis transformation matrices (with respect to the ST-basis).
We indicate the corresponding λ values, as well. Finally, we list the final bounds in
the corresponding bases, obtained by the above mentioned reduction results from
[21]. After that we summarize the information in a system of linear inequalities
(of the form −b ≤ Ax ≤ b). Using Barvinok’s algorithm [2] the number N∗ of the
integral points in the corresponding convex body can be computed by the program
package Latte [11]. Hence we can calculate the ”improvement ratio” defined in the
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natural way, by N∗/(2Nfinal +1)r, where Nfinal corresponds to the ST-basis. Note
that here we may use the reduced bounds obtained for |ni| by Strategy 1.

We give a detailed description only in the first example. In case of the other
examples, we present the data in a brief form, following the previous notation. We
start with two curves of rank 5, and we conclude with a rank 6 curve.

Example 1. This example is from [18]. We would like to determine the integral
points on the curve

E : x3 − 203472x + 18487440 = y2.

The rank of E is r = 5, and an ST-basis of E (obtained by the method in [18]) is
given by

P1 = (468, 5076), P2 = (−216, 7236), P3 = (432, 3348),

P4 = (−36, 5076), P5 = (36, 3348).
The final bound obtained for the coordinates of the integral points of E is Nfinal = 9
in this basis (see [18]).

Strategy 1. Using the above explained methods, we get the following table.

i j bound for |10ni ± nj | bound for |ni|
1 4 (77,82) 7
2 1 (85,79) 8
3 5 (76,81) 7
4 5 (84,88) 8
5 1 (75,81) 7

Based upon the table, the improvement is given by

(2 · 7 + 1)(2 · 8 + 1)(2 · 7 + 1)(2 · 8 + 1)(2 · 7 + 1)
(2 · 9 + 1)5

= 0.393916.

Strategy 2. The basis transformation matrices (with respect to the ST-basis) of the
best ten bases (obtained by the method of Stroeker and Tzanakis [18]) are given
by (

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−1 −1 1 1 1

)
,

(
1 1 1 1 1
0 0 0 0 −1
1 0 0 0 0
0 1 0 0 0
0 0 0 −1 0

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 −1 1 0
0 0 0 0 1

)
,

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 −1 1 0
1 1 −1 1 1

)
,

( 0 0 0 0 −1
−1 −1 1 1 2

0 −1 1 1 1
−1 0 1 1 1

0 0 1 0 0

)
,

(
0 0 0 0 1
1 0 0 0 −1
0 1 0 0 0
1 −1 1 0 0
1 −1 1 1 0

)
,

(
0 0 0 0 1
1 0 0 0 −1
1 1 1 1 0
0 0 −1 −1 0
0 0 0 −1 0

)
,

(
1 1 1 0 1
0 0 0 0 −1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

)
,

(
1 0 0 0 0
0 1 0 0 0
1 1 1 1 0
0 0 0 −1 0
0 0 0 0 1

)
.

The corresponding λ values are

0.46493, 0.45844, 0.45792, 0.44837, 0.44736,

0.42425, 0.41358, 0.41295, 0.41229, 0.41173,

and the final bounds Nfinal obtained after the reduction are

9, 9, 9, 9, 9, 10, 10, 10, 10, 10,
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respectively. Combining these data, using the notation (1) (with respect to the
ST-basis) we get the system of linear inequalities

(6)



−7
−8
−7
−8
−7
−9
−9
−9
−10
−10
−10
−10


≤



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 −1 −1 1

−1 −1 1 1 0
0 0 0 −1 1

−1 −1 1 0 0
−1 −1 0 1 0

0 −1 1 1 −1
1 1 0 0 0


(

n1
n2
n3
n4
n5

)
≤


7
8
7
8
7
9
9
9
10
10
10
10

 .

Note that because of some (natural) redundancy, here and also in the other ex-
amples not all the ten basis transformation matrices are needed to derive (6). We
also mention that here we could already use the improved upper bounds obtained
by Strategy 1 for the |ni|. Using Latte [11], we get that the above inequality
(6) has precisely N∗ = 396785 integral solutions in (n1, n2, n3, n4, n5). Hence the
”improvement ratio” is

N∗/(2Nfinal + 1)5 = 396785/(2 · 9 + 1)5 = 0.160246,

where Nfinal = 9 corresponds to the ST-basis P1, P2, P3, P4, P5.

Example 2. This example is from [18]. The problem is to find the integral points
on the curve

E : x3 − 879984x + 319138704 = y2.

The rank of E is r = 5, and an ST-basis of E is given by

P1 = (468, 3132), P2 = (−684,−24516), P3 = (720,−7668),

P4 = (432,−4428), P5 = (540,−1188).
The final bound obtained for the coordinates of the integral points of E is Nfinal = 9
in this basis (cf. [18]).

Strategy 1. We obtain the table

i j bound for |10ni ± nj | bound for |ni|
1 5 (83,79) 8
2 1 (76,82) 7
3 5 (77,78) 7
4 3 (94,89) 9
5 1 (79,77) 7

Hence the improvement is given by
(2 · 8 + 1)(2 · 7 + 1)(2 · 7 + 1)(2 · 9 + 1)(2 · 7 + 1)

(2 · 9 + 1)5
= 0.440259.

Strategy 2. The basis transformation matrices of the best ten bases:(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

(
1 0 1 1 1
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0
0 −1 0 0 0

)
,

(
1 1 1 1 0
0 0 0 0 1
1 0 0 0 0

−1 0 −1 −1 1
0 0 0 −1 0

)
,

(
0 1 0 0 0
0 0 0 1 0

−1 1 1 0 1
0 −1 0 1 −1
0 0 1 0 0

)
,

(
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

−1 0 1 1 −1
0 0 1 0 0

)
,

(
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 −1 0 1
0 0 0 1 0

)
,

(
0 1 0 0 0

−1 1 0 1 1
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

)
,



8 L. HAJDU AND T. KOVÁCS(
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 −1 1
1 1 1 −1 0

)
,

(
0 1 0 0 0
0 0 0 1 0
1 −1 0 1 1
0 0 0 0 −1
0 0 1 0 0

)
,

(
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 −1 0 1 −1
0 0 1 0 0

)
.

The corresponding λ values are

0.492063, 0.462853, 0.457636, 0.454803, 0.454749,

0.453727, 0.451024, 0.450503, 0.448775, 0.431040,

and the final bounds Nfinal obtained after reduction are

9, 9, 9, 9, 9, 9, 9, 9, 9, 9,

respectively. Thus we get the system of linear inequalities
−8
−7
−7
−9
−7
−9
−9
−9

 ≤


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 −1 1 1 0
1 −1 0 1 0
0 1 −1 −1 1


(

n1
n2
n3
n4
n5

)
≤


8
7
7
9
7
9
9
9

 .

By Latte [11] we obtain that the above inequality has precisely N∗ = 513939 integral
solutions in (n1, n2, n3, n4, n5). Hence the ”improvement ratio” is

513939/(2 · 9 + 1)5 = 0.207560.

Example 3. This example is from [10]. The original problem is to find the integral
points on the curve

C : 2u3 + 3u2 + u = 6v3 + 60v2 + 144v.

The curve is birationally equivalent to

E : x3 − 1008x + 2985993 = y2.

The rank of E is r = 6, and an ST-basis of E is

P1 = (−36, 1725), P2 = (298, 5399), P3 = (243, 4134),

P4 = (−138,−705), P5 = (24, 1725), P6 = (−41, 1720).

The final bound obtained for the coordinates of the images of the integral points of
C on E is Nfinal = 7 in this basis (see [10]).

Strategy 1. We get the table

i j bound for |10ni ± nj | bound for |ni|
1 3 (70,68) 6
2 6 (69,64) 6
3 4 (64,61) 6
4 3 (64,60) 6
5 6 (68,71) 6
6 5 (59,63) 6

Hence the improvement is given by

(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)(2 · 6 + 1)
(2 · 7 + 1)6

= 0.423753.
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Strategy 2. The basis transformation matrices of the best ten bases: 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

−1 −2 1 −1 1 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 −1 0 0 1 0
0 −1 0 0 0 0

 ,

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1

−1 0 0 0 1 0
−1 0 0 0 0 0

 ,

−1 −1 1 1 0 0
0 0 0 −1 1 0
0 0 0 0 0 1
1 0 −1 −1 1 −1
1 0 0 0 0 0
0 0 0 1 0 0

 ,

 0 −1 1 1 1 0
−1 0 0 −1 −1 1

0 0 0 0 −1 0
0 0 0 −1 0 0
1 0 0 0 0 0
1 0 1 1 1 −1

 ,

−1 0 1 −1 1 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 1 0 0 0 0

 ,

−1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 −1 1 1
0 0 1 0 0 0

 ,

−1 −1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −1 1 −1 1 1
0 1 0 0 0 0

 ,

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 −1 1 1 1
0 0 0 0 0 −1

 ,

 0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

−2 −1 1 −1 −1 −1
−1 0 0 0 −1 0
−1 0 0 0 0 0

 .

The corresponding λ values are

0.640325, 0.627020, 0.603695, 0.603010, 0.599688,

0.595452, 0.587593, 0.586898, 0.586647, 0.586371,

and the final bounds Nfinal obtained after reduction are

8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

respectively. So we get the following system of linear inequalities

−6
−6
−6
−6
−6
−6
−8
−8
−8
−8
−8
−8
−8


≤



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 1 −1 −1 1 1
0 0 0 0 1 −1

−1 1 −1 −1 0 1
0 1 −1 −1 1 0
0 1 0 0 0 1

−1 1 −1 −1 1 0
0 1 −1 −1 1 1


 n1

n2
n3
n4
n5
n6

 ≤



6
6
6
6
6
6
8
8
8
8
8
8
8

 .

Latte [11] gives that the above system has precisely N∗ = 1801039 integral solutions
in (n1, n2, n3, n4, n5, n6). Thus the ”improvement ratio” is

1801039/(2 · 7 + 1)6 = 0.158116.
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