
EQUAL VALUES OF FIGURATE NUMBERS
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Abstract. Some effective results for the equal values of figu-
rate numbers are proved. Using a state-of-the-art computational
method for the small parameter values the corresponding Diophan-
tine equations are resolved.

1. Introduction

There are several results concerning arithmetical and Diophantine
properties of certain combinatorial numbers. Let k,m be integers with
k ≥ 3 and m ≥ 3, further, denote by

fk,m(X) =
X(X + 1) . . . (X + k − 2)((m− 2)X + k + 2−m)

k!

the Xth figurate number with parameters k and m. For some problems
and theorems related to these families of combinatorial numbers, we
refer to the books [11] and [10]. The power and equal values of special
cases of fk,m(X), including, for instance, binomial coefficients (for m =
3), polygonal numbers (for k = 2) and pyramidal numbers (for k = 3)
have been studied intensively, see [1], [20], [4], [23], [8], [9], [14], [18],
[19], [17], [16] and references therein. Brindza, Pintér and Turjányi [5]
conjectured that apart from the case (m,n) = (5, 4) the equation

f3,m(x) = f2,n(y)

has only finitely many solutions in integers x, y which can be effectively
determined. Recently, Pintér and Varga [24] confirmed this conjecture.
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The purpose of the note at hand is to give effective finiteness statements
for the more general equation

(1) fk,m(x) = f2,n(y)

in integers x and y and to provide numerical results for small values
of parameters (k,m, n). In a forthcoming paper we will deal with the
equation

fk,m(x) = fl,n(y).

However, in this generality we can give only ineffective finiteness the-
orems.

2. Main results

Theorem 2.1. Let m,n, k be integers with k ≥ 3 and (m,n, k) 6=
(5, 4, 3), (6, 4, 4). If k is even, then assume further that k!D is not
of the form r2, 2r2, where D = gcd(k!(n − 4)2, 8d(n − 2)) with d =
gcd(k,m − 2). Then equation (1) has only finitely many solutions in
x, y which can be effectively determined.

If (m,n, k) = (5, 4, 3), (6, 4, 4), then one can easily see that equation
(1) has infinitely many solutions in x, y. As an immediate consequence
of Theorem 2.1, we obtain the following statement.

Corollary 2.1. Let m,n, k be integers with k ≥ 4. If k is even, then
assume further that there exists a prime p with k/2 < p < k such that
p - n − 2. Then equation (1) has only finitely many solutions in x, y
which can be effectively determined.

Remark. Note that if k > 2n, then the condition in Corollary 2.1 is
satisfied. Indeed, Bertrand’s postulate guarantees the existence of a
prime p with k/2 < p < k. Since now p > k/2 = n > n − 2, we also
have p - n− 2.

Theorem 2.2. Suppose that k ≥ 3,m ≥ 3, n ≥ 3 are integers with

10m− 26 ≤ n.

Then equation (1) possesses only finitely many solutions in x, y which
can be effectively determined.

We closely follow arguments of Erdős [12, 13] and resolve an infinite
family of Diophantine equations.

Theorem 2.3. The only solution of the equation

(2) fk,k+2(x) = f2,4(y)

in integers k ≥ 5, x ≥ k − 2 and y ≥ 1 is (k, x, y) = (5, 47, 3290).
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For k = 5, our theorem follows from a classical theorem by Meyl [22].
The resolution of another parametric family of Diophantine problems(

x+ k − 1

k

)
= fk,3(x) = f2,4(y) = y2

in integers x, y and k follows from the result of Győry [14] on the power
values of binomial coefficients.

Consider now the case k = 5. Then equation (1) can be reduced to
the Diophantine equation

(3) 15(n−2)x(x+1)(x+2)(x+3)((m−2)x+7−m)+(15(4−n))2 = z2,

where z = 30(n− 2)y + 15(4− n).
The curve (3) is a genus 2 hyperelliptic curve except for finitely many

pairs of (m,n), where m,n ≥ 3. The exceptional pairs (m,n) could be
explicitly given by Runge’s method. However, this would require a lot
of calculations, involving a large amount of technical data. Since this
point is not vital for our purposes, we suppress the details.

We computed the rank r (an upper bound for the rank in some cases)
of the Jacobian of the corresponding hyperelliptic curve for m,n ∈
{3, 4, 5, 6, 7, 8}.
n \m 3 4 5 6 7 8

3 6 5 5 6 4 6
4 1 ≤ r ≤ 5 2 ≤ r ≤ 6 2 ≤ r ≤ 6 3 ≤ r ≤ 7 - 1 ≤ r ≤ 5
5 4 5 4 4 2 5
6 6 5 5 6 4 6
7 5 5 5 5 4 5
8 6 5 7 7 4 6

We note that the problem in case of (m,n) = (3, 3) yields the equation(
x+ 4

5

)
=

(
y + 1

2

)
.

All integral points were determined by Bugeaud, Mignotte, Siksek, Stoll
and Tengely [6] on the related curve hyperelliptic curve. They com-
bined Baker’s method and the so-called Mordell-Weil sieve to obtain
the result. We follow their method to find all integral points on the
curve (3) with m = 7 and n = 5, and hence to obtain all solutions of
(1) for these values of parameters.

Theorem 2.4. The set of integral points (x, y) on the curve (3) with
(m,n) = (7, 5) is

{(−3, 0), (−2, 0), (−1, 0), (0, 0), (1, 1)}.
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3. Auxiliary results

In the proof of Theorem 2.1 the next result plays the key role. In
fact it provides more information than is needed to prove Theorem 2.1.

Proposition 3.1. Let t ≥ 0 be an integer, and write Pt(x) = x(x +
1) . . . (x + t). Let f(x) ∈ Z[x] and v ∈ Z \ {0} such that g(x) :=
Pt(x)f(x) + v is a primitive polynomial.

• If t ≥ 3 and deg(g) is odd, then g(x) has at least three roots of
odd multiplicities.
• If t ≥ 2, deg(g) is even and v is not of the form ±r2, ±2r2,

then g(x) has at least three roots of odd multiplicities.
• Let ` ≥ 3. If t ≥ 3 and deg(f) < (t + 1)(` − 1), then g(x) has

at least two roots with multiplicities not divisible by `.

Proof. To prove the first part, suppose that deg(g) is odd, but it has
less than three roots of odd multiplicities. Then we can write

Pt(x)f(x) + v = (h(x))2(ax+ b)

with some h ∈ Z[x] and a, b ∈ Z. Further, a 6= 0, and by the primitivity
of g we have gcd(a, b) = 1. As 0,−1,−2,−3 are roots of Pt(x), we
obtain

(h(0))2b = (h(−1))2(b− a) = (h(−2))2(b− 2a) = (h(−3))2(b− 3a).

Observe that since v 6= 0, none of the above numbers is zero. As
gcd(a, b) = 1, this implies that either b, b− a, b− 2a, b− 3a or −b, a−
b, 2a−b, 3a−b are all squares. However, by classical results of Euler and
Fermat we have that four distinct squares cannot form an arithmetic
progression (see [11], pp. 440 and 635). Hence our statement follows
in this case.

To prove the second part, assume that deg(g) is even, but it has less
than three roots of odd multiplicities. As v is not a square, by our
assumptions g(x) cannot be a constant (integral) multiple of a square
of a polynomial in Z[x]. Thus the only possibility is that we have

Pt(x)f(x) + v = (h(x))2(ax2 + bx+ c)

with some h ∈ Z[x] and a, b, c ∈ Z. Further, a 6= 0, and by the
primitivity of g we have gcd(a, b, c) = 1. Since t ≥ 2, now we obtain

(h(0))2c = (h(−1))2(a− b+ c) = (h(−2))2(4a− 2b+ c) = v.

As v 6= 0, none of the above numbers is zero. By a simple calculation
we get that only gcd(c, a−b+c, 4a−2b+c) = 1, 2 are possible. Assume
that there is an odd prime q occurring on an odd power in the prime
factorization of c. Then by the above equalities, q also occurs on an
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odd exponent in the prime factorization of v, whence q | a− b+ c and
q | 4a − 2b + c follows. However, this is impossible. Hence c is one
of the form ±r2, ±2r2. But then the same is true for v, which is a
contradiction. Hence the statement follows also in this case.

To prove the third part, suppose to the contrary that g(x) has at
most one root of multiplicity not divisible by `. Consider first the case
where g(x) is an `-th power in Z[x], that is

Pt(x)f(x) + v = (h(x))`

with some h ∈ Z[x]. Writing F and H for the degrees of f and h
respectively, we get

t+ 1 + F = `H.

On the other hand, by our assumption we have

F < (t+ 1)(`− 1).

Combining these assertions, we obtain that H < t + 1. On the other
hand, we have

h(0) = h(−1) = · · · = h(−t) = v,

that is, h takes the same value at t + 1 different places. It yields that
h(x) is identically constant. It is a contradiction, and our statement
follows in this case.

Finally, we are left with the possibility

Pt(x)f(x) + v = (h(x))`(ax+ b)s

with some h ∈ Z[x], a, b ∈ Z with gcd(a, b) = 1 and s with 1 ≤ s < `.
As t ≥ 3, we have

(h(0))`bs = (h(−1))`(b− a)s = (h(−2))`(b− 2a)s = (h(−3))`(b− 3a)s.

As gcd(a, b) = 1, similarly as in case of ` = 2 we get that

bs, (b− a)s, (b− 2a)s, (b− 3a)s

are all non-zero perfect `-th powers. This by s < ` yields that

b, b− a, b− 2a, b− 3a

are all perfect `′-th powers with some `′ = `
gcd(s,`)

≥ 2. However, by a

deep result of Darmon and Merel [7] four distinct `′-th powers cannot
form an arithmetic progression. Hence our statement follows. �

Our next lemma is a classical result from the modern theory of Dio-
phantine equations.
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Lemma 3.1. Let t(X) ∈ Q[X] and suppose that the polynomial t(X)
possesses at least three zeros of odd multiplicities. Then the equation
t(x) = y2 in integers x, y implies that max(|x|, |y|) < C, where C is an
effectively computable constant depending only on the polynomial t(X).

Proof. The result is a consequence of the Theorem in Brindza [3]. �

4. Proofs

Proof of Theorem 2.1. Equation (1) can be rewritten as

8(n− 2)x(x+ 1) . . . (x+ k − 2)((m− 2)x+ k + 2−m)

k!
+ (n− 4)2 =

= (2(n− 2)y + n− 4)2.

(4)

So to prove the statement we only need to show that the polynomial
T (x) on the left hand side of the above equation has at least three
zeroes of odd multiplicities. If n = 4, then one can easily check that
this assertion is valid, provided that (m, k) 6= (5, 3), (6, 4). So from this
point on we may assume that n 6= 4.

Write d := gcd(k,m− 2), and D := gcd(k!(n− 4)2, 8(n− 2)d). Then
we obviously have that k!T (x)/D is a primitive polynomial in Z[x],
with constant term k!(n − 4)2/D. Hence in view of Proposition 3.1,
the theorem follows. �

Proof of Corollary 2.1. Observe that by d | k, we have d = k or d ≤
k/2. Further, k ≥ 4 also yields 2 ≤ k/2. Hence if there exists a prime
p with the desired properties, then obviously, p divides k!(n − 4)2 on
an odd exponent, but p - D is valid. Thus the statement immediately
follows from Theorem 2.1. �

Proof of Theorem 2.2. Observe that equation (1) can be rewritten as

8(n− 2)fk,m(X) + (n− 4)2 = z2,

where z = 2(n− 2)y + n− 4. Suppose that α is a multiple zero of the
polynomial

8(n− 2)fk,m(X) + (n− 4)2 =

=
8(n− 2)(m− 2)

k!
X(X+1)(X+2) . . .

(
X +

k

m− 2
− 1

)
+(n−4)2.

Then α is a zero of the polynomial

g(X) :=

(
X(X + 1) . . . (X + k − 2)

(
X +

k

m− 2
− 1

))′
.
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In case of k
m−2−1 /∈ H := {0,−1, . . . ,−k+2}, using Rolle’s theorem one

can check that these zeros are real and belong to the interval (1−k, 1).
When k

m−2−1 ∈ H, this property can be easily verified by checking the
sign of g(X) in small neighborhoods of the elements of H. For m = 3
the statetement follows from a nice result of Győry [14]. Thus we may
assume that m ≥ 4. Hence for an arbitrary real number β ∈ (1− k, 1)
the product∣∣∣∣β · (β + 1) · . . . · (β + k − 2)

(
β +

k

m− 2
− 1

)∣∣∣∣
is smaller than

(k − 1)!

(
k − 1− k

m− 2
+ 1

)
= k!

m− 3

m− 2
.

This shows that for any multiple root α of the polynomial

8(n− 2)fk,m(X) + (n− 4)2

we have

(n−4)2 = |8(n− 2)fk,m(α)| < 8(m−2)(n−2)
m− 3

m− 2
= 8(m−3)(n−2).

That is, the above polynomial has no multiple roots, provided that

8(m− 3)(n− 2) ≤ (n− 4)2.

Observe that this inequality cannot hold for n < 14. As 10m− 26 ≤ n
implies that 8(m− 3)(n− 2) ≤ (n− 4)2 whenever n ≥ 14, Lemma 3.1
finishes our proof. �

Proof of Theorem 2.3. Equation (2) can be rewritten as

(5) x2(x+ 1) . . . (x+ k − 2) = (k − 1)!y2.

First, using standard arguments, but with a slight modification implied
by the presence of the factor k − 1 on the right hand side of (5), we
can write

(6) x+ i = aix
2
i (i = 1, . . . , k − 2),

where the ai are square-free positive integers with P (ai) ≤ k−1, where
P (u) denotes the greatest prime factor of u, with the convention P (1) =
1. First we prove that the coefficients ai are pairwise different. Assume
to the contrary that ai = aj holds with some i < j. Then we have

k − 2 > (x+ j)− (x+ i) = aix
2
j − aix2i = ai(x

2
j − x2i ) ≥

≥ ai((xi + 1)2 − x2i ) > 2
√
aix2i ≥ 2

√
x+ 1.
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On the other hand, as x ≥ k − 2, by Corollary 1 of Laishram and
Shorey [21] we obtain that up to fourteen exceptions listed explicitly,
the product (x+ 1) . . . (x+ k − 2) has a prime factor > 1.8(k − 2). As
one can easily check, these exceptions do not yield solutions to equation
(2). Indeed, for example when x + 1 = 8, k − 2 = 3, the product is
given by 8 ·9 ·10, with greatest prime factor 5, and 5 < 1.8 ·3. However,
then we have x = 7 and k = 5, and equation (2) does not hold. The
remaining exceptional case can be excluded similarly. Thus we may
assume that q is a prime such that q divides (x+ 1) . . . (x+ k− 2) and
q > 1.8(k − 2). Observe that then q divides exactly one term x + i
(i = 1, . . . , k − 2). Since q > k − 1 as k ≥ 5, q occurs in x + i on at
least the second power. This yields

3.24(k − 2)2 < q2 ≤ x+ k − 2.

Combining this bound with the above estimate k − 2 > 2
√
x+ 1, in

view of x ≥ k − 2, we get a contradiction. This implies that ai 6= aj
indeed, whenever i 6= j.

Now we prove that the product a1 · · · ak−2 divides (k− 1)!. For this,
rewrite (2) as

A :=
a1 · · · ak−2
(k − 1)!

=
y2

z2

where z = x · x1 · · ·xk−2. Let p be any prime, and let νp(A) = α. Here
νp(A) is the exponent of p in A; note that α may be negative, too.
Then, recalling that the coefficients ai are square-free, by Liouville’s
formula concerning the exponents of primes in a factorial we clearly
have

α ≤
[
k − 2

p

]
+ 1−

[
k − 1

p

]
≤ 1.

Since α must obviously be even, this yields α ≤ 0, which immediately
implies our claim a1 · · · ak−2 | (k − 1)!. This of course gives

a1 · · · ak−2 ≤ (k − 1)!.

If 5 ≤ k < 15, then the only solution is given by (k, x, y) = (5, 47, 3290).
This fact can be checked in the following way. First observe that by
(6) we have

(7) (x+ 1) · · · (x+ k − 2) = uv2,

where u = a1 · · · ak−2 and v = x1 · · ·xk−2. Further, here q | v, therefore
the greatest prime divisor of v is greater than k− 2. Thus, by a result
of Győry [15] we have that if k−1 is not a prime, then the only solution
of (7) is given by (x, k, u, v) = (47, 5, 6, 140). This shows that the only
solution to equation (2) is (k, x, y) = (5, 47, 3290) in this case. Hence we
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may assume that k−1 is a prime, i.e. k = 6, 8, 12, 14. The investigation
of these cases is similar, so we illustrate our method only for k = 6.
Then equation (2) is given by x2(x+ 1)(x+ 2)(x+ 3)(x+ 4) = 120y2.
Checking the greatest common divisors of x + i and x + j (1 ≤ i <
j ≤ 4), we get the possible values of a1, a2, a3 in (6). Hence we obtain
elliptic equations of the form

(x+ 1)(x+ 2)(x+ 3) = Az2,

where A is square-free, and z is given by z = Bx1x2x3 with AB2 =
a1a2a3. It turns out that we have A ∈ {1, 2, 3, 5, 6, 10, 15, 30}. We
used a MAGMA [2] code to solve these equations and we got that
the only solutions are given by (x, z) = (7, 12) with A = 5, (x, z) =
(0, 1), (1, 2), (47, 140) with A = 6, (x, z) = (2, 2) with A = 15 and
(x, z) = (3, 2) with A = 30. It follows that the only solution of (2) is
(k, x, y) = (5, 47, 3290).

Assume now that k ≥ 15. Then, since the numbers a1, . . . , ak−2 are
k − 2 pairwise different square-free integers, we have

a1 . . . ak−2 ≥ 1·2·3·5·6·7·10·11·13·. . .·(k−1)·k·(k+1)·(k+2) > (k−1)!.

(The second inequality follows from the fact that k · (k+ 1) · (k+ 2) >
4 · 8 · 9 · 12, as k ≥ 15.) However, this by the previous inequality yields
a contradiction. That is, equation (2) has no solutions for k ≥ 15, and
the theorem follows. �

Proof of Theorem 2.4. The curve (3) with m = 7 and n = 5 is isomor-
phic to

(8) X2(X + 1)(X + 2)(X + 3) + 1 = Y 2.

Let J(Q) be the Jacobian of the genus two curve (8). Using MAGMA
[2] we get that J(Q) is free of rank 2 with Mordell-Weil basis given by

D1 = (−1, 1)−∞,
D2 = (ω, 2ω + 3) + (ω, 2ω + 3)− 2∞,

where ω is a root of the polynomial z2+3z+2. The MAGMA procedures
used to compute these data are based on Stoll’s papers [25], [26], [27].
Let f = X2(X + 1)(X + 2)(X + 3) + 1 and α be a root of f. We will
choose for coset representatives of J(Q)/2J(Q) the linear combinations∑2

i=1 niDi, where ni ∈ {0, 1}. Then

X − α = κξ2,

where κ is from a finite set. Such a finite set can be constructed fol-
lowing Lemma 3.1 in [6]. In case of the curve (8) we obtain that
κ ∈ {1,−α− 1, α2 +α, α2 + 3α+ 2}. We applied Theorem 9.2 in [6] to
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get a large upper bound for log |X|. A MAGMA code were written to
obtain such bounds, it can be found at
http://www.warwick.ac.uk/∼maseap/progs/intpoint/bounds.m. In
our case this bound turned out to be

log |X| ≤ 6.647× 10412.

A search reveals 13 rational points on the genus 2 curve (8):

∞, (−3,±1), (−2,±1), (−1,±1),

(−7/4,±17/32), (0,±1), (1,±5).

Let W be the image of the set of these known rational points in J(Q).
There are three points in the coset represented by 0:

±6D1 = (−7/4,±17/32)−∞
and ∞. There are two points in the same coset as D1 :

±D1 = (−1,±1)−∞.
In the coset of D2 we obtain 6 points:

±(2D1 + 3D2) = (−3,±1)−∞,
±(2D1 +D2) = (0,∓1)−∞,
±(2D1 − 3D2) = (1,±5)−∞.

Finally, two points belong to the coset of D1 +D2 :

±(D1 −D2) = (−2,±1)−∞.
Applying the Mordell-Weil sieve explained in [6] we obtain that (C(Q)) ⊆
W +BJ(Q), where

B = 2841720553897526432308772658708262465848000.

We follow an extension of the Mordell-Weil sieve due to Siksek to obtain
a long decreasing sequence of lattices in Z2. After that we apply Lemma
12.1 in [6] to obtain a lower bound for possible unknown rational points.
We have that if (X, Y ) is an unknown integral point, then

log |X| ≥ 3.32× 10494.

This contradicts the bound for log |X| obtained by Baker’s method.
Hence the set of integral points on the curve (8) is

{(−3,±1), (−2,±1), (−1,±1), (0,±1), (1,±5)}.
These points correspond to the following set of integral points on (3):

{(−3, 0), (−2, 0), (−1, 0), (0, 0), (1, 1)}.
�
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