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Abstract. For continuous tomography Helgason and Ludwig de-
veloped consistency conditions. They were used by others to over-
come defects in the measurements. In this paper we introduce a
consistency criterion for discrete tomography. We indicate how the
consistency criterion can be used to overcome defects in measure-
ments.

1. Introduction

Let A be a finite subset of Z2, and let D be a finite set of at least
two directions. By a discrete tomography problem we mean asking for
a function f : A → K which satisfies prescribed line sums along the
directions in D, where K is some integral domain, e.g. Z or R. The
authors and others have developed an algebraic theory of the structure
of the solutions of a discrete tomography problem, see [1-13], [17-18].
If K = R, the solutions of a discrete tomography problem form a linear
manifold if there is at least one real solution. If K = Z the solutions
form a grid in this linear manifold, provided that at least one integer
solution exists.

It is obvious that the sum of the line sums in one direction equals
the sum of the line sums in any other direction. So the line sums
are linearly dependent. In [9] the authors determined the maximal
number of linearly independent line sums in case K = Z and A has
the shape of a full rectangle with sides parallel to the coordinate axes.
In [11] they extended this to higher dimensions and in [12] to the case
that A is convex. Some years earlier Van Dalen had formulated two
conjectures on global dependencies (i.e. dependencies with coefficients
independent of A) and proved some special cases of them. An extensive
theory on dependencies for dimension two was developed by Stolk and
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Batenburg [17], and for more than two by Stolk [16] in his PhD thesis.
Stolk, [16] Chapter 4, gave algorithms to produce bases for the linear
space of dependencies. He considered mainly convex A, but also some
non-convex A and infinite periodic sets A.

In this paper we restrict our attention to dimension two and global
dependencies. We make results of Van Dalen and Stolk and Batenburg
more explicit. In Section 2 we introduce notation and in Section 3 we
summarize the earlier published results which are relevant to this pa-
per. In Section 4 we give explicit formulas for global dependencies. In
Section 5 we provide recurrences for the coefficients of global dependen-
cies and in Section 6 we show that every global dependency is a linear
combination of the dependencies constructed in Section 4. Finally, in
Section 7, we use our constructions to overcome defects in measure-
ments. This can be considered as the analogue for discrete tomogra-
phy of the application of the Helgason-Ludwig consistency conditions
for continuous tomography, cf. [15] Section II.4, after Helgason [13]
and Ludwig [14]. To keep the presentation simple, we shall formulate
the new results for K = R. These theorems can be adapted e.g. to
K = Z,Q,C.

2. Notation

Let A be a finite subset of Z2. We call A convex if every a ∈ Z2

which belongs to the closed convex hullH(A) of A belongs to A itself. A
lattice Λ is a set of the form Zd1 +Zd2 for some d1,d2 ∈ R2 with d1,d2

linearly independent over R. It has lattice determinant |det(d1,d2)|.
An affine lattice of a lattice Λ is a set Λ′ such that Λ′−a = Λ for some
a ∈ Z2. The lattice Λ generates exactly |det(d1,d2)| distinct affine
lattices and their union is Z2.

A nonzero vector d = (d, e) ∈ Z2 such that d ≥ 0 is called a direc-
tion. If d = 0 we require e > 0. If d and e are coprime, we call d a
primitive direction. Let D = {(d1, e1), . . . , (dk, ek)} be a set of prim-
itive directions. As the case k = 1 is trivial, we shall assume k > 1
throughout the paper. By ΛD we denote the lattice generated by the
directions of D,

(1) ΛD = {λ1(d1, e1) + · · ·+ λk(dk, ek) : λ1, . . . , λk ∈ Z}.

Let K be an integral domain, i.e. a commutative ring with 1 and
without zero divisors. A function f : A → K is called a table. For
1 ≤ i ≤ k and j ∈ Z we denote by `(i, j) the line sum of the Z-line
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eix− diy = j, given by

(2) `(i, j) =
∑

(x,y)∈A, eix−diy=j

f(x, y).

We call `(i, j) a line sum in the direction (di, ei). A (homogeneous
linear) dependency between the line sums is a relation of the form

(3)
k∑
i=1

∑
j∈Z

ci,j`(i, j) = 0

where ci,j are coefficients from K depending only on A,D, i and j.
Since `(i, j) = 0 for all but finitely many j, this sum is well-defined.
The dependencies form a module over K (which is a linear space if K
is a field). The dimension of this module (or linear space) is denoted
by v(A). We define a global dependency to be a dependency (3) that is
valid for every finite set A ⊂ Z2, thus with coefficients ci,j independent
of A. The global dependencies form again a module (or a linear space)
over K, the dimension of which is denoted by vg.

(a) (b)

Figure 1. Global and local dependencies: (a) global
dependencies, (b) a local dependency.

Figure 1 illustrates global and local dependencies. Figure 1 (a) (bor-
rowed from p. 56 of Stolk’s thesis [16]) shows a global dependency.
The sum of the diagonal sums through the black points equals the sum
of the antidiagonal sums through the black points. The same is true
for the line sums through the grey points, yielding another global de-
pendency. Figure 1 (b) (taken from p. 23 of [16]) gives an example of
a local dependency: the line sums through the bottom left point in the
two indicated directions are equal. This is a local property indeed: it
is independent of the global dependency which says that the sum of all
line sums in the one direction equals that in the other direction.
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To keep the presentation simple, from this point on we shall work
exclusively with the choice K = R.

3. Conjectures and results of Van Dalen and
Stolk-Batenburg

In her Master thesis [5] Van Dalen conjectured:

Conjecture 3.1. There are w :=
∑

1≤h<i≤k |det(dh,di)| linearly inde-
pendent global dependencies, that is vg = w.

Van Dalen proved that for every subset D′ of D of cardinality κ ≥ 2
there exists a dependency of the form

(4)
∑
i∈D′

ci
∑
j∈Z

jκ−2`(i, j) = 0

where the coefficients ci ∈ R are not all equal to zero. Comparing
(4) and (3), we see that in this case the coefficients ci,j in (3) are of
the form cij

κ−2. She called it a dependency of the power κ − 2. She
further proved that there does not exist such a dependency of power
larger than κ− 2 and that the dependency (4) is unique apart from a
multiplicative factor. Van Dalen made a more refined conjecture:

Conjecture 3.2. The maximal number of independent global depen-
dencies of power κ is equal to

(5) gκ+2 :=
k−κ−2∑
j=0

(−1)j
(
κ+ j

j

)
Gκ+j+2

where

Gt =
∑
|I|=t

gcdh,i∈I |dhei − dieh|

and the sum runs over the sets I ⊂ {1, 2, . . . , k} of cardinality t ≥ 2.

She checked that the total number of linearly independent global de-
pendencies according to this conjecture equals G2 as it should according
to Conjecture 3.1. She proved Conjecture 3.2 for dependencies of power
k − 2 and k − 3, and from that for k = 3 and k = 4.

Conjecture 3.1 has been proved by Stolk and Batenburg ([17] Theo-
rem 4.2, cf. [16] Theorem 3.5.1):

Theorem 3.1. The dimension vg of the linear space of the global de-
pendencies equals w.
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If A is small or thin, then different global dependencies may coincide
on A so that v(A) < vg = w. However, under certain assumptions on A,
Stolk and Batenburg could guarantee that v(A) = w, see [17] Theorem
9.2. Finally, we mention another theorem of Stolk and Batenburg ([17]
Lemma 3.4).

Theorem 3.2 (Stolk-Batenburg). A real-valued vector represents the
line sums of a real-valued table precisely if it satisfies all dependencies.

4. Explicit expressions for global dependencies

Let D be a finite set of primitive directions. In this section we give
explicit expressions for global dependencies of any degree.

We recall that Van Dalen [5] proved that if D′ is a subset of car-
dinality κ ≥ 2, then there exists a global dependency of the form (4)
with the integers ci not all equal to zero and uniquely determined (up
to a nonzero factor). Moreover, she proved that there does not exist
such a dependency with κ − 2 replaced by a larger number. We shall
express the coefficients ci of the unique global dependency explicitly.

We denote the determinant of the m ×m matrix with h-th column
vector xh = (x1,h, x2,h, . . . , xm,h) by det(x1, . . . ,xm). Furthermore, we
denote the determinant of the matrix which we obtain by omitting its
first column vector and its i-th row vector by det(x2, . . . ,xm)i.

The following lemma provides explicit expressions for the dependen-
cies. An empty product equals 1.

Lemma 4.1. Let f : Z2 → R be a table. Let Dκ = {d1, . . . ,dκ} be a set
of κ primitive directions with di = (di, ei) for i = 1, . . . , κ with κ ≥ 2.
Put ds = (ds1, d

s
2, . . . , d

s
κ) and es = (es1, e

s
2, . . . , e

s
κ) for s = 0, 1, . . . , κ.

Let Ei be defined by

Ei =
∏

1 ≤ h < j ≤ κ
h, j 6= i

(dhej − djeh).

Then

(6)
κ∑
i=1

(−1)i−1Ei
∑
j∈Z

jκ−2`(i, j) = 0.

Proof. Obviously, for s = 0, 1, . . . , κ− 2 we have

det(dseκ−2−s,dκ−2,dκ−3e,dκ−4e2, . . . , eκ−2) = 0.
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By developing to the first column we obtain, for s = 0, 1, . . . , κ− 2,
κ∑
i=1

(−1)i−1dsie
κ−2−s
i det(dκ−2,dκ−3e,dκ−4e2, . . . , eκ−2)i = 0.

It follows that, for arbitrary integers x and y,

(7)
κ∑
i=1

(−1)i−1(eix− diy)κ−2det(dκ−2,dκ−3e,dκ−4e2, . . . , eκ−2)i = 0.

Observe that det(dκ−2,dκ−3e,dκ−4e2, . . . , eκ−2)i is the Vandermonde
determinant Ei. It follows that

κ∑
i=1

∑
j∈Z

∑
x, y ∈ Z

eix− diy = j

f(x, y) (−1)i−1(eix− diy)κ−2Ei = 0.

Thus

0 =
κ∑
i=1

∑
j∈Z

(−1)i−1jκ−2Ei
∑

x, y ∈ Z
eix− diy = j

f(x, y) =

κ∑
i=1

∑
j∈Z

(−1)i−1Eij
κ−2`(i, j).

�

Remark 4.1. Note Ei 6= 0 for i = 1, . . . , κ.

Corollary 4.1 (Van Dalen [5], Theorem 3.3). In the notation of Lemma
4.1 there does not exist a dependency of the form

κ∑
i=1

ci
∑
j∈Z

jκ−1`(i, j) = 0,

with coefficients ci ∈ R not all equal to 0.

Proof. Suppose such a dependency exists. We apply the dependency
to the table for which f(x, y) = 1 in some point (x′, y′) ∈ Z2 and
f(x, y) = 0 in all other points. Then we obtain

0 =
κ∑
i=1

ci(eix
′ − diy′)κ−1 =

κ∑
i=1

ci

κ−1∑
j=0

(
κ− 1

j

)
ejid

κ−1−j
i (x′)j(−y′)κ−j−1.

Since the polynomial on the right-hand side is identically 0 on Z2 and
the coefficient determinant is a nonzero constant multiple of

∏
h,i;h<i(dhei−

dieh), the coefficients ci have all to be 0. �
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An immediate consequence of Corollary 4.1 is that there does not exist
a dependency of degree > κ− 2.

Corollary 4.2 (Van Dalen [5], Corollary 3.4). The coefficients in (6)
are uniquely determined apart from a multiplicative factor.

Proof. Suppose there exist two linearly independent dependencies. Then
we can form a linear combination of them with one coefficient equal to
0. Thus we have a nontrivial dependency for κ− 1 directions of degree
κ−2. This contradicts Corollary 4.1 applied with κ−1 directions. �

If gcdh<j|dhej−djeh| = m > 1, there are even m linearly independent
relations of degree m. To see why, we first prove the following lemma.

Lemma 4.2. Let be given a set of κ primitive directions Dκ = {(d1, e1), . . . , (dκ, eκ)}.
Set gcd1≤h<i≤κ|dhei−dieh| = m. Then Z2 splits into m affine lattices of
the lattice ΛDκ such that all the Z-lines through some point (x0, y0) ∈ Z2

in a direction of Dκ belong to just one affine lattice.

Proof. Consider any two elements of ΛDκ ,
p = (p1, p2) = λ1(d1, e1) + λ2(d2, e2) + · · ·+ λκ(dκ, eκ) and
q = (q1, q2) = µ1(d1, e1) + µ2(d2, e2) + . . . µκ(dκ, eκ), say.
Observe that every Z-line in a direction of Dκ which contains one point
of ΛDκ is entirely contained in ΛDκ . The determinant of the lattice
spanned by p and q, which equals p1q2−p2q1 =

∑
h6=j λhµj(dhej−djeh),

is divisible by m. Since p and q are arbitrary, the lattice determinant of
ΛDκ is divisible by m. It follows that there are m distinct affine lattices
of ΛDκ. Since each is a translate of ΛDκ, every Z-line in a direction of
Dκ which contains one point of an affine lattice is entirely contained in
that affine lattice. �

Lemma 4.3. Let D = {(d1, e1), . . . , (dk, ek)} be a finite set of primitive
directions. Let m = gcd1≤h<i≤k|dieh − eidh|. Then every point (x, y)
of ΛD satisfies m|(diy − eix) for i = 1, . . . , k. Moreover, for each
i ∈ {1, . . . , k} there is a bijection between the affine lattices of ΛD and
the residue classes modulo m such that for every i and every point
(x, y) in a fixed affine lattice of ΛD the values diy− eix are in the same
equivalence class modulo m.

Proof. Every point (x, y) of ΛD can be written as λ1(d1, e1) + · · · +
λk(dk, ek) with λ1, . . . , λk ∈ Z. Since m|(dieh − eidh) for all h, i, we
have m|(diy − eix) for all i. This proves the first statement.

Let (x0, y0) ∈ Z2. Let ΓD be the affine lattice of ΛD to which (x0, y0)
belongs. Then, by the first statement, for every (x, y) ∈ ΓD,

diy − eix ≡ diy0 − eix0 (mod m) for i = 1, . . . , k.



8 LAJOS HAJDU AND ROB TIJDEMAN

Fix i. Since gcd(di, ei) = 1, for every residue class mod m there exist
integers x, y such that diy− eix belongs to that residue class. As there
are exactly m affine lattices of ΛD, the m affine lattices have distinct
values modulo m. (In particular, if m|(diy − eix) for some i, then
(x, y) ∈ ΛD.) �

Theorem 4.1. Let f : Z2 → R be a table. Let be given κ primitive
directions Dκ = {(d1, e1), . . . , (dκ, eκ)} with gcd1≤h<i≤κ|dhei − dieh| =
m. For (x0, y0) ∈ Z2 let eix0 − diy0 = ji for i = 1, . . . , κ. Then

(8)
κ∑
i=1

(−1)i−1Ei
∑

j≡ji(mod m)

jκ−2`(i, j) = 0.

Proof. According to Lemmas 4.2 and 4.3 the points (x, y) in the affine
lattice to which (x0, y0) belongs satisfy eix − diy ≡ ji (mod m) for
i = 1, . . . , κ and no other points do so. We obtain from (7)

κ∑
i=1

∑
eix−diy≡ji(mod m)

f(x, y)(−1)i−1(eix− diy)κ−2Ei = 0.

Thus

0 =
κ∑
i=1

∑
j≡ji(mod m)

(−1)i−1jκ−2Ei
∑

eix−diy=ji

f(x, y)

=
κ∑
i=1

∑
j≡ji(mod m)

(−1)i−1Eij
κ−2`(i, j).

�

Every linear combination of dependencies (with real coefficients) is
also a dependency. We call a linear combination of dependencies con-
structed by Theorem 4.1 polynomial. We shall prove in Theorem 6.2
that the dependencies constructed in Theorem 4.1 generate all the
global dependencies. Thus every global dependency is polynomial.

The dependencies generated by Theorem 4.1 are not independent.
For example, according to Lemma 4.1 with k = 3 we find the three
dependencies

∑
j `(1, j) −

∑
j `(2, j) = 0,

∑
j `(1, j) −

∑
j `(3, j) =

0,
∑

j `(2, j) −
∑

j `(3, j) = 0 which are dependent, as the third is the
difference of the first two. Theorem 3.1 implies that the number of
linearly independent global dependencies equals w. According to Con-
jecture 3.2 the number of linearly independent global dependencies of
degree κ generated by Theorem 4.1 is at most gκ+2. We conjecture that
it equals gκ+2.
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Example 4.1. Consider the four directions

D = {d1 = (1, 0),d2 = (0, 1),d3 = (1, 1),d4 = (1,−1)}.

Set δh,i = dhei − dieh for 1 ≤ h < i ≤ 4. Then |δI | = 1 for all
I ⊆ {1, 2, 3, 4} with |I| ≥ 2 except for |δ3,4| = 2. Hence according to
Theorem 3.1 there is a basis of

|δ1,2|+ |δ1,3|+ |δ1,4|+ |δ2,3|+ |δ2,4|+ |δ3,4| = 7

global dependencies. With Theorem 4.1 we find for κ = 2 the global de-
pendencies

∑
j `(1, j) =

∑
j `(2, j),

∑
j `(1, j) =

∑
j `(3, j),

∑
j `(1, j) =∑

j `(4, j),
∑

j `(2, j) =
∑

j `(3, j),
∑

j `(2, j) =
∑

j `(4, j),
∑

j even `(3, j) =∑
j even `(4, j),

∑
j odd `(3, j) =

∑
j odd `(4, j).

Since
∑

j `(1, j) =
∑

j `(2, j) =
∑

j `(3, j) =
∑

j `(4, j) the equations∑
j `(2, j) =

∑
j `(3, j),

∑
j `(2, j) =

∑
j `(4, j) and∑

j odd `(3, j) =
∑

j odd `(4, j) depend on the other four equations which

are linearly independent. (It follows from Van Dalen’s proof of Conjec-
ture 3.2 in case k = 4 that there are exactly four linearly independent
equations with constant coefficients.)

Two linearly independent global dependence relations with coeffi-
cients linear in j can be found with Theorem 4.1. The directions
(1, 0), (0, 1), (1, 1) yield the equation∑

j

j`(1, j) +
∑
j

j`(2, j)−
∑
j

j`(3, j) = 0.

The directions (1, 0), (0, 1), (1,−1) yield the independent equation∑
j

j`(1, j)−
∑
j

j`(2, j)−
∑
j

j`(4, j) = 0.

The other equations with linear coefficients are dependent on these two.
Finally, according to Theorem 4.1 there is a dependency with qua-

dratic coefficients, unique up to a constant factor,

2
∑
j

j2`(1, j) + 2
∑
j

j2`(2, j)−
∑
j

j2`(3, j)−
∑
j

j2`(4, j) = 0.

The 4 + 2 + 1 = 7 equations are linearly independent and therefore
form a basis. Actually they are equivalent with the seven equations
found in [9]. This shows that the seven dependencies found in that
paper are all global. �

Example 4.2. Consider the four directions

D = {d1 = (1, 1),d2 = (1,−1),d3 = (1,−3),d4 = (3, 2)}.
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Set δh,i = dhei − dieh for 1 ≤ h < i ≤ 4. We have δ1,2 = −2, δ1,3 =
−4, δ1,4 = −1, δ2,3 = −2, δ2,4 = 5, δ3,4 = 11. Then according to Theorem
3.1 there is a basis of

|δ1,2|+ |δ1,3|+ |δ1,4|+ |δ2,3|+ |δ2,4|+ |δ3,4| = 25

global dependencies. With Theorem 4.1 we find for κ = 2 the global
dependencies∑

j≡h(mod 2) `(1, j) =
∑

j≡h(mod 2) `(2, j) for h = 0, 1,∑
j≡h(mod 4) `(1, j) =

∑
j≡h(mod 4) `(3, j) for h = 0, 1, 2, 3,∑

j `(1, j) =
∑

j `(4, j),∑
j≡h(mod 2) `(2, j) =

∑
j≡h(mod 2) `(3, j) for h = 0, 1,∑

j≡h(mod 5) `(2, j) =
∑

j≡h(mod 5) `(4, j) for h = 0, 1, . . . , 4,∑
j≡h(mod 11) `(3, j) =

∑
j≡h(mod 11) `(4, j) for h = 0, 1, . . . , 10.

As in the previous example from each of the last three series of equa-
tions one can be omitted, because they are dependent on the others.
Moreover another equation is dependent on the remaining equations
among the first three series with h even. The remaining 21 equations
are linearly independent.

Three linearly independent global dependence relations with non-
constant coefficients can be found with Theorem 4.1. The directions
(1, 1), (1,−1), (1,−3) yield the linear equation with linear coefficients
in j ∑

j even

j`(1, j)− 2
∑
j even

j`(2, j) +
∑
j even

j`(3, j) = 0,

and similarly for j odd. The directions (1,−1), (1,−3), (3, 2) yield the
independent linear equation with linear coefficients

11
∑
j

j`(2, j)− 5
∑
j

j`(3, j)− 2
∑
j

j`(4, j) = 0.

The two equations which can be generated for the other triples of di-
rections depend on these equations.

Finally, according to Theorem 4.1 there is a dependency with qua-
dratic coefficients, unique up to a constant factor,

55
∑
j

j2`(1, j) + 22
∑
j

j2`(2, j)− 5
∑
j

j2`(3, j)− 8
∑
j

j2`(4, j) = 0.

The 21 + 3 + 1 = 25 remaining equations form a basis for the global
dependencies.
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5. Recurrence relations for the coefficients

We start with an assertion which in fact had already been noticed
(though not explicitly formulated) by Van Dalen [5], p. 13.

Let a = (a, b) ∈ A. Consider a global dependency (3). Denote by

ci(a) the value of ci,j for which eia − dib = j. Thus
∑k

i=1 ci(a) is the
sum of all the coefficients of the lines through a in the directions of D.

Lemma 5.1. For every i, j with i = 1, . . . , k and j ∈ Z we have a
global dependency (3) if and only if

∑k
i=1 ci(a) = 0 for every a ∈ Z2.

Proof. If (3) holds for every set A, then it holds for every single-
ton {a}. All the lines in the directions of D through {a} yield the
same line sum f(a). Hence we find from (3) for all a ∈ Z2 that

0 =
∑k

i=1

∑
j∈Z ci,j`(i, j) = f(a)

∑k
i=1 ci(a). We are free to choose

f(a) 6= 0.

On the other hand, suppose for every a ∈ Z2 we have
∑k

i=1 ci(a) = 0.
Let A ⊂ Z2. Let f : A→ R be any table. Then

k∑
i=1

∑
j∈Z

ci,j`(i, j) =
k∑
i=1

∑
(a,b)∈A, eia−dib=j

ci,jf((a, b)) =
∑
a∈A

f(a)
k∑
i=1

ci(a) = 0.

�

The following theorem displays the structure of the coefficients ci,j.
It extends Van Dalen’s result on the degrees of the coefficients of global
dependencies. For a less explicit existence result see [17], Theorem 5.2
or [16], Theorem 3.5.5.

Theorem 5.1. Let D = {(d1, e1), . . . , (dk, ek)} be a finite set of primi-
tive directions. For any i with 1 ≤ i ≤ k let ci,j be the (real) coefficient
of a global dependency corresponding to the line eix−diy = j for j ∈ Z.
Set δh,i = dhei − dieh for all h and

(9)
k∏

h=1, h6=i

(1− xδh,i) =
∑
n∈Z

ri,nx
n.

Then (ci,j)j∈Z satisfies the recurrence relation

(10)
∑
n∈Z

ri,nci,j+n = 0

of order
∑k

h=1,h6=i |δh,i|.

The following consequence of Theorem 5.1 makes a remark of Stolk
at page 131 of [16] explicit.
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Corollary 5.1. Under the conditions of Theorem 5.1 let be given a
global dependence relation (3) and some i ∈ {1, . . . , k}. Then ci,j =
O(jk−2) for |j| → ∞. If gcdh6=i|δh,i| = 1, then there is a constant

ci ∈ R such that ci,j = cij
k−2 +O(jk−3) for |j| → ∞.

The following variant of Corollary 5.1 states that restricted to the
lattice ΛD for every i ∈ {1, . . . , k} the sequence (ci,j)j∈Z has a dominant
term of degree k − 2.

Corollary 5.2. In the notation of Theorem 5.1, let m = gcdh,i|δh,i|.
Then for i = 1, . . . , k;µ = 0, 1, . . . ,m − 1 there is a constant c∗i,µ ∈ R
such that ci,jm+µ = c∗i,µj

k−2 +O(jk−3) for |j| → ∞.

In the proof of Theorem 5.1 we consider the hull of the projection of a
parallelopiped in Zk to Z2 with sides of the projection in the directions
of D. The only two integer points on a side of the projection have
opposite values so that the corresponding line sum vanishes.

Proof of Theorem 5.1. Without loss of generality we may assume i = 1.
Let (x0, y0) ∈ Z2 with e1x0 − d1y0 = j. Let H ⊂ {2, . . . , k}. We apply
Lemma 5.1 to each point of the form (x0, y0)+

∑
h∈H(dh, eh) and obtain

c1,j+
∑
h∈H δ1,h +

k∑
κ=2

cκ,eκx0−dκy0+
∑
h∈H δκ,h = 0.

Hence,

(11)
∑
H

(−1)|H|

(
c1,j+

∑
h∈H δ1,h +

k∑
κ=2

cκ,eκx0−dκy0+
∑
h∈H δκ,h

)
= 0.

Observe that for κ /∈ H, by δκ,κ = 0,

cκ,eκx0−dκy0+
∑
h∈H δκ,h = cκ,eκx0−dκy0+

∑
h∈H∪{κ} δκ,h

,

and that these terms in (11) have opposite signs, since H contains one
term less than H ∪ {κ}. It follows that the terms for κ > 1 in (11)
cancel in pairs. Thus we obtain the recurrence

(12)
∑
H

(−1)|H|c1,j+
∑
h∈H δ1,h = 0 for j ∈ Z.

Note that∑
n∈Z

r1,nx
n =

k∏
h=2

(1− xδ1,h) =
∑
H

(−1)|H|x
∑
h∈H δ1,h .
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Hence r1,n =
∑∑

h∈H δ1,h=n (−1)|H|. It follows from (12) that, for j ∈ Z,∑
n∈Z

r1,nc1,j+n =
∑
n∈Z

∑
∑
h∈H δ1,h=n

(−1)|H|c1,j+n = 0.

�

Example 5.1. [Continuation of Example 4.2]
We consider the case i = 1, (x0, y0) = (0, 0) of the proof of Theorem 5.1.
We find by Lemma 5.1 forH = {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4},
respectively, using that δh,i = −δi,h, δh,h = 0 for all h, i and δ1,2 =
−2, δ1,3 = −4, δ1,4 = −1, δ2,3 = −2, δ2,4 = 5, δ3,4 = 11:

c1,0 + c2,0 + c3,0 + c4,0 = 0
c1,−2 + c2,0 + c3,2 + c4,−5 = 0
c1,−4 + c2,−2 + c3,0 + c4,−11 = 0
c1,−1 + c2,5 + c3,11 + c4,0 = 0
c1,−6 + c2,−2 + c3,2 + c4,−16 = 0
c1,−3 + c2,5 + c3,13 + c4,−5 = 0
c1,−5 + c2,3 + c3,11 + c4,−11 = 0
c1,−7 + c2,3 + c3,13 + c4,−16 = 0

(The second indices can (also) be obtained by applying Lemma 5.1 to
the functions x−y,−x−y,−3x−y, 2x−3y at the points (0, 0), (−1, 1), (−1, 3), (−3,−2), (−2, 4), (−4,−1), (−4, 1), (−5, 2),
respectively.) By adding these expressions with coefficients 1,-1,-1,-
1,1,1,1,-1, respectively, we find that the terms with first index 2, 3 or
4 cancel and that

c1,0 − c1,−2 − c1,−4 − c1,−1 + c1,−6 + c1,−3 + c1,−5 − c1,−7 = 0.

We conclude that for j ∈ Z the following recurrence holds:

c1,j − c1,j−1 − c1,j−2 + c1,j−3 − c1,j−4 + c1,j−5 + c1,j−6 − c1,j−7 = 0.

Its characteristic power sum is

1−x−1−x−2+x−3−x−4+x−5+x−6−x−7 = (1−xδ1,2)(1−xδ1,3)(1−xδ1,4)

in accordance with Theorem 5.1. �

Proof of Corollary 5.1. Fix i. From (9) we see that
∑Mi

m=0 ri,mx
m has a

(k − 1)-multiple root 1 and that every other root of this polynomial is
a root of unity of multiplicity at most k−1. Moreover, the multiplicity
of a root different from 1 can only be k − 1 if gcdh6=i|δh,i| > 1. It
follows from (10) that there exist a positive integer Ri, roots of unity
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χi,1 = 1, χi,2, . . . , χi,Ri and positive integers ρi,µ with ρi,1 = k − 1 and
ρi,µ ≤ k − 1 for all µ such that

(13) ci,j =

Ri∑
µ=1

Pi,µ(j)χji,µ

where Pi,µ(x) ∈ C[x] is a polynomial of degree less than ρi,µ for µ =
1, . . . , Ri. Hence ci,j = O(jk−2) as |j| → ∞.

If gcdh6=i|δh,i| = t for some t, then t divides every δh,i for 1 ≤ h ≤ k.
Thus, if gcdh6=i|δh,i| = 1, then 1 is the only root of multiplicity k − 1.

It follows that there is a ci ∈ R such that ci,j = cij
k−2 + O(jk−3) as

|j| → ∞. �

Proof of Corollary 5.2. We first prove that for i = 1, . . . , k we have

(14) gcdh;h6=i |δh,i| = gcdh,j;h6=j |δh,j|.

Set v = gcdh,j;h6=j |δh,j| and vi = gcdh6=i |δh,i| for i = 1, . . . , k. We shall
show that v = v1 = · · · = vk. Let h, j ∈ {2, . . . , k} with h, j distinct.
Since vh divides both dhe1 − ehd1 and dhej − ehdj we deduce that vh
divides both dh(d1ej− e1dj) and eh(d1ej− e1dj). By gcd(dh, eh) = 1 we
obtain that vh divides d1ej−e1dj. Since this is valid for all j > 1, we find
that vh divides v1. By symmetry v1 divides vh. Hence v1 = · · · = vk.
Since v = gcd(v1, . . . , vk), we also have v = v1.

Fix i ∈ {1, . . . , k}. Then

k∏
h=1,h6=i

(1− xδh,i/m) =:
∑
n∈Z

r∗i,nx
n

is a finite sum with integer coefficients r∗i,n. Hence, by Theorem 5.1, we
have the finite recurrence relation∑

n∈Z

r∗i,nci,(j+n)m = 0 for every j ∈ Z.

By (14) we have (gcdh6=i|δh,i|)/m = 1. As in the second statement of
Corollary 5.1, it follows that there is a constant c∗i,0 ∈ R such that

c∗i,jm = c∗i,0j
k−2 + O(jk−3) for |j| → ∞. In view of Lemma 4.3 we find

that for every µ ∈ {0, 1, . . . ,m − 1} there is a constant c∗i,µ ∈ R such

that ci,jm+µ = c∗i,µ j
k−2 +O(jk−3) for |j| → ∞. �

It follows from Theorem 5.1 (cf. (13)) that ci,j is polynomial in j on
the arithmetic progressions modulo m for a certain m. The following
theorem makes this explicit. We denote by j(mod m) the number
j0 ∈ {0, 1, . . . ,m− 1} such that j − j0 is divisible by m.



CONSISTENCY CONDITIONS FOR DISCRETE TOMOGRAPHY 15

Theorem 5.2. Let D = {(d1, e1), . . . , (dk, ek)} be a finite set of prim-
itive directions. For any i with 1 ≤ i ≤ k let ci,j be the coefficient of
a global dependency corresponding to the line eix− diy = j for j ∈ Z.
Set δh,i = dhei − dieh. For κ = 0, 1, . . . , k − 2 let δH,i = gcdh∈H |δh,i|
where the gcd is taken over all H ⊂ {1, 2, . . . , k} \ {i}.

a) Then there exist constants ci,κ,δH,i,m for m = 0, . . . , δH,i − 1 and
all H ⊂ {1, . . . , k} \ {i} with |H| = κ+ 1 such that

(15) ci,j =
k−2∑
κ=0

∑
δH,i

ci,κ,δH,i,jj
κ where ci,κ,δH,i,j = ci,κ,δH,i,j(mod δH,i).

Here the second summation is over all distinct values δH,i with |H| =
κ+ 1.

b) Set ∆i,κ = lcm δH,i where the lcm is taken over all H with |H| =
κ+1 and i /∈ H. Then there exist constants ci,κ,m for m = 0, . . . ,∆i,κ−1
such that

(16) ci,j =
k−2∑
κ=0

ci,κ,jj
κ where ci,κ,j = ci,κ,j(mod ∆i,κ)

for i = 1, . . . , k and j ∈ Z.

Proof of Theorem 5.2. Without loss of generality we may assume i = 1.
Hence, by Theorem 5.1, for all j ∈ Z,

(17)
∑
n∈Z

r1,nc1,j+n = 0 where
k∏

h=2

(1− xδh,1) =
∑
n∈Z

r1,nx
n.

All the roots of
∑

n∈Z r1,nz
n are roots of unity. Let χ be a t-th root

of unity which is a zero of
∑

n∈Z r1,nx
n of multiplicity at least κ + 1.

Since 1− xδh,1 has simple roots, t divides δh,1 for at least κ + 1 values
h > 1. Hence t divides δH,1 for some H ⊂ {2, . . . , k} with |H| = κ+ 1.
Conversely, suppose t divides δH,1 for some H ∈ {2, . . . , k} with |H| =
κ + 1. Then t divides δh,1 for at least κ + 1 values h ∈ {2, . . . , k}
and every t-th root of unity is a zero of

∑
n∈Z r1,nx

n of multiplicity at
least κ + 1. Thus the set of orders t of the zeros of

∑
n∈Z r1,nx

n with
multiplicity at least κ+ 1 equals the set of the divisors of the values of
δH,1 which occur for some H with |H| = κ+ 1.

Let (χs)s∈S be set of the roots of
∑

n∈Z r1,nx
n. Denote the multi-

plicity of χs by ms for s = 1, . . . , S. Then, by (17),
∏k

h=2(1− xδh,1) is
the characteristic polynomial of the recurrence and therefore there are
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complex numbers c1,κ,s such that, for j ∈ Z,

c1,j =
S∑
s=1

ms−1∑
κ=0

c1,κ,s j
κχjs.

Hence,

(18) c1,j =
S∑
s=1

ms−1∑
κ=0

(c1,κ,s χ
j
s)j

κ =
k−2∑
κ=0

jκ
S∑

s=1,ms>κ

c1,κ,s χ
j
s.

Note that (χjs)j∈Z is periodic modulo the order ts of the root of unity
χs. Recall that the set of numbers ts corresponding to roots of unity χs
which are zeros of

∑
r1,nx

n with multiplicity greater than κ equals the
set of the divisors of δH,1 for all the setsH ⊂ {2, . . . , k} with |H| = κ+1.
So for the coefficient of jκ we can combine terms with χs’s of which
the order ts divides the same δH,1 with |H| = κ + 1. Thus there are
constants c1,κ,δH,1,m for m = 0, . . . , δH,1−1 and all H ⊂ {2, . . . , k} with
|H| = κ+ 1 such that

(19) c1,j =
k−2∑
κ=0

∑
δH,1

c1,κ,δH,1,j(mod δH,1) j
κ.

This proves part a).
b) Since ∆i,κ is a multiple of all δH,1 with |H| = κ + 1, there are

constants c1,κ,m ∈ R for m = 0, . . . , δ1,κ − 1 such that

(20) c1,j =
k−2∑
κ=0

c1,κ,j(mod ∆1,κ) j
κ.

for all integers j. �

Example 5.2. In Example 4.1 the following complete set of 7 linearly
independent dependencies is given forD = {(1, 0), (0, 1), (1, 1), (1,−1)}:

nr. c1,j c2,j c3,j c4,j

(1) 1 −1 0 0
(2) 1 0 −1 0
(3) 1 0 0 −1
(4) 0 0 (−1)j (−1)j+1

(5) j j −j 0
(6) j −j 0 −j
(7) 2j2 2j2 −j2 −j2

We find that the left-hand side of (9) gives x−2(1−x)3 for i = 1, (1−x)3

for i = 2, −x−1(1− x)2(1− x2) for i = 3 and −x−4(1− x)2(1− x2) for



CONSISTENCY CONDITIONS FOR DISCRETE TOMOGRAPHY 17

i = 4. In this example we have |δ3,4| = 2 and |δh,j| = 1 for all other
values h 6= j. According to Theorem 5.2 a) with κ = 0 the sequences
(c1,j) and (c2,j) are constant and the sequences (c3,j) and (c4,j) are
periodic modulo 2 as in dependencies (1)-(4). According to Theorem
5.2 a) with κ = 1 all the sequences (ci,j) are constant multiples of j as
in dependencies (5)-(6) and applied with κ = 2 all the sequences (ci,j)
are constant multiples of j2 as in dependency (7).

6. Sets of generators for global dependencies

In this section we show that Theorem 4.1 yields a set of generators for
the global dependencies. First we show that every global dependency
is a linear combination of global dependencies of distinct powers.

Theorem 6.1. Let D = {(d1, e1), . . . , (dk, ek)} be a set of primitive
directions. Let be given an arbitrary global dependency

(21)
k∑
i=1

∑
j∈Z

ci,j`(i, j) = 0.

Then
k∑
i=1

∑
j∈Z

ci,κ,jj
κ`(i, j) = 0

is a global dependency for κ = 0, 1, . . . , k − 2, where the numbers ci,κ,j
are defined in Theorem 5.2 and are periodic in j with period ∆i,κ.

Proof. Let be given an arbitrary global dependency (21). Then we
have, by (2), ∑

(x,y)∈A

f(x, y)
k∑
i=1

∑
j:eix−diy=j

ci,j = 0.

Since this is true for every finite set A ⊂ Z2, we may apply it to
A0 := {(x0, y0)} with f(x0, y0) 6= 0. This gives

k∑
i=1

∑
j:eix0−diy0=j

ci,j = 0.

According to Theorem 5.2 b) there exist numbers ci,κ,m for
m = 0, . . . ,∆i,κ − 1 such that

(22) ci,j =
k−2∑
κ=0

ci,κ,j(mod ∆i,κ)j
κ.
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Hence
k−2∑
κ=0

k∑
i=1

(eix0 − diy0)κci,κ,eix0−diy0(mod ∆i,κ) = 0.

We may replace (x0, y0) by (x0 + s∆i,κ, y0 + t∆i,κ) for any s, t ∈ Z
and the coefficients do not change. It follows that the polynomial∑k−2

κ=0

∑k
i=1 ci,κ,j(eix−diy)κ = 0 on the affine lattice (x0, y0)+(Z∆0,Z∆0)

where ∆0 = lcmi,κ∆i,κ. Therefore the homogeneous polynomial
∑k

i=1 ci,k−2,jj
k−2

is of order O(max(|x|, |y|)k−3) as max(|x|, |y|) → ∞ on this affine lat-

tice. We conclude that
∑k

i=1 ci,k−2,j = 0 on the affine lattice. Since
(x0, y0) is arbitrary and ci,k−2,j depends only on i, k−2 and j (mod ∆i,κ),

we have
∑k

i=1 ci,k−2,j = 0 for all j. Thus

(23)
k∑
i=1

∑
j∈Z

ci,k−2,jj
k−2`(i, j) =

∑
(x,y)∈A

f(x, y)
∑
j∈Z

jk−2

k∑
i=1

ci,k−2,j = 0.

Since the difference of two global dependencies is a global depen-
dency,

∑k−3
κ=0

∑k
i=1 ci,κ,j(eix − diy)κ = 0 is a global dependency. By

subsequently applying the above argument to the homogeneous parts
of degree k − 3, k − 4, . . . , 0 we obtain that

∑k
i=1 ci,κ,jj

κ`(i, j) = 0 is a
global dependency for κ = k − 2, k − 3, . . . , 0. �

Theorem 6.2. Let D = {(d1, e1), . . . , (dk, ek)} be a finite set of prim-
itive directions. The set of dependencies constructed in Theorem 4.1
provides a set of generators for the linear space of the global dependen-
cies.

Proof. Let be given an arbitrary global dependency (21). Then accord-

ing to Theorem 6.1
∑k

i=1 ci,κ,jj
κ`(i, j) = 0 is a global dependency for

κ = 0, 1, . . . , k− 2. Fix the degree κ. According to Theorem 5.2 a) the
coefficient c1,κ,jj

κ of this homogeneous dependency has the form

(24)
∑
δH,1

c1,κ,δH,1,j(mod δH,1) j
κ,

where the summation is over all distinct values δH,1 of H ⊂ {2, . . . , k}
with |H| = κ+ 1. Consider such an H and put mH = δH,1. Let ΛH be
the lattice generated by the directions dh with h ∈ H ∪{1}. Then this
lattice has mH affine lattices by (14). For each affine lattice Theorem
4.1 provides a dependency with nonzero coefficients for directions d1

and dh with h ∈ H and zero coefficients for the other directions. By
subtracting suitable multiples of these dependencies from the original
homogeneous dependency of degree κ the coefficients c1,κ,mH ,j(mod mH)

in (24) cancel. We do so for all such values δH,1. Thus we are left with
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a homogeneous dependency of power κ such that all coefficients c1,j

are zero. Next we apply the same procedure to this dependency for all
values δH,2 where H ⊂ {3, . . . , k} with |H| = κ + 1. After subtraction
of suitable multiples of degeneracies constructed in Theorem 4.1 this
yields a homogeneous dependency of power κ where the coefficients c1,j

and c2,j are all zero. We proceed with 3, 4, . . . until we are left with a
dependency where all the coefficients ci,j for i = 1, 2, . . . , k − κ− 1 are
zero. Thus this is a dependency of degree κ restricted to the κ+1 direc-
tions dk−κ, . . . ,dk. By Corollary 4.2 this dependency is identically zero.
We conclude that the homogeneous part of degree κ of the originally
given dependency is a linear combination of dependencies constructed
in Theorem 4.1. By Theorem 6.1 this implies that the original global
dependency is a linear combination of global dependencies constructed
in Theorem 4.1. �

Remark 6.1. If, for some κ and i, δH′,i divides δH,i, then it suffices to
consider δH,i only, since by choosing the coefficients for j (mod δH,i) the
values of the coefficients for j (mod δH′,i) are implied. If δH′,i = δH,i,
then it suffices to consider only one of them for the same reason. The
not considered dependencies of type Theorem 4.1 are dependent on
the remaining dependencies and therefore superfluous. This induces a
considerable reduction in the number of dependencies to be considered,
cf. Examples 6.1 and 7.1.

Example 6.1. [Continuation of Example 4.2.]
We consider the four directions D = {d1 = (1, 1),d2 = (1,−1),d3 =
(1,−3),d4 = (3, 2)}. We know from Example 4.2 that there is a basis
of 25 degeneracies, viz. one of power 2, three of power 1 and 21 of
power 0. Theorem 6.2 gives

c1,j =
2∑

κ=0

∑
δH,1

c1,κ,δH,1,j(mod δH,1) j
κ.

We have |δ2,1| = 2, |δ3,1| = 4, |δ4,1| = 1. Hence, in shortened notation,
δ23,1 = 2, δ24,1 = 1, δ34,1 = 1, δ234,1 = 1. In view of Remark 6.1 we
only consider δ23,1 = 2 for κ = 1 and δ3,1 = 4 for κ = 0. Thus
c1,j = c1,2,jj

2 + c1,1,jj + c1,0,j where c1,2,j = c1,2,0 for all j, c1,1,j = c1,1,0

for j even and c1,1,j = c1,1,1 for j odd, whereas c1,0,j = c1,0,j(mod4) for all
j. Thus 7 degeneracies of type Theorem 4.1 are necessary to neutralize
direction d1.

We continue with direction d2 with respect to directions d3,d4. We
have |δ3,2| = 2, |δ4,2| = 5 and therefore |δ34,2| = 1. Hence we use one



20 LAJOS HAJDU AND ROB TIJDEMAN

dependency of power 1 and 2 + 5 = 7 degeneracies of power 0 of type
Theorem 4.1 to eliminate the dependence on direction d2.

Finally we consider direction d3 with respect to direction d4. We
have |δ3,4| = 11. Hence we use 11 degeneracies of type Theorem 4.1 to
neutralize the directions d3 and d4.

We conclude that any given dependency can be written as a linear
combination of one dependency of power 2, three of power 1 and 4 +
7 + 11 = 22 of power 0 of type Theorem 4.1. The latter number is
just one more than strictly needed according to Theorem 3.1 and 9
dependencies less than the 25+5+1=31 dependencies which have to be
considered if we do not take Remark 6.1 into account. �

By Theorem 6.2 the following conjecture is a reformulation of Con-
jecture 3.2.

Conjecture 6.1. The dimension of the subspace of global dependencies
of power κ− 2 constructed in Theorem 4.1 is gκ for κ = 2, 3, . . . , k.

7. Correction of noise

Now we show how to use our results for correcting noise, thus when,
for fixed A and D, the measured line sums deviate from the actual
ones. As before, we work over K = R. Our purpose is to find and
explicitly construct the table best fitting the measured line sums. In
fact, in [12] we have worked out such a scheme. However, here we can
use the information provided in Sections 4 and 6 to introduce a more
efficient method.

First we briefly sketch our settings. Let A be any nonempty, finite
subset of Z2. Let D = {(d1, e1), . . . , (dk, ek)} be a finite set of primitive
directions. For i ∈ {1, . . . , k} write Ri for the set of integers j for which
at least one point (x, y) ∈ A exists with eix − diy = j. Suppose that
as an approximation of the line sums `(i, j) of an unknown function
f0 : A→ R, we measured the real numbers b(i, j) for i = 1, . . . , k and
j ∈ Ri.

Now one can formulate the challenge.

Problem. Minimize the error
k∑
i=1

∑
j∈Ri

|`(i, j)− b(i, j)|2.

To handle the problem, our method in Section 4 of [12] has been the
following. Write B for the t × s incidence matrix, that is, the (p, q)-
th entry of B is 1 if the p-th point of A (in an arbitrary, but fixed
ordering) belongs to the q-th line through A taken in the directions in
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D and 0 otherwise. Here t = |R1| + · · · + |Rk| and s = |A|. Then the
set of possible line sums is just the column space C(B) of B, which
is a subspace of Rt. So to solve the above problem, we only need to
calculate the orthogonal projection b′ of the measured vector b onto
C(B), which can be done by standard techniques. The first step is to
find a basis for C(B), that is, we need to find a maximal independent
system out of the s columns of B. Since s represents the cardinality of
A, it may be of order the diameter of A squared.

For a more efficient, but possibly less accurate approach, recall that
by Theorem 3.2, the orthogonal complement of C(B) is just the linear
subspace S of dependencies generated by the rows of B. Thus to find b′,
we have an alternative way: we may choose a basis for S, and then (by
standard techniques) we can find the orthogonal projection b′′ of b onto
S. Then we plainly have b′ = b−b′′. Since the number of line sums is of
order the product of |D| and the diameter of A, this approach is more
efficient than the one in [12] when the diameter of A is large compared
to |D|. Moreover, Theorem 4.1 enables us to compute a basis for the
global dependencies very efficiently.

We follow the above ideas in our treatment for reducing noise in the
following method.

Method for improving the noisy measurements.

Input. A finite set D of primitive directions, a finite set A ⊂ Z2, and
the measured vector b ∈ Rt of the line sums of A in the directions in
D.

Step 1. The D-part.
Find a basis for the subset Sg of global dependencies.

Details and background. The dependencies given in Theorem 4.1
form a generating system for the subspace Sg of S corresponding to
the global dependencies. By standard techniques, we can find a basis
for Sg. The dependencies depend only on D, so are independent of A.
If different sets A for the same set D are considered, this step has to
be done only once.

Step 2. The A-part.
Find a basis of the global dependencies restricted to A.

Details and background. The global dependencies found in Step 1
are now expressed in terms of A. The restriction of the basis obtained
in Step 1 to A may form a linearly dependent system. Next compute
the orthogonal projection of an arbitrary point onto the hyperplane
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generated by the generating system (by standard techniques, e.g. by
the Gram-Schmidt method). If for fixed D and A different functions
f and measured values b are considered, this step has to be done only
once.
Step 3. The b-part.
Calculate the orthogonal projection bg of b onto the subspace generated
by the global dependencies restricted to A.

Details and background. This is just a substitution.

Output. The vector b− bg.

If Step 3 has to be performed only once, then it is simpler to com-
pute the orthogonal projection not in Step 2, but in Step 3 for the
numerically given point b in place of for a general point.

Global dependencies form the essential part of all dependencies. In
some cases all dependencies come from global ones, e.g. if A is convex
and D-rounded (see results of Stolk and Batenburg [17]). In that case,
b′ = b − bg, that is we found the best possible line sum vector closest
to b. In general, b− bg does not belong to C(B), but it is closer to this
subspace than b, and by that the noise is significantly reduced. To see
this, let L be the orthogonal complement of Sg in Rt. Then we clearly
have C(B) ⊆ L. Let

s1, . . . , sα, sα+1, . . . , sα+β, sα+β+1 . . . , sα+β+γ

be an orthonormal basis for Rt (with α+β+γ = t) such that s1, . . . , sα
and s1, . . . , sα+β form bases for C(B) and L, respectively. Write

b = λ1s1 + · · ·+ λα+β+γsα+β+γ

with some real coefficients λ1, . . . , λα+β+γ. Then we have

b′ = λ1s1 + · · ·+ λαsα,

and

b− bg = λ1s1 + · · ·+ λα+βsα+β.

Thus

b− bg − b′ = λ1sα+1 + · · ·+ λα+βsα+β,

while

b− b′ = λ1sα+1 + · · ·+ λα+β+γsα+β+γ.

This shows that in general |b− b′| is larger than |b− bg − b′| indeed.

We illustrate our approach by two examples.
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Example 7.1. This is the continuation of Examples 4.1 and 5.2. As
input, let

D = {d1 = (1, 0),d2 = (0, 1),d3 = (1, 1),d4 = (1,−1)},
and

A = {(a, b) ∈ Z2 : 0 ≤ a, b ≤ 3}.

Step 1. Using Theorem 4.1 we found in Example 4.1 that the seven
dependencies ∑

j

`(1, j) =
∑
j

`(2, j),
∑
j

`(1, j) =
∑
j

`(3, j),

∑
j

`(1, j) =
∑
j

`(4, j),
∑
j even

`(3, j) =
∑
j even

`(4, j),

∑
j

j`(1, j) +
∑
j

j`(2, j)−
∑
j

j`(3, j) = 0,

∑
j

j`(1, j)−
∑
j

j`(2, j)−
∑
j

j`(4, j) = 0,

2
∑
j

j2`(1, j) + 2
∑
j

j2`(2, j)−
∑
j

j2`(3, j)−
∑
j

j2`(4, j) = 0

form a basis of Sg.

Step 2. We order the points of A in lexicographically increasing order.
Recalling that by lines in direction (d, e) we mean lines of the form
ex− dy = j, we have

R1 = {−3,−2,−1, 0}, R2 = {0, 1, 2, 3},

R3 = {−3,−2,−1, 0, 1, 2, 3}, R4 = {−6,−5,−4,−3,−2,−1, 0}
which in this order correspond to the rows of the incidence matrix B
(which we suppress).

The following seven vectors are the restrictions of the above depen-
dencies to A:

g1 = (1, 1, 1, 1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

g2 = (1, 1, 1, 1, 0, 0, 0, 0,−1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0, 0),
g3 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1,−1,−1,−1,−1,−1),

g4 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0,−1, 0,−1, 0,−1, 0,−1),
g5 = (−3,−2,−1, 0, 0, 1, 2, 3, 3, 2, 1, 0,−1,−2,−3, 0, 0, 0, 0, 0, 0, 0),
g6 = (−3,−2,−1, 0, 0,−1,−2,−3, 0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0),

g7 = (18, 8, 2, 0, 0, 2, 8, 18,−9,−4,−1, 0,−1,−4,−9,−36,−25,−16,−9,−4,−1, 0).

Step 3. Suppose that for the line sums of a table f : A → R we
measured

b = (3.9, 2.9, 1.9, 1.1, 4.1, 3.1, 2.1, 1.1, 1.1, 2.1, 3.1, 4.1, 0.1, 0.1, 0.1, 0.9, 0.9, 1.9, 2.1, 2.1, 1.1, 1.1).
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Now a simple calculation gives that the orthogonal projection of b onto
S, up to two digit precision, is

b′′ = (−0.08,−0.10,−0.11,−0.13, 0.00, 0.03, 0.06, 0.10, 0.09, 0.09,
0.08, 0.08, 0.06, 0.06, 0.04,−0.09,−0.06,−0.04,−0.01, 0.01, 0.04, 0.05).

Thus the projection of b onto L (again up to two digit precision) is

b′ := b− b′′ = (3.98, 3.00, 2.01, 1.23, 4.10, 3.07, 2.04, 1.00, 1.01, 2.01,

3.02, 4.02, 0.04, 0.04, 0.06, 0.99, 0.96, 1.94, 2.11, 2.09, 1.06, 1.05).

Actually we find exactly
601160b′ = (2391599, 1801261, 1209593, 736827, 2464371, 1845557,
1225413, 603939, 608506, 1208826, 1817658, 2419308, 23670, 25490,
35822, 596754, 576930, 1166778, 1268516, 1258534, 640210, 631558).
Since A is rectangular, it follows from [9] that all dependencies are
global. Thus b′ is the orthogonal projection on C(B). The tables with
line sums b′ can be found by solving a linear equation system (with
matrix B). �

Example 7.2. We work with similar settings, only with a small
change. On the one hand, it will underline the uniformity of our method
with respect to D, and we can also illustrate that the error is reduced,
even if the restricted global dependencies do not generate the subspace
of all dependencies over A.

We take the same set of directions

D = {d1 = (1, 0),d2 = (0, 1),d3 = (1, 1),d4 = (1,−1)},
as in Example 7.1, but we put

A = {(a, b) ∈ Z2 : 0 ≤ a, b ≤ 3} ∪ {(4, 0)}.

Step 1. This is the same as in Example 7.1.

Step 2. We order the points of A in lexicographically increasing order.
Now we have

R1 = {−3,−2,−1, 0}, R2 = {0, 1, 2, 3, 4},
R3 = {−3,−2,−1, 0, 1, 2, 3, 4}, R4 = {−6,−5,−4,−3,−2,−1, 0}

which in this order correspond to the rows of the incidence matrix B
(which we suppress again). Note that the difference with respect to
Example 7.1 is that now we have an extra 4 in R2 and in R3.

The global dependencies for A are now given by

g1 = (1, 1, 1, 1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
g2 = (1, 1, 1, 1, 0, 0, 0, 0, 0,−1,−1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0, 0),
g3 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1,−1,−1,−1,−1,−1),

g4 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,−1, 0,−1, 0,−1, 0,−1),
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g5 = (−3,−2,−1, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0,−1,−2,−3,−4, 0, 0, 0, 0, 0, 0, 0),
g6 = (−3,−2,−1, 0, 0,−1,−2,−3,−4, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0),

g7 = (18, 8, 2, 0, 0, 2, 8, 18, 32,−9,−4,−1, 0,−1,−4,−9,−16,−36,−25,−16,−9,−4,−1, 0).

Step 3. Suppose that for the line sums of a table f : A → R we
measured

b = (3.9, 2.9, 1.9, 1.1, 4.1, 3.1, 2.1, 1.1, 0.1, 1.1, 2.1, 3.1, 4.1, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 1.9, 2.1, 2.1, 1.1, 1.1).

Then we get for bg as the orthogonal projection of b onto S, up to two
digit precision,

bg = (−0.08,−0.09,−0.11,−0.13, 0.00, 0.03, 0.06, 0.09, 0.10, 0.09, 0.09, 0.07,

0.08, 0.06, 0.07, 0.06, 0.08,−0.09,−0.05,−0.05,−0.01,−0.00, 0.04, 0.05).
Thus the projection of b onto Sg (again up to two digit precision) is

b− bg = (3.98, 2.99, 2.01, 1.23, 4.10, 3.07, 2.04, 1.01, 0.00, 1.01, 2.01, 3.03,

4.02, 0.04, 0.03, 0.04, 0.02, 0.99, 0.95, 1.95, 2.11, 2.10, 1.06, 1.05).

Now the important difference is that Sg 6= S, since in this case there
are local dependencies as well. A simple Maple calculation with the
incidence matrix B shows that there is one more linearly independent
dependence relation (which has to be a local one). Clearly, one can
choose the identity that the sums in the directions (0, 1) and (1, 1)
through the point (4, 0) must be equal. This belongs to the vector

g8 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0).

Thus as the orthogonal projection b′′ of b onto S we obtain (again with
two digit precision)

b′′ = (−0.08,−0.10,−0.11,−0.13, 0.00, 0.03, 0.06, 0.10, 0.09, 0.09, 0.09,

0.07, 0.08, 0.06, 0.06, 0.04, 0.09,−0.10,−0.06,−0.04,−0.01, 0.00, 0.04, 0.05).
Hence the projection of b onto C(B) (again up to two digit precision)

is

b′ = b− b′′ = (3.82, 3.00, 2.01, 1.23, 4.10, 3.07, 2.04, 1.00, 0.01, 1.01, 2.01, 3.03,

4.02, 0.04, 0.04, 0.06, 0.01, 1.00, 0.96, 1.94, 2.11, 2.10, 1.06, 1.05).

Actually we obtain exactly
3951480b′ = 15717908, 11817210, 7937643, 4869470, 16197196, 12111700,
8047324, 4004068,−18068, 3994068, 7933685, 11980262, 15898759,
166816, 112713, 165570, 90347, 3894065, 3769306, 7702987, 8347404,
8308489, 4190006, 4129967).
This b′ is the closest consistent (possible) line sum to the measured b.
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We conclude the example by pointing out that though b − bg 6= b′,
the vector b − bg is much closer to b′ than the original b. Indeed, we
have (up to two digit precision)

|b− bg − b′| = 0.16 and |b− b′| = 0.36.

�
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