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Abstract We consider Hosszú’s famous functional equation f(x) + f(y) =
f(xy)+f(x+y−xy). We completely describe the set of functions f : R → A

satisfying this equation, where R is the set of the Gaussian or Eisenstein
integers and A is an arbitrary Abelian group.
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1 Introduction

In 1967 Miklós Hosszú introduced the following functional equation and asked
for its solutions:

f(x) + f(y) = f(xy) + f(x + y − xy). (1)
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It is said that one of his purposes in doing so was to annoy mathematicians
dealing with functional equations, since this equation resists all the usual
substitution tricks. Hosszú himself could describe the solutions f : R → R

under the assumption that f is differentiable. Since then many authors have
considered this equation, and the literature of Hosszú’s equation has become
quite extensive. We restrict our attention to results where the complete solu-
tion set is described, for some choice of the domain and range of the functions
f involved. We write H(A, B) for the set of solutions of (1) with Df = A
and Rf ⊂ B. Further, throughout the paper A denotes an arbitrary Abelian
group.

The sets H(R, A) and H(C, A) were determined independently by Blanuša

[1] and Daróczy [2]. Światak [8] described H(K, A) under certain assumptions
on A, where K is a field of characteristic different from 2 and 3. Davison in
[3] and [4] characterized the sets H(Q, A) and H(Z/pZ, A) (p ≥ 5 is a prime),
and H(K, A), respectively. In the latter case K is a field with at least five
elements. Note that in all these cases the solutions to (1) were all affine, i.e.
f(x + y) + f(0) = f(x) + f(y) holds for every x, y ∈ Df .

There are also results in the case when Df is only a ring. Davison and
Redlin [5] proved that every f ∈ H(R, A) is affine, where R is the ring gen-
erated by a primitive m-th root of unity such that m is odd and not a power
of 3. Davison [3] described all solutions in H(Z, A), as well. Interestingly, in
this case beside the affine solutions there are non-affine ones, too. Note that
G lowacki and Kuczma [6] gave a different proof for this result, under certain
mild conditions on A.

In this paper we solve equation (1) under the assumption that the domain
of the function f is the ring of Gaussian integers G or Eisenstein integers E,
with Rf ⊂ A in both cases. Our results may be considered as a continuation
of those of Davison [3] obtained over Z. In particular, beside affine solutions
we find non-affine ones, as well. We note that both G and E are generated by
roots of unity, however, these rings are excluded from the above mentioned
result of Davison and Redlin [5]. As we obtain non-affine solutions as well,
our results also show that the assumptions on m in [5] are necessary, at least
they cannot be simply removed.

The structure of this paper is as follows. In the next section we give our
results, and we also give a kind of explanation why we restrict our attention
only to the rings G and E. In Section 3 we give the proofs of our theorems.

2 Results

In this section we state two theorems which give the complete solutions of
Hosszú’s equation over the Gaussian and the Eisenstein integers, respectively.
In both cases the solutions map into an arbitrary Abelian group A.

Let G denote the ring of the Gaussian integers, that is,

G = Z[i] = {a + bi : a, b ∈ Z}.
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Theorem 1 Suppose that f : G → A is a solution to (1). Then f can be

written as f =
5
∑

j=1

αjfj where αj ∈ A (j = 1, . . . , 5) with 2α5 = 0, and the

functions fj : G → Z (j = 1, . . . , 4) and f5 : G → Z/2Z are given by

f1(z) = 1, f2(z) = <(z), f3(z) = =(z),

f4(z) = <(t) where z = (1 + i)t + δ (δ ∈ {0, 1}),

f5(z) =

{

1, if z ≡ 1 + i (mod 2),

0, otherwise.

Note that G is a Euclidean ring. Moreover, 1 + i is a prime in G with
norm 2 over Q, so f4 in Theorem 1 is well-defined. We also mention that we

have f4(z) =
[

<(z)+=(z)
2

]

for all z ∈ G.

In view of the explicit forms of the functions f1, . . . , f5 we have the fol-
lowing straightforward consequence of Theorem 1.

Corollary 1 For any solution f : G → A to (1) we have

f(x + y) + f(0) = f(x) + f(y) for all x, y ∈ G with 2 | xy.

In the next result we describe the solutions to (1) over the Eisenstein
integers E. As is well known (see e.g. [9] p. 72) this ring is given by

E = Z[ξ] = {a + bξ : a, b ∈ Z}, where ξ =
−1 + i

√
3

2
.

In other words, each z ∈ E can be uniquely written as z = z1 +z2ξ with some
z1, z2 ∈ Z. By the coordinates of z we shall mean (z)1 = z1 and (z)2 = z2,
and we use this notation whenever we work in E.

Theorem 2 Suppose that f : E → A is a solution to (1). Then f is of the

form f =
5
∑

j=1

αjfj where αj ∈ A, and the functions fj : E → Z (j = 1, . . . , 5)

are given by

f1(z) = 1, f2(z) = (z)1, f3(z) = (z)2,

f4(z) =

{

(t)1, if z = (1 + 2ξ)t + δ (δ ∈ {0, 1 + ξ}),

(t)1 − 1, if z = (1 + 2ξ)t + 1,

f5(z) =

{

(t)2, if z = 2t,

(t)2 + 1, if z = 2t + δ (δ ∈ {1, ξ, 1 + ξ}).

We mention that E is also a Euclidean ring. Further, the norms of 1 + 2ξ
and 2 are 3 and 4 over Q, respectively. Hence the functions f4 and f5 in

Theorem 2 are well-defined. Further, we also have f4(z) =
[

2(z)2−(z)1
3

]

and

f5(z) =
[

(z)2−(z)1+1
2

]

+
[

(z)1+1
2

]

for all z ∈ E.

Again, knowing the explicit form of the solutions f : E → A to (1) we
can formulate a simple corollary of the above statement. Namely, we have
the following straightforward consequence of Theorem 2.
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Corollary 2 For any solution f : E → A to (1) we have

f(x + y) + f(0) = f(x) + f(y) for all x, y ∈ E with 2 + 4ξ | xy.

2.1 Limitations of the method

In this subsection we briefly explain why we restrict our attention to the
rings G and E.

Following the method of [3], we proceed by a kind of induction. We show
that if f is a solution to (1), then the values of f taken on ”sufficiently
large” arguments, can be obtained by the values of f taken on ”smaller”
ones. However, to make this principle work we need several assumptions.
First, it is natural and convenient to consider the ring of integers R of some
algebraic number field. In this case we are automatically equipped with the
usual absolute value. Further, R should be discrete, i.e. for any positive real
r, there should be only finitely many z ∈ R with |z| < r - otherwise the
”induction step” fails. At this point we mention that to solve a somewhat
related problem of Ramanujan over certain finitely generated domains, the
authors in [7] used another norm, which has the ”discrete” property for the
ring of integers of any algebraic number field. However, in case of Hosszú’s
equation (at least in the present method) we need some kind of norm which
is multiplicative on R (in particular, we cannot use the L∞-like norm from
[7]). So it seems that in this case we need to stick to the ordinary absolute
value.

Finally, observe that we have x + y − xy = (x − 1)(1 − y) + 1. This
means that the ”large” arguments in (1) (i.e. xy and x + y − xy) are of the
form ”product” and ”product plus one”, respectively. Hence if we have an
element p in R of norm 2 over Q (such as 2 in Z and 1 + i in G), then
any z ∈ R can be written as one of these ”large” arguments in a non-trivial
way. Otherwise, lacking such a p, we do not have this possibility. As there
is no such p ∈ E, already in this case we need some additional reasoning.
Fortunately, in E there are roots of unity, and by their help we can reach
the appropriate residue classes modulo 1 + 2ξ = i

√
3. (Note that in the ring

Z[i
√

3] the method would fail in its present form.)

However, the assumption that R should be discrete, already restricts us
(beside Z) to the rings of integers of imaginary quadratic fields. As the only
such ring containing an element of norm 2 is G, and the only such ring (apart
from G) containing roots of unity is E, we arrive at these rings in a natural
way. Summarizing these facts, we conclude that to extend this ”inductive”
method to other rings, probably some extra tools are needed.

3 Proofs

In this section we give the proofs of our results.
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3.1 The proof of Theorem 1

Put IG = {−1, 0, 1, i, 1+ i}. As it turns out, the set IG plays a crucial role in
the proof of this theorem. Further, we need the following two lemmas.

Lemma 1 Let f : G → A be a solution to (1). Then there exist αj ∈ A

(j = 1, . . . , 5) with 2α5 = 0 such that f(z) =
5
∑

j=1

αjfj(z) for all z ∈ IG. Here

the functions fj (j = 1, . . . , 5) are defined in Theorem 1.

Proof Substitute the values −1, 0, 1, i, 1 + i into f and solve the implied sys-
tem of linear equations for αj (j = 1, . . . , 5). Since the determinant of the
matrix of the system is 1, this can be done in A without any problem. We
get that the unique solution is given by

α1 = f(0),

α2 = −f(0) + f(1),

α3 = −f(0) + f(i),

α4 = −f(−1) + 2f(0) − f(1),

α5 = f(−1) − f(0) − f(i) + f(1 + i).

It remains to show that 2α5 = 0. Substituting appropriate values for x
and y in (1) we successively get the following identities:

f(−i) = f(1) + f(−1) − f(i) (x = i, y = −i),

f(1 − i) = f(1 + i) + f(1) + f(−1) − 2f(i) (x = i, y = 1 − i),

f(2) = 2f(1 + i) + f(1) + f(−1) − 2f(i) − f(0) (x = 1 + i, y = 1 − i),

f(2 − 2i) = 2f(1 + i) + 2f(1) + 2f(−1) − 4f(i) − f(0) (x = 2, y = 1 − i),

and
f(1 + 2i) = 2f(i) − f(−1) (x = i, y = i),

f(−1 − i) = f(1 + i) + 2f(−1) − 2f(i) (x = −1, y = 1 + i).

Hence we deduce

f(4) = 2f(1 + i) + 2f(1) − 2f(i) − f(0) (x = 1 + i, y = 2 − 2i).

Substituting x = y = 2 in (1) we also have f(4) = 2f(2) − f(0). Combining
the last two equalities we obtain

2(f(−1) − f(0) − f(i) + f(1 + i)) = 2α5 = 0,

and the lemma follows. ut

Remark 1 From the proof of the above lemma it is clear that the functions
fj (j = 1, . . . , 5) are linearly independent over A in general, that is, it is not
possible to replace fj (j = 1, . . . , 5) in Theorem 1 by a smaller set.

The next lemma implies that the values taken by a solution f on the set
IG determine f uniquely.
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Lemma 2 Let f : G → A be a solution to (1) satisfying f(z) = 0 for all
z ∈ IG. Then f(z) = 0 for all z ∈ G.

Proof First we show that if a solution f vanishes on the set

I0 := {w ∈ G : |w| ≤ 2 + 2
√

2}
then f vanishes on the whole G. (Note that I0 ⊃ IG.) We present an inductive
argument. Let z ∈ G \ I0, and assume that f(w) = 0 whenever |w| < |z|. We
distinguish two cases.

Assume first that z ≡ 0 (mod 1 + i), i.e. z = (1 + i)t for some t ∈ G.
Putting x = 1 + i and y = t we have xy = z and x + y − xy = i(1 − t) + 1.

Moreover, as |z| > 2 + 2
√

2 a simple calculation gives

|x + y − xy| =

∣

∣

∣

∣

2i − iz

1 + i

∣

∣

∣

∣

≤ 1√
2
|z| +

√
2 < |z|.

Since |x| < |z| and |y| < |z| are also valid, we obtain that f(z) = f(xy) = 0
in this case.

Suppose next that z ≡ 1 (mod 1 + i) that is z = (1 + i)t + 1 for some
t ∈ G. Writing x = i and y = it + 1, we get x + y − xy = z and xy = i − t.
Further, using |z| > 2 + 2

√
2 one can easily derive that

|xy| = |y| =

∣

∣

∣

∣

iz + 1

1 + i

∣

∣

∣

∣

≤ |z| + 1√
2

< |z| and |x| < |z|

hold. This yields again f(z) = f(x + y − xy) = 0.
Note that as the norm of 1 + i (as an element of the number field Q(i)

over Q) is 2, there are no other cases to distinguish. Further, since for any
z ∈ G there are only finitely many Gaussian integers that are shorter than
z, we get that if f vanishes on I0 then f vanishes on the whole G.

It only remains to show that f ≡ 0 on IG implies f ≡ 0 on I0. This can
be done by a simple calculation. We do not give excessive details, just briefly
outline a simple algorithm that we used to verify the statement.

As the initialization step, put S = IG. Then find some ”short” x, y ∈ G

such that exactly three out of the four arguments x y, xy x + y − xy in
(1) belong to S. Then add the fourth argument to S, and repeat the whole
process. Continue this procedure until S ⊃ I0. For example, in the first loop
take x = i and y = −i, whence xy = 1 and x + y − xy = −1. Thus we can
add −i to S. In the next loop choose x = i and y = 1− i, yielding xy = 1 + i
and x + y − xy = −i. So we can add 1 − i to S, etc.

As the result of this procedure after a few loops (with ”short” values for
x and y) we get some S with S ⊃ I0. Thus we conclude that f ≡ 0 also on
I0, and the lemma follows. ut

Now we are prepared to give the

Proof (of Theorem 1) It is obvious that the functions f1, f2, f3 are solutions
to (1), and one can easily check that f5 is also a solution. Hence we deal only
with f4. Let x and y be arbitrary elements of G, and put

x = (1 + i)t1 + δ1, y = (1 + i)t2 + δ2
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with t1, t2 ∈ G and δ1, δ2 ∈ {0, 1}. Then we have

xy = (1 + i)((1 + i)t1t2 + δ1t2 + δ2t1) + δ1δ2

and

x + y − xy = (1 + i)(t1 + t2 − (1 + i)t1t2 − δ1t2 − δ2t1) + δ1 + δ2 − δ1δ2.

Observe that δ1 = δ1δ2 and δ2 = δ1 + δ2 − δ1δ2, or vica versa. Hence, as
<(u + v) = <(u) + <(v) for all u, v ∈ G, we get that f4 is also a solution to
(1). Thus for any coefficients αj ∈ A (j = 1, . . . , 5) with 2α5 = 0 the function
5
∑

j=1

αjfj : G → A is a solution to (1).

Now we only have two show that any solution to (1) can be written as a
linear combination of the functions fj (j = 1, . . . , 5) over A, with 2α5 = 0.
Suppose that f : G → A satisfies (1). Then by Lemma 1 there exist αj ∈ A

(j = 1, . . . , 5) with 2α5 = 0 such that g := f −
5

∑

j=1

αjfj vanishes on IG. As

g : G → A is a solution to (1), by Lemma 2 we obtain that g ≡ 0 on G. This
proves the theorem. ut

3.2 The proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1, up to one important
point. Namely, E does not contain elements of norm 2 over Q. Hence we
cannot claim that for some β ∈ E each γ ∈ E is congruent to 0 or 1 modulo
β. In other words, we cannot utilize directly the form of the arguments xy
and x + y − xy = (x − 1)(1 − y) + 1 of f . However, we can make use of the

roots of unity in E, to ”switch” between the residue classes of 1 + 2ξ = i
√

3.
Put IE = {−1, 0, 1, ξ, 1 + ξ}; this set will play a role similar to IG in

the proof of Theorem 1. The proof of Theorem 2 relies on the following two
lemmas.

Lemma 3 Let f : E → A be a solution to (1). Then there exist αj ∈ A

(j = 1, . . . , 5) such that f(z) =
5

∑

j=1

αjfj(z) for all z ∈ IE, where the functions

fj (j = 1, . . . , 5) are defined in Theorem 2.

Proof Substitute the values −1, 0, 1, ξ, 1 + ξ into f and solve the implied
system of linear equations for αj (j = 1, . . . , 5). Since the determinant of the
matrix of the system is 1, this can be done in A without any problem. We
get that the unique solution is given by

α1 = f(0),

α2 = −f(ξ) + f(1 + ξ),

α3 = −f(−1) + 2f(ξ) − f(1 + ξ),

α4 = f(−1) − f(1) − 2f(ξ) + 2f(1 + ξ),

α5 = f(−1) − f(0) − f(ξ) + f(1 + ξ),

and the lemma follows. ut
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Remark 2 As in case of G, in view of the proof of the above lemma we obtain
that the functions fj : E → A (j = 1, . . . , 5) are linearly independent over A

in general, so they cannot be replaced by fewer functions in Theorem 2.

The following lemma yields that the values taken by a solution f on IE

determine f uniquely.

Lemma 4 Let f be a solution to (1) satisfying f(z) = 0 for all z ∈ IE. Then
f(z) = 0 for all z ∈ E.

Proof Like in the proof of Lemma 2, first we prove that a bounded set has
the desired property, that is, if z ∈ E is ”long enough” then f(z) = 0 holds.
More precisely, we show that if a solution f : E → A to (1) is identically zero
on the set

I0 :=
{

w ∈ E : |w| ≤ 2
√

3 + 2
}

,

then f is identically zero on E. (Note that I0 ⊃ IE.) We present an inductive
argument also in this case. Let z ∈ E \ I0, and assume that f(w) = 0 for
all |w| < |z|. We distinguish three cases, according to the residue classes of
1 + 2ξ.

Assume first that z ≡ 0 (mod 1+2ξ). Then as ξ is a unit in E we can write
z = −ξ(1 + 2ξ)t for some t ∈ E. Letting x = t and y = −ξ(1 + 2ξ), we have

xy = z and x + y − xy = ξ−1t− ξ−1 + 1. Note that ξ−1 = −1− ξ = −1−i
√

3
2 .

As |z| > 2
√

3 + 2, a simple calculation gives

|x + y − xy| =

∣

∣

∣

∣

−ξz

1 + 2ξ
− ξ−1 + 1

∣

∣

∣

∣

≤ |z|√
3

+
√

3 < |z|.

As we also have |x| < |z| and |y| < |z|, we get that f(z) = f(xy) = 0 in this
case.

Suppose next that z ≡ 1 (mod 1 + 2ξ). Then we have z = ξ(1 + 2ξ)t + 1
for some t ∈ E. Setting x = 1 − t and y = ξ(1 + 2ξ) + 1 = ξ−1, we obtain
x + y − xy = z and xy = (1 − t)ξ−1. Now we get

|xy| = |x| =

∣

∣

∣

∣

−z + ξ−1

ξ(1 + 2ξ)

∣

∣

∣

∣

≤ |z| + 1√
3

< |z| and |y| < |z|.

This implies that f(z) = f(x + y − xy) = 0 also in this case.
Finally, assume that z ≡ 1 + ξ (mod 1 + 2ξ). Put x = z and y = −ξ.

Then xy = −ξz and in particular, xy ≡ 1 (mod 1 + 2ξ). Hence by |xy| =
|z| the assertions in the previous paragraph yield f(xy) = 0. Further, we
have x + y − xy = z(1 + ξ) − ξ, whence x + y − xy ≡ 0 (mod 1 + 2ξ) and
|x + y − xy| ≤ |z| + 1. Applying now the first part of the proof (with z ≡ 0
(mod 1 + 2ξ)) writing x + y − xy in place of z and using our assumption on
|z|, a simple calculation shows that f(x + y−xy) = 0 is also valid. Hence, as
|y| < |z|, we get that f(z) = f(x) = 0 also in this case.

Now it remains only to show that f ≡ 0 on I0, provided that f ≡ 0 on
IE. The proof of this assertion can be done by a procedure as in Lemma 2,
and we omit the details. The proof of Lemma 4 is complete. ut
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Now we can give the

Proof (of Theorem 2) It is obvious that the functions f1, f2, f3 are solutions
to (1). To prove that the function f4 is also a solution let x, y ∈ E be arbitrary,
and put

x = (1 + 2ξ)t1 + δ1, y = (1 + 2ξ)t2 + δ2

with t1, t2 ∈ E and δ1, δ2 ∈ {0, 1, 1 + ξ}. Then we have

xy = (1 + 2ξ)((1 + 2ξ)t1t2 + δ1t2 + δ2t1) + δ1δ2,

x + y − xy = (1 + 2ξ)(t1 + t2 − (1 + 2ξ)t1t2 − δ1t2 − δ2t1) + δ1 + δ2 − δ1δ2.

If either δ1 or δ2 belongs to {0, 1} then δ1 = δ1δ2 and δ2 = δ1 + δ2 − δ1δ2, or
vica versa. Hence, as (u + v)1 = (u)1 + (v)1 for all u, v ∈ E, we are done in
this case. So we are left with the possibility δ1 = δ2 = 1 + ξ. Now we have

f4(x) + f4(y) = (t1 + t2)1,

and as ξ = (1 + ξ)(1 + 2ξ) + 1 and 2 + ξ = −ξ(1 + 2ξ), also

f4(xy) + f4(x + y − xy) = (t1 + t2 + 1)1 − 1.

Since these expressions are equal, f4 is also a solution to (1).
To check that f5 is a solution as well, take arbitrary x, y ∈ E and set

x = 2t1 + δ1, y = 2t2 + δ2

with t1, t2 ∈ E and δ1, δ2 ∈ {0, 1, ξ, 1 + ξ}. Now we have

xy = 2(2t1t2 + δ1t2 + δ2t1) + δ1δ2,

x + y − xy = 2(t1 + t2 − 2t1t2 − δ1t2 − δ2t1) + δ1 + δ2 − δ1δ2.

If δ1 ∈ {0, 1} or δ2 ∈ {0, 1} then again δ1 = δ1δ2 and δ2 = δ1 + δ2 − δ1δ2, or
vica versa, and by (u + v)2 = (u)2 + (v)2 (u, v ∈ E) we are done. In all the
other cases

f5(x) + f5(y) = (t1 + t2)2 + 2

holds. If δ1 = δ2 = ξ, then we have δ1δ2 = 2(−1−ξ)+1+ξ and δ1+δ2−δ1δ2 =
2ξ + 1 + ξ, whence

f5(xy) + f5(x + y − xy) = (t1 + t2 − 1)2 + 2,

which shows that f satisfies (1) in this case. When δ1 = δ2 = 1 + ξ we can
write δ1δ2 = ξ and δ1 + δ2 − δ1δ2 = 2 + ξ, whence

f5(xy) + f5(x + y − xy) = (t1 + t2 + 1)2 + 2,

and (1) is satisfied once again. Finally, by symmetry we may assume that
δ1 = ξ and δ2 = 1 + ξ. In this case we get δ1δ2 = −2 + 1 and δ1 + δ2 − δ1δ2 =
2(ξ + 1). Thus

f5(xy) + f5(x + y − xy) = (t1 + t2 + ξ)2 + 1,
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and we conclude that f5 is a solution to (1). Hence we obtain that for any

αj ∈ A (j = 1, . . . , 5) the function
5

∑

j=1

αjfj : E → A is a solution to (1).

Finally, assume that f : E → A satisfies (1). By Lemma 3 there exist

αj ∈ A (j = 1, . . . , 5) such that g := f−
5
∑

j=1

αjfj vanishes on IE. As g : E → A

is a solution to (1), Lemma 4 gives that g ≡ 0 on E. Hence the theorem is
proved. ut
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