
On the Diophantine equations

(2n − 1) (6n − 1) = x2 and (an − 1)
(
akn − 1

)
= x2

Lajos Hajdu1 and László Szalay2

Abstract

In this paper we prove that the equation (2n − 1)(6n − 1) = x2 has
no solutions in positive integers n and x. Furthermore, the equation
(an − 1)

(
akn − 1

)
= x2 in positive integers a > 1, n, k > 1 (kn > 2)

and x is also considered. We show that this equation has the only
solutions (a, n, k, x) = (2, 3, 2, 21), (3, 1, 5, 22) and (7, 1, 4, 120).

1 Introduction

In the present paper we prove two results.

Theorem 1. The equation

(2n − 1)(6n − 1) = x2 (1)

has no solutions in positive integers n and x.
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Theorem 2. The equation

(an − 1)
(
akn − 1

)
= x2 (2)

has the only solutions (a, n, k, x) = (2, 3, 2, 21), (3, 1, 5, 22) and
(7, 1, 4, 120) in positive integers a > 1, n, k > 1 (kn > 2) and x.

The left hand sides of these equations satisfy a fourth order linear
recursive relations. Thus the solution of these mixed exponential-
polynomial diophantine equations is equivalent to the determination
of all perfect squares in fourth order recurrences.

In case of fourth order recurrences there are results which are sim-
ilar to Theorem 1 only for some classes of Lehmer sequences of first
and second kind. These were obtained by McDaniel, who examined
the existence of perfect square terms of Lehmer sequences in [3].

The second author of this paper has shown (see [4]) that the equa-
tion (2n − 1)(3n − 1) = x2 has no positive integer solutions, and the
equation (2n − 1)(5n − 1) = x2 has the only solution n = 1 , x = 2 in
positive integers n and x. In [4] the second title equation has also been
examined in the special case a = 2. Thus our Theorem 2 generalizes
that result.

Let p be a rational prime number and n be an integer. In the sequel(
n
p

)
denote the Legendre symbol with respect to these numbers.

—————————-

2 Preliminaries

We need the following theorems in the proof of Theorem 2.

Theorem A. (Ljunggren, [2]) The diophantine equation

xn − 1
x − 1

= y2 , (n > 2)

is impossible in integers x, y (|x| > 1), except when n = 4, x = 7 and
n = 5, x = 3.
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Theorem B. (Chao Ko, [1]) The equation

xp + 1 = y2 ,

where p is a prime greater than 3, has no solution in integers x 6= 0
and y.

3 Proof of the Theorems

3.1 Proof of Theorem 1

Suppose that (n, x) is a solution of equation (1). If n is odd then
(2n − 1)(6n − 1) ≡ −1 (mod 3) which cannot be a square. Now we
can assume that n is even and distinguish two cases.

I. First put n = 4t with some positive integer t, and write t =
k · 5α−1, where k and α are positive integers with 5 6 | k.

Then we have (2n − 1) (6n − 1) =
(
16k5α − 1

) (
1296k5α − 1

)
. Since

1296 ≡ 1− 5 (mod 52) it follows that 12965 ≡ 1− 52 (mod 53) and
inductively 12965α−1 ≡ 1 − 5α (mod 5α+1). Thus 1296t ≡ 1 − k · 5α

(mod 5α+1). Similarly (or by [4]), 16t ≡ 1 + 3k · 5α (mod 5α+1).
Consequently 2n−1

5α ≡ 3k (mod 5) and 6n−1
5α ≡ −k (mod 5), and we

can re-write equation (1) as

2n − 1
5α

6n − 1
5α

= x2
1 , (3)

where x1 = x
5α and the prime 5 divides neither the left nor the right

hand side of (3). However, for the Legendre symbol of the left hand
side of (3) we obtain(

2n−1
5α

6n−1
5α

5

)
=
(

3k

5

)(−k

5

)
=
(−3

5

)
= −1 ,

which is a contradiction. Thus Theorem 1 is proved in case I.
II. Now let n = 4t+2 = 2(2t+1), where t is a natural number. In

this case we must investigate the equation (4u − 1)(36u − 1) = x2 for
odd u = 2t + 1. This last equation is also satisfied (mod 18), hence
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it is easy to verify that 3 must divide u. Then we have to solve the
equation

(64w − 1) (46656w − 1) = x2

in odd positive integers w = u
3 . To show the insolvability of this equa-

tion, we give two positive integers such that no term of the sequence
(64w − 1)(46656w − 1) is a quadratic residue for both the given two
numbers as moduli. For example, 17 and 97 are such numbers.

To prove this, let Iw = (64w − 1)(46656w − 1). Then

Iw ≡ ((−4)w − 1)(8w − 1) (mod 17) .

Since
(−4)4 ≡ 1 (mod 17) and 88 ≡ 1 (mod 17) ,

it is sufficient to examine the cases w = 1, 3, 5, 7.

I1 ≡ 16 (mod 17) and I7 ≡ 8 (mod 17)

are quadratic residues, while

I3 ≡ 3 (mod 17) and I5 ≡ 11 (mod 17)

are not quadratic residues (mod 17).
On the other hand,

Iw ≡ (64w − 1)((−1)w − 1) ≡ (64w − 1)(−2) (mod 97) .

Since 648 ≡ 1 (mod 97), we must investigate the cases w = 1, 3, 5, 7.

I1 ≡ 68 (mod 97) and I7 ≡ 5 (mod 97)

are not quadratic residues, but

I3 ≡ 96 (mod 97) and I5 ≡ 33 (mod 97)

are quadratic residues (mod 97). This completes the proof of the
Theorem.
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3.2 Proof of Theorem 2

Suppose that the four-tuple (a, n, k, x) (a > 1, k > 1, kn > 2) is a
solution of equation (2). Let y = an. Now we have the equality

x2 = (y − 1)2(yk−1 + . . . + y + 1) = (y − 1)2
(

yk − 1
y − 1

)
.

Thus yk−1
y−1 must be a square. By Theorem A, if k > 2 then k = 4

or k = 5. Consequently from y = an = 7 it follows that a = 7, n =
1, x = 120 and y = an = 3 gives a = 3, n = 1, x = 22. These two cases
provide the solutions (a, k, n, x) = (7, 4, 1, 120) and (3, 5, 1, 22) of (2).

Now suppose that k = 2. Then (y − 1)2(y + 1) = x2 and

y + 1 = an + 1 (4)

must be a square. Since kn > 2, it follows that n > 1. Without loss of
generality we may assume that n is a prime. If n = 2 then (4) cannot
be a square, and it is well known that if n = 3 then for a positive
integer a, (4) is a square only in case of a = 2. Thus equation (2) has
one more solution: (a, k, n, x) = (2, 2, 3, 21). Finally, by Theorem B
(4) cannot be a square if n > 3. This completes the proof of Theorem
2.

Remark. If k = 1 then (an − 1)(an − 1) is always square number.
If k = 2 and n = 1 then (a − 1)(a2 − 1) = (a − 1)2(a + 1) may be
square infinitely many times when a + 1 is a square.
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