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Abstract. In this paper we consider Diophantine equations of
the form f(x) = g(y) where f has simple rational roots and g
has rational coefficients. We give strict conditions for the cases
where the equation has infinitely many solutions in rationals with
a bounded denominator. We give examples illustrating that the
given conditions are necessary. It turns out that such equations
with infinitely many solutions are strongly related to Prouhet-
Tarry-Escott tuples. In the special, but important case when g
has only simple rational roots as well, we can give a simpler state-
ment. Also we provide an application to equal products with terms
belonging to blocks of consecutive integers of bounded length. The
latter theorem is related to problems and results of Erdős and Turk,
and of Erdős and Graham.

1. Introduction

Let a1, . . . , ak be distinct rationals and a0 ∈ Q with a0 ̸= 0. Put

(1) f(x) = a0(x− a1) · · · (x− ak)

and let g(y) ∈ Q[y]. In this paper we investigate for which f, g equation

(2) f(x) = g(y)

has infinitely many solutions. Moreover, we study for which f, g this
holds if g is of the form

(3) g(y) = b0(y − b1) · · · (y − bℓ),

where b1, . . . , bℓ are distinct elements of Q and b0 ∈ Q with b0 ̸= 0.
We say that an equation f(x) = g(y) has infinitely many rational
solutions with a bounded denominator if there exists a positive integer
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∆ such that f(x) = g(y) has infinitely many solutions (x, y) ∈ Q2 with
(∆x,∆y) ∈ Z2. Our focus is the question for which f, g equation (2)
has infinitely many solutions (x, y) ∈ Q2 with a bounded denominator.

Using results of Bilu and Tichy [11] and of Davenport, Lewis and
Schinzel [24], both based on a theorem of Siegel [75], we prove the
following theorem.

Theorem 1.1. Let f(x) ∈ Q[x] have only simple rational roots and
let g(x) ∈ Q[x]. Suppose the equation f(x) = g(y) has infinitely many
solutions (x, y) ∈ Q2 with a bounded denominator.

Then there exist positive integers m,n, s with m ∈ {1, 2, 3, 4, 6} or
n ∈ {1, 2} such that deg(f) = ms, deg(g) = ns.

If g has also only simple rational roots and deg(f) ≤ deg(g), then
there exist m ∈ {1, 2}, n, s ∈ Z>0 such that deg(f) = ms, deg(g) = ns.

The first statement will be proved in Section 7. After the proof we
shall argue that if m ∈ {1, 2, 3, 4, 6}, then for every such m,n, s a pair
of polynomials (f, g) can be constructed, f having only simple integral
roots, such that f(x) = g(y) has infinitely many integral solutions
(x, y). For the remaining cases, see Section 11.

The second statement will be proved in Section 9. Observe that it
follows that deg(f) | 2 deg(g).

As illustration of Theorem 1.1 we present some nontrivial examples.
Later more examples will follow.

Example 1.1 (cf. Example 5.2). An example of the second statement
where deg(f) does not divide deg(g). Let

f(x) = (x− 6)(x+ 6), g(y) = (y − 1)(y − 4)(y − 9).

Then f(x) = g(y) has solution

(x, y) = (X(X2 − 7), X2) for every X ∈ Z.
□

Example 1.2 (cf. Example 5.3). An example of the second statement
where deg(f) divides deg(g). Let

f(x) = (x−7)(x−1)(x+1)(x+7), g(y) = 4(y−5)(y−1)(y+1)(y+5).

Consider the Pell equation x2 = 2y2 − 1. It has solutions (Xi, Yi)
∞
i=1

given by (X1, Y1) = (1, 1), (X2, Y2) = (7, 5) and

Xi+1 = 6Xi −Xi−1, Yi+1 = 6Yi − Yi−1 (i = 2, 3, . . . ).

The equation f(x) = g(y) has a solution

(x, y) = (Xi, Yi) for every i ∈ Z>0.
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□
Example 1.3 (cf. Example 7.3). An example of the first statement
for m = 3, n = 4 and s = 1. Let

f(x) = (x+ 286)(x+ 13)(x− 299), g(y) = y4 − 8788y2 + 8541936.

For every X ∈ Z there is a solution

(x, y) = (X4 − 52X2 + 338, X3 − 39X).

□
In Section 2 we give a historical overview of the literature on equa-

tions f(x) = g(y) where f has only simple rational roots. In Section
3 we present the Bilu-Tichy decomposition [11] which is fundamental
for our treatment. Bilu and Tichy attach a standard pair of polyno-
mials (F,G) to each equation f(x) = g(y) which has infinitely many
solutions with a bounded denominator. They distinguish five kinds of
standard pairs. We exclude the fifth kind and rephrase Theorem 1.1 as
Lemma 3.2. In Section 4 we present Prouhet-Tarry-Escott (PTE-)sets,
an extension of ideal PTE-pairs. In Section 5 we consider standard
pairs of the first and second kind where g need not satisfy (3). In the
next section we assume that g satisfies (3) too. Section 7 deals with
standard pairs of the third and fourth kind where g need not satisfy
(3). In particular, we prove here the first statement of Theorem 1.1.
This part of our argument is the most involved. Here we need to give
a complete description of shifts of Dickson polynomials having only
rational roots. For this, we need to combine certain identities for such
polynomials with various (both theoretical and computational) tools
from algebraic number theory. Section 8 restricts the cases with stan-
dard pairs of the third and fourth kind if g has only simple rational
roots, too. In Section 9 we give a more precise statement than Theo-
rem 1.1 under (3) which completes the proof of Theorem 1.1. We give
an application of our results to equal products with terms belonging
to blocks of consecutive integers of bounded lengths in Section 10. We
finish the paper with some open problems.

2. Historical overview

There are numerous publications on the title equation where f has
only simple rational roots. In many of them the roots of f , and often
also of g, are well structured and all solutions are found. In other pa-
pers only finiteness of the number of such solutions is considered. The
present paper deals with the finiteness of the number of solutions for
a wide class of equations covering the equations cited in this overview.
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Subsections 2.1 and 2.2 correspond to Section 5, Subsections 2.3 and
2.4 to Sections 6, 8 and 9, Subsection 2.5 to Section 10.

2.1. The roots of f form an arithmetic progression and g is
almost a perfect power. First we consider the case that the roots
of f form an arithmetic progression and g is almost a perfect power,
more precisely:

(4) x(x+ d) · · · (x+ (k − 1)d) = b0y
ℓ + bℓ

where b0, bℓ, d, k and ℓ are integers with k > 1, ℓ > 1, kℓ > 4, b0 ̸= 0 ℓ-
th power free, the greatest prime factor of b0 is at most k and solutions
(x, y) ∈ Z2 satisfy gcd(x, d) = 1, |y| > 1. (If k = ℓ = 2, then we may
have a Pell equation which has infinitely many solutions.) If bℓ = 0,
then there are only finitely many solutions according to a theorem of
Siegel [74] if ℓ > 2 and by a result of Schinzel [71], Corollary 7 if ℓ = 2.

Let d = 1. In 1975 Erdős and Selfridge [30] proved that equation
(4) has no solutions when b0 = 1, bℓ = 0. Erdős [28] and Győry [34]
showed that the equation

(
x+k−1

k

)
= yℓ, which agrees with the case

b0 = k!, bℓ = 0, has only the solution
(
50
3

)
= 1402. Saradha [60] and

Győry [35] dealt with equation (4) with b0 > 1, bℓ = 0. Bilu, Kulkarny
and Sury [10] proved that equation (4) has only finitely many solutions
(k, ℓ,m, n) if bℓ is not a perfect power and that all solutions can be
explicitly determined. For more results with d = 1 see [21], [38], [81].

Next let d > 1, b0 = 1, bℓ = 0. A famous result due to Euler is that
the product of k = 4 distinct positive integers in arithmetic progression
cannot be a square. For a generalization of this result to 4 ≤ k ≤ 109
see [7], [36], [56] and finally [47]. Similar results for ℓ = 3 and ℓ = 5 can
be found in [44] and [39], respectively. Euler’s result has been extended
for arbitrary powers ℓ and k ≤ 34 by Győry, Hajdu and Saradha [37],
Bennett, Bruin, Győry and Hajdu [7] and Győry, Hajdu and Pintér [36].
Bennett [6] obtained the following strong finiteness result: There exist
at most finitely many integer tuples d, k, ℓ, x, y, with 4 ≤ k ≤ 15177
for which equation (4) is satisfied. Bennett and Siksek [8] proved that
there exists an effectively computable k0 such that for fixed k > k0
there are only finitely many integers d, ℓ, x, y satisfying equation (4).
For related papers see [32], [60], [61], [72].

Case d > 1, b0 > 1. Saradha and Shorey [66] proved that for d at
most some explicitly given d0 = d0(ℓ) and bℓ = 0 equation (4) has no
solutions. It follows from Yuan [81] that if k ≥ 8 then all solutions
of (4) satisfy max(|x|, |y|, ℓ) < C where C is an effectively computable
constant depending only on k, b0, bℓ. For other results with bℓ = 0 see
[32], [49], [55], [65], [66], and for general bℓ the survey [73].
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2.2. The roots of f form almost an arithmetic progression and
g is almost a perfect power. First we turn to the case that the
roots of f form an arithmetic progression with some terms missing,
more precisely, to the equation

(5) (x+ d1d) · · · (x+ dkd) = b0y
ℓ + bℓ

where 0 ≤ d1 < d2 < · · · < dk < K, d, b0, bℓ and ℓ are integers with
k > 2, ℓ > 1, b0 is ℓ-th power free, the greatest prime factor of b0 is at
most k and solutions (x, y) ∈ Z2 satisfy gcd(x, d) = 1.

Several papers deal with the case K − k = 1. Saradha and Shorey
[63], Hanrot, Saradha and Shorey [46] and Bennett [5] together proved
that for d = K − k = b0 = 1, bℓ = 0 the only solutions of (5) are
given by 4!/3 = 23, 6!/5 = 122, 10!/7 = 7202. For other papers with
K − k = 1, bℓ = 0 see [23], [64], [65], [67], [69]. Hajdu and Papp [40]
proved that equation (5) with K−k = 1, K ≥ 8 has only finitely many
solutions x, y, ℓ.

All solutions of equation (5) with K− k = 2, k ≥ 4, ℓ ≥ 3 have been
given in [55] and [68]. For papers with K − k ≥ 2, bℓ = 0 see [3] and
[22]. Hajdu, Papp and Tijdeman [41] provided effective upper bounds
for max(|x|, |y|, ℓ) in (5) under the assumption that K − k < cK2/3 for
some explicit c > 0.

For results and history concerning the case when instead of omitting
terms from an arithmetic progression we have an extra term, see [45]
and the references there.

2.3. Both f and g have simple rational roots almost in arith-
metic progressions. In the literature many papers deal with special
cases of the equation

(6) a0x(x+ d1) · · · (x+ (k − 1)d1) = b0y(y + d2) · · · (y + (ℓ− 1)d2)

where k, ℓ, a0, b0 are integers with 1 < k ≤ ℓ, a0b0 ̸= 0, and d1, d2 are
positive integers with d1 ̸= d2 if k = ℓ.
First the case a0 = b0 = d1 = d2 = 1 attracted attention. For these

values Mordell [54], Boyd and Kisilevsky [14] and Hajdu and Pintér
[42] computed all positive solutions for (k, ℓ) = (2, 3), (3, 4) and (4, 6),
respectively. Saradha and Shorey [62] proved that the only solution
with ℓ = 2k is given by (k, ℓ, x, y) = (3, 6, 8, 1). They, together with
Mignotte (see [53]) determined all solutions in case ℓ/k ∈ {3, 4, 5, 6}.
Saradha, Shorey and Tijdeman [70] studied the cases a0 = b0 = 1,

d1 = 1, d2 > 1, ℓ/k is integral. Beukers, Shorey and Tijdeman [9]
proved that equation (6) with a0 = b0 = 1 admits only finitely many
positive integral solutions x, y except for the infinite class of solutions



6 L. HAJDU AND R. TIJDEMAN

x = y2 + 3d2y when k = 2, ℓ = 4 and d1 = 2d22. By a similar reasoning
the restriction a0 = b0 = 1 can be replaced by ℓ > 2.

Brindza and Pintér [17] showed that the equation

x(x+ 1) · · · (x+ k − 1) =

(
y

ℓ

)
for k > 2, ℓ > 2 has only finitely many solutions in positive integers
x, y. This corresponds to the choice a0 = 1, b0 = k!, d1 = d2 = 1.

By taking a0 = ℓ!, b0 = k!, d1 = d2, m = x+k−1, n = y+ℓ−1 in (6)
the question becomes which binomial coefficients

(
m
k

)
and

(
n
ℓ

)
are equal.

Without loss of generality we assume 1 < k < ℓ, k ≤ m/2, ℓ ≤ n/2.
For several pairs (k, ℓ) all solutions were found, see e.g. [1], [54], [78]
and [18]. Gallegos-Ruiz, Katsipis, Tengely and Ulas [33] described all
binomial coefficients

(
m
k

)
,
(
n
ℓ

)
with (k, ℓ) = (2, 3), (2, 4), (2, 6), (2, 8),

(3, 4), (3, 6), (4, 6), (4, 8) whose difference is at most three. Surveys on
(almost) equal binomial coefficients can be found in Blokhuis, Brouwer,
de Weger [12]1 and Gallegos-Ruiz et al. [33].

For a generalization related to figurate numbers see Hajdu, Pintér,
Tengely and Varga [43] and the references there.

2.4. The roots of f are simple and rational and g(y) ∈ Q[y].
Consider the equation

(7) f(x) := (x+ d1d) · · · (x+ dkd) = g(y)

in integers x, y where d, k,K, d1, d2, . . . , dk are integers with 0 ≤ d1 <
d2 < · · · < dk < K and k > 2, g(y) ∈ Q[y] of degree ℓ ≥ 2. Kulkarni
and Sury [48] for d = 1, k = K, ℓ > 2 completely described all cases
where (7) has infinitely many solutions. Hajdu, Papp and Tijdeman
[41] proved the finiteness of the number of solutions of (7) under the
assumption that K − k ≤ cK2/3 with c an explicit constant, except for
two explicitly given classes of g’s. Both papers are based on a theorem
of Bilu and Tichy [11], which will also play an important role in our
present study and is formulated in the next section. For other papers
related to (7) see [3], [16], [58], [59], [77]. For finiteness results on
similar equations related to figurate numbers, see [43], [45], and the
references there.

2.5. Power values and equal values of products with terms
coming from an interval. Finally, we recall some papers and results
from the literature concerning products of terms coming from blocks
of consecutive integers.

1In their list on page 2 the sporadic solution n = 78, k = 2,m = 15, ℓ = 5 is
missing.
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Erdős and Turk [31] studied the existence of terms from a ‘short’
interval I having a power product, and also the existence of two dis-
tinct sets of integers in I with equal product. Roughly speaking, they
proved that these properties never hold for ‘very short’ intervals; that
for ‘medium sized’ intervals they hold in infinitely many cases and fail
in infinitely many cases, and that they always hold if the size of I is
‘large enough’. They gave precise formulas for these sizes.

Another problem of somewhat similar flavor is due to Erdős and
Graham [29], who asked when the product of two or more disjoint
blocks of consecutive integers can be a power. Ulas [80] exhibited
families of blocks of precisely four integers whose product gives per-
fect squares. Bauer and Bennett [4] described the ‘minimal examples’
yielding perfect square products. For related results, see [76], [79] and
the references there.

3. The Bilu-Tichy theorem

We say that a polynomial f as in (1) is symmetric, if there exists an
a ∈ Q such that the set {a1, . . . , ak} is symmetric around a.

We call polynomials f, f̃ ∈ Q[x] similar if there exist a, b ∈ Q, a ̸= 0

such that f(x) = f̃(ax + b). Notation f ≃ f̃ . Obviously this induces
an equivalence relation on Q[x]. Observe that if f has only simple

rational roots, then f̃ has only simple rational roots too. In every
equivalence class there are polynomials with sum of roots equal to 0.
Moreover, if the roots of f are all rational, then there exists a similar
polynomial f̃(x) ∈ Z[x] of which the roots are integers with sum 0.
If the polynomial equation f(x) = g(y) has infinitely many solutions

(x, y) ∈ Q2 with a bounded denominator and f ≃ f̃ , g ≃ g̃, then the

equation f̃(x) = g̃(y) has also infinitely many solutions (x, y) ∈ Q2

with a bounded denominator. We call equations f(x) = g(y) and

f̃(x) = g̃(y) with f ≃ f̃ , g ≃ g̃ similar equations.
We call f(x) ∈ Q[x] decomposable over Q if there exist G(x), H(x) ∈

Q[x] with deg(G) > 1, deg(H) > 1 such that f = G(H), and otherwise
indecomposable. Since deg(f) = deg(G) · deg(H), f is indecomposable
if deg(f) is prime.

Let δ be a non-zero rational number and µ be a positive integer.
Then the µ-th Dickson polynomial is defined by

Dµ(x, δ) :=

⌊µ/2⌋∑
i=0

dµ,ix
µ−2i where dµ,i =

µ

µ− i

(
µ− i

i

)
(−δ)i.

For properties of Dickson polynomials see e.g. [52].
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Kind Standard pair (unordered) Parameter restrictions
First (xq, αxpv(x)q) 0 ≤ p < q, gcd(p, q) = 1,

p+ deg(v) > 0
Second (x2, (αx2 + β)v(x)2) -
Third (Dµ(x, α

ν), Dν(x, α
µ)) gcd(µ, ν) = 1

Fourth (α−µ/2Dµ(x, α),−β−ν/2Dν(x, β)) gcd(µ, ν) = 2
Fifth ((αx2 − 1)3, 3x4 − 4x3) -

Table 1. Standard pairs. Here α, β are non-zero rational

numbers, µ, ν, q are positive integers, p is a non-negative inte-

ger, v(x) ∈ Q[x] is a non-zero, but possibly constant polyno-

mial.

In this section we prove a variant of Theorem 1.1. In the proof the
following result of Bilu and Tichy [11] on equation (2) is crucial. Here
the polynomials F,G ∈ Q[x] form a standard pair over Q if either
(F (x), G(x)) or (G(x), F (x)) appears in Table 1.

Lemma 3.1 (Bilu, Tichy [11], Theorem 1.1). Let f(x), g(x) ∈ Q[x]
be non-constant polynomials. Then the following two statements are
equivalent.

(I) The equation f(x) = g(y) has infinitely many rational solutions
x, y with a bounded denominator.

(II) We have f = φ(F (κ)) and g = φ(G(λ)), where κ(x), λ(x) ∈
Q[x] are linear polynomials, φ(x) ∈ Q[x], and F (x), G(x) form
a standard pair over Q such that the equation F (x) = G(y) has
infinitely many rational solutions with a bounded denominator.

Observe that F (κ) ≃ F and G(λ) ≃ G. The Bilu-Tichy theorem
implies that if (I) holds then the equation F (κ(x)) = G((λ(y)) has
infinitely many rational solutions with a bounded denominator. The
converse is obvious.

In Theorem 1.1 one may read m = deg(F ), n = deg(G), s = deg(φ).

An interesting result in connection with Lemma 3.1 is due to Avanzi
and Zannier [2]. Namely, Theorem 1 of [2] implies that if the equation
f(x) = g(y) with f(x), g(x) ∈ Q[x], gcd(k, ℓ) = 1 and k, ℓ > 6 has
infinitely many rational solutions, then infinitely many of them have a
bounded denominator. (Cf. Bilu’s MathSciNet review MR1845348 of
that paper.)

We start with investigating when the equation

(8) F (x) = G(y)
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for standard pairs (F,G) has infinitely many solutions (x, y) with a
bounded denominator in our settings. Lemma 3.2 shows that condition
(1) restricts the possibilities.

Lemma 3.2. Suppose f is of the form (1) and equation (2) has infin-
itely many rational solutions with a bounded denominator. Let (F,G)
be a corresponding standard pair. Then one of the following cases holds:

1) (F,G) is of the first or second kind, min(deg(F ), deg(G)) ≤ 2,
2) (F,G) is of the third or fourth kind.

Proof. Without loss of generality we may assume f = φ(F ), g = φ(G).
Since f has only simple rational roots, f ′ = φ′(F )F ′ has only simple
real roots. Hence F ′ has only simple real roots. If (F,G) is of the fifth
kind, then F ′ has a multiple root and so the fifth kind is excluded.
Therefore, if we are not in case 2), we have a pair (F,G) of the first or
second kind. By 1) we may assume that deg(F ) ≥ 3 and deg(G) ≥ 3.
Then (F,G) is not of the second kind. If (F,G) is of the first kind, then
q ≥ 3 and if deg(v) = 0 then p ≥ 3. However, then F ′ has a multiple
root, which is not the case. □

Remark 3.1. It follows that if (F,G) is a standard pair of the first or
second kind, then deg(f) | 2 deg(g) or deg(g) | 2 deg(f).
Remark 3.2. In Examples 1.1, 1.2, 1.3 we may take

F (x) = x2, G(y) = y(y − 7)2, φ(x) = x− 36, (first kind)

F (x) = x2, G(y) = 2y2 − 1, φ(x) = (x− 1)(x− 49), (second kind)

F (x) = D3(x, 13
4), G(y) = D4(y, 13

3), φ(x) = x−1111682, (third kind)

respectively.

4. ptem,s sets

An ideal Prouhet-Tarry-Escott pair is a pair of sets of an equal num-
ber of distinct integers, α1, α2, . . . , αm and β1, β2, . . . , βm say, such that

m∑
i=1

αj
i =

m∑
i=1

βj
i

for j = 1, 2, . . . ,m−1. Ideal Prouhet-Tarry-Escott pairs are known for
2 ≤ m ≤ 10 and for m = 12. For general information on such pairs we
refer to [57]. In this section we study the case of s tuples of m distinct
integers having the same sums of j-th powers for 1 ≤ j ≤ m − 1, a
so-called PTEm,s set. An ideal Prouhet-Tarry-Escott pair of each m
integers is therefore a PTEm,2 set. Observe that a PTEm,s set remains
a PTEm,s set if all elements are multiplied by the same constant and
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also if a constant is added to all numbers. We call such PTEm,s sets
equivalent. If there exists a PTEm,s set of rationals, then there exists
an equivalent PTEm,s set of integers. The following result will be useful
in the sequel.

Lemma 4.1. For m ∈ {3, 4, 6} and every positive integer s there exist
infinitely many equivalence classes of PTEm,s sets.

To prove the case m = 4 we use the following result.

Lemma 4.2 (Theorem 7.5 of [51]). Let M be the product of ρ distinct
primes of the form ≡ 1 (mod 4). Then the number of representations
of M as α2

1 + α2
2 with α1, α2 ∈ Z, α1 > α2 > 0, gcd(α1, α2) = 1 equals

2ρ−1.

Proof of Lemma 4.1 for m = 4. Choose a ρ with 2ρ−1 ≥ s and ρ primes
≡ 1 (mod 4). Call their product M . Obviously infinitely many choices
of the primes are possible. According to Lemma 4.2 there exist s pairs
of integers α1,i, α2,i with α1,i > α2,i > 0, gcd(α1,i, α2,i) = 1 such that
α2
1,i + α2

2,i = M for i = 1, 2, . . . , s. Put α3,i = −α1,i, α4,i = −α2,i

for all i. Then
∑4

h=1 αh,i = 0,
∑4

h=1 α
2
h,i = 2M ,

∑4
h=1 α

3
h,i = 0 for

i = 1, 2, . . . , s. □

Example 4.1. We apply Lemma 4.2 with ρ = 3 and primes 7, 13, 17.
We have

5 · 13 · 17 = 1105 = x2 + y2 for (x, y) = (33, 4), (32, 9), (31, 12), (24, 23).

Therefore the sets

{−33,−4, 4, 33}, {−32,−9, 9, 32}, {−31,−12, 12, 31}, {−24,−23, 23, 24}

form a PTE4,4 set. □

For the cases m = 3 and 6 we use the following analogue of Lemma
4.2.

Lemma 4.3 ([26] par. 48, item 4). Let M be the product of ρ distinct
primes of the form ≡ 1 (mod 6). Then the number of representations
of M as α2

1 + α1α2 + α2
2 with α1, α2 ∈ Z, α1 > α2 > 0, gcd(α1, α2) = 1

equals 2ρ−1.

Proof of Lemma 4.1 for m = 6. Choose a ρ with 2ρ−1 ≥ s. Let M be
the product of ρ distinct primes of the form ≡ 1 (mod 6). Clearly,
we may choose such primes in infinitely many ways. The number of
representations of M as x2 + xy + y2 with coprime integers x, y with
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x > y > 0 equals 2ρ−1. Choose s such pairs, (xi, yi) for i = 1, 2, . . . , s.
Then x2

i + y2i + (xi + yi)
2 = 2M and

x4
i + y4i + (xi + yi)

4 = 2(x2
i + xiyi + y2i )

2 = 2M2

(cf. [19], Sec. 4). Put α3,i = α1 + α2, α4,i = −α1,i, α5,i = −α2,1,

α6,i = −α3,i for i = 1, 2, . . . , s. Then
∑6

h=1 αh,i = 0,
∑6

h=1 α
2
h,i = 4M ,∑4

h=1 α
3
h,i = 0,

∑4
h=1 α

4
h,i = 4M2,

∑4
h=1 α

5
h,i = 0 for i = 1, 2, . . . , s.

Thus this yields a PTE6,s set. □

Example 4.2. We have

7·13·19 = 1729 = x2+xy+y2 for (x, y) = (40, 3), (37, 8), (32, 15), (25, 23).

Thus the sets

{±40,±3,±43}, {±37,±8± 45}, {±32,±15,±47}, {±25,±23,±48}

each have sum 0, sum of squares 4 · 1729, sum of cubes 0, sum of
biquadrates 4 · 17292, sum of fifth powers 0. □

Proof of Lemma 4.1 for m = 3. We use the notation introduced in the
proof of the case m = 6. Consider the triples

(M + xi(yi − xi),−M + yi(yi − xi), x
2
i − y2i ) (i = 1, 2, . . . , s).

Each triple has sum 0 and sum of squares

2M2 − 2M(x2
i − 2xiyi + y2i ) + 2x4

i − 2x3
i yi − 2xiy

3
i + 2y4i .

Using that M = x2
i + xiyi + y2i , we obtain that the sums of squares

equal 2M2. Of course, this is also true for the opposite triples

−(M + xi(yi − xi)), M − yi(yi − xi), y2i − x2
i (i = 1, 2, . . . , s)

and for {−M, 0,M}. Thus we have a PTE3,s+1 set, and maybe even a
PTE3,2s+1 set. □

Example 4.3. We start again from the pairs

(x, y) = (40, 3), (37, 8), (32, 15), (25, 23)

from Example 4.2 which each satisfy M = x2 + xy + y2 = 1729. Ac-
cording to the above rules they lead to the nine triples

±(249,−1840, 1591), ±(656,−1961, 1305),

±(1185,−1984, 799), ±(1679,−1775, 96), (−1729, 0, 1729),

which each have sum 0 and sum of squares 2 · 17292. We obtain a
PTE3,9 set. □
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Let f(x) ∈ Q[x] with only simple rational zeros be decomposable
over Q as φ(F (x)) (cf. Lemma 3.1). Let

φ(x) = p0(x− p1)(x− p2) · · · (x− ps)

with s > 0, p0 ∈ Q (p0 ̸= 0) and pi ∈ C (i = 1, . . . , s). Then

f(x) = p0(F (x)− p1)(F (x)− p2) · · · (F (x)− ps).

From this, we see that pi ∈ Q (i = 1, . . . , s), and that these numbers
are distinct. Further, writing Fi(x) = F (x) − pi for i = 1, 2, . . . , s we
obtain that F1(x), F2(x), . . . , Fs(x) ∈ Q[x] are such that Fi(x)/Fj(x) /∈
Q, Fi(x) − Fj(x) ∈ Q for 1 ≤ i < j ≤ s and, moreover, Fi(x) has
only simple rational roots for 1 ≤ i ≤ s. These polynomials have the
same degree, m say. It follows that there are rationals r1, r2, . . . , rm
independent of i such that Fi(x) = rmx

m + rm−1x
m−1 + . . . + r1x + fi

for all i with f1, f2, . . . , fs ∈ Q distinct. Then, by the formulas of
Newton-Girard, the roots of F1, F2, . . . , Fs form a PTEm,s set. We call
f a PTEm,s-polynomial, {F1, F2, . . . , Fs} a PTEm,s polynomial set and
F a PTEm,s base of f . Of course, deg(f) = ms. In the literature
PTEm,2 polynomial sets are mentioned, see [57].

We apply Lemma 4.1 in the following way.

Corollary 4.1. For m ∈ {2, 3, 4, 6} and every positive integer s there
exists a polynomial F (x) ∈ Z[x] of degree m and s integers f1, f2, . . . , fs
such that F (x) + fi has only simple integer roots for i = 1, 2, . . . , s.

Proof. For m = 2 we choose F (x) = x2 and fi = −i2 for i = 1, 2, . . . , s.
According to Lemma 4.1 there exists a PTEm,s set of integers {H1, H2, . . . , Hs}
for m ∈ {3, 4, 6} and all s ∈ Z>0. Consider the s monic polynomials
Pi(x) with the elements of Hi as roots for i = 1, 2, . . . , s. Then they
differ only by a constant. So we can take F (x) = P1(x) − P1(0) and
fi = Pi(x) (i = 1, . . . , s). □

Examples 4.1-4.3 continued. Let m = s = 4. The polynomial
P (x) = x4 − 1105x2 has simple rational roots when 17424, 82944,
138384 or 304704 is added, since the corresponding polynomials equal

(x2−332)(x2−42), (x2−322)(x2−92), (x2−312)(x2−122), (x2−242)(x2−232),

respectively.
Let m = 6, s = 4. The polynomial P (x) = x6 − 2 · 1729x4 +

17292x2 has simple integer roots when 26625600, 177422400, 508953600
or 761760000 is subtracted, since the corresponding polynomials equal

(x2 − 32)(x2 − 402)(x2 − 432), (x2 − 82)(x2 − 372)(x2 − 452),

(x2 − 152)(x2 − 322)(x2 − 472), (x2 − 232)(x2 − 252)(x2 − 482),

respectively.
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Let m = 3, s = 9. The polynomial P (x) = x3 − 17292x has simple
integer roots when one from

0, ∓728932560, ∓1678772880, ∓1878480960, ∓286101600

is added, as we get the polynomials (x− 1729)x(x+ 1729),

(x± 249)(x∓ 1840)(x± 1591), (x± 656)(x∓ 1961)(x± 1305),

(x± 1185)(x∓ 1984)(x± 799), (x± 96)(x∓ 1775)(x± 1679),

respectively. (Either triple upper signs or triple lower signs.) □

5. Standard pairs of the first or second kind

In this section we return to the original problem on equation (2) sub-
ject to (1) and show by the help of examples that all cases of the first
or second kind which are not excluded may indeed occur. Suppose the
equation f(x) = g(y) with f(x), g(x) ∈ Q[x] has infinitely many solu-
tions (x, y) ∈ Q2 with a bounded denominator. According to Lemma
3.1 we have f = φ(F (κ)) and g = φ(G(λ)), where κ(x), λ(x) ∈ Q[x]
are linear polynomials, φ(x) ∈ Q[x], and F (x), G(x) form a standard
pair over Q such that the equation F (x) = G(y) has infinitely many
rational solutions with a bounded denominator. In the sequel we sup-
pose that f = φ(F ) and g = φ(G). The results then extend to all
equations similar to the equation φ(F (x)) = φ(G(y)), in particular to
the original equation f(x) = g(y).

Let φ(x) = p0(x−p1) · · · (x−ps) with p0 ∈ Q (p0 ̸= 0), p1, . . . , ps ∈ C.
Then f = p0F1 · · ·Fs with Fi(x) = F (x) − pi for i = 1, 2, . . . , s. As
we have seen in the previous section, {F1, F2, . . . , Fs} form a PTEm,s

polynomial set. In this section we assume that (F,G) is a standard
pair of the first or second kind and consider successively the cases
deg(F ) = 1, deg(F ) = 2 and deg(F ) > 2. As we shall see, in each case
deg(φ) can attain any positive integer value, hence deg(f), deg(g) can
be arbitrarily large.

Case deg(F ) = 1. The standard pair is of the first kind and we may
assume that F (x) = x. Then f = φ. Hence for every X ∈ Q equation
F (x) = G(y) has as solution (x, y) = (G(X), X). Thus equation f(x) =
g(y) has also solution (x, y) = (G(X), X) for every X ∈ Q.

Example 5.1. First kind, F (x) = x,G is arbitrary, φ = f .
For every set of nonzero rationals {a1, a2, . . . , ak} the equation

(x− a1)(x− a2) · · · (x− ak) = (G(y)− a1)(G(y)− a2) · · · (G(y)− ak),

has solution (x, y) = (G(X), X) (X ∈ Q). □



14 L. HAJDU AND R. TIJDEMAN

Case deg(F ) = 2. Then either F (x) = x2, or F (x) = αx2 + βx+ γ. In
the latter case we use that F (x) ≃ x2 + c for some c ∈ Q. Here p = 0,
q = 1, deg(v) = 2 if (F,G) is of the first kind and deg v = 0 if (F,G) is
of the second kind. Next we replace φ(x) by φ(x − c) so that we get
F (x) = x2. Thus we may choose F (x) = x2 anyhow.

We obtain that f(x) is of the form

φ(F (x)) = p0(x
2 − p1) · · · (x2 − ps)

has only simple rational roots. It follows that p1, p2, . . . , ps are squares
of distinct rational numbers and that the roots ±b1,±b2, . . . ,±bs of f
are symmetric around 0. Further, g(y) = p0(G(y)− b21) · · · (G(y)− b2s).
By Lemma 3.1 the equation x2 = G(y) has to have infinitely many
rational solutions (x, y) with a bounded denominator. Let (Xi, Yi) (i =
1, 2, . . . ) be such solutions. By the main result of LeVeque [50] (for the
effective version see Brindza [15]) we obtain that the polynomial G can
have at most two roots of odd multiplicities. It follows that the equation
f(x) = g(y) has infinitely many rational solutions (x, y) = (Xi, Yi)
(i = 1, 2, . . . ) with a bounded denominator. Writing n = deg(G), s =
deg(φ), we have deg(f) = 2s | 2ns = 2deg(g). In this case s and n can
be arbitrary, and hence deg(f), deg(g) may be arbitrarily large.

Example 5.2. First kind, F (x) = x2, G(y) = yv2(y), for some
v(y) ∈ Q[y], φ(x) = (x− b21) · · · (x− b2s) with distinct positive rationals
b1, b2, . . . , bs. We have

f(x) = (x−b1)(x+b1) · · · (x−bs)(x+bs), g(y) = (G(y)−b21) · · · (G(y)−b2s),

and f(x) = g(y) has solutions (Xv(X2), X2) for every X ∈ Z. □
Example 5.3. Second kind, F (x) = x2, G(y) = (2y2 − 1)v2(y) for
some v(y) ∈ Q[y], φ(x) = (x − b21) · · · (x − b2s) for distinct positive
rationals b1, b2, . . . , bs.

Let (Xi)
∞
i=1 be distinct integers such that 2Y 2

i − 1 = X2
i for integers

Yi. Then

f(x) = (x−b1)(x+b1) · · · (x−bs)(x+bs), g(y) = (G(y)−b21) · · · (G(y)−b2s),

and f(x) = g(y) has solutions (Xiv(Yi), Yi) for i = 1, 2, . . . . □
Examples 5.2 and 5.3 are generalizations of Examples 1.1 and 1.2, re-
spectively. See also Remark 3.2.

Case deg(F ) > 2. Here either F (x) = xq for some q > 2 or G(x) = xq

for some positive integer q.
If F (x) = xq, then f(x) = p0(x

q − p1)(x
q − p2) · · · (xq − ps) has

simple rational roots which implies q ≤ 2, but since deg(F ) > 2 this
is not possible. If G(y) = yq, then from Table 1 we see that either
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F (x) = αxpv(x)q with 0 ≤ p < q, gcd(p, q) = 1 (if (F,G) is of the first
kind), or q = 2 and F (x) = (αx2 + β)v(x)2 (if (F,G) is of the second
kind). Since f has simple rational roots, f ′ = φ′(F )F ′ has only simple
real roots and therefore F ′ has only simple real roots. So q ≤ 2 and in
view of deg(F ) > 2 and the gcd-condition, we have only the following
possibilities, with α ̸= 0:

a) G(y) = y and F (x) = αv(x) has only simple rational roots.
b) G(y) = y2 and F (x) is αxv(x)2.
c) G(y) = y2 and F (x) is (αx2 + β)v(x)2.

We have deg(g) | deg(f) in cases a) and c), while deg(g) | 2 deg(f) in
case b). The degree of φ can be arbitrary, hence the degrees of f, g can
be arbitrarily large.

We give an example for each case.

Example 5.4. First kind, case (a), F (x) = x3 − 17292x,G(y) =
y, φ(x) = x(x − 728932560). We start from two triples from Example
4.3, (−1729, 0, 1729), (249,−1840, 1591), both having sum 0 and sum
of squares 2 · 17292. This gives

f(x) = x(x− 1729)(x+ 1729)(x+ 249)(x− 1840)(x+ 1591),

and g(y) = y(y − 249 · 1840 · 1591). The equation f(x) = g(y) has
solution (x, y) = (X,F (X)) for every X ∈ Q. Both f and g have only
simple integer roots. □
Example 5.5. First kind, case (b), F (x) = x(x − 17292)2, G(y) =
y2, φ(x) = (x− 7289325602)(x− 16787728802). This example is based
on the same triples as the previous example. We obtain

f(x) = (x−2492)(x−18402)(x−15912)(x−6562)(x−19612)(x−13052).

and

g(y) = (y2 − (249 · 1840 · 1591)2)(y2 − (656 · 1961 · 1305)2),
The equation f(x) = g(y) has infinitely many solutions given by (x, y) =
(X2, X(X2−17292)) (X ∈ Q). Again f and g have only simple rational
roots. □
Example 5.6. Second kind, case (c), F (x) = 26x2(x2 − 1105), G(y) =
y2, φ(x) = (x+ 26 · (33 · 4)2)(x+ 26 · (32 · 9)2).

We use data from Example 4.1, viz. 1105 = 332 + 42 = 322 + 92.
Thus

f(x) = 262(x2 − 332)(x2 − 42)(x2 − 322)(x2 − 92), g(y) = φ(y2).

A Magma [13] calculation shows that ε = 5+
√
26 is a fundamental unit

of Q(
√
26) of norm −1, and that α = −1248 + 247

√
26 is an algebraic



16 L. HAJDU AND R. TIJDEMAN

integer of this number field of norm −28730 = −26 · 1105. From this
we obtain that the equation

26(x2 − 1105) = y2

has solutions (x, y) = (Xi, Yi) (i ∈ Z), with (X1, Y1) = (247,−1248),
(X2, Y2) = (117, 572), and

(Xi, Yi) = 102(Xi−1, Yi−1)− (Xi−2, Yi−2) (i ∈ Z>2).

This, after some simple calculations, follows from the fact that ε2tα is
of norm −26 · 1105, for any positive integer t. So the equation f(x) =
g(y) has infinitely many integral solutions (X,Y ) = (Xi, XiYi). (Note
that the above Pell equation has more solutions. One can e.g. take
(x, y) = (39, 104), which belongs to the algebraic integer 104 + 39

√
26

of norm −26 · 1105 not being associate of α. However, for our present
purposes it is sufficient to exhibit an infinite family of solutions of the
Pell equation.) □

6. Both f and g have only simple rational roots

In this section we consider equation (2) with both f and g having
only simple rational roots and (F,G) is of the first or second kind.
Without loss of generality we may assume deg(f) ≤ deg(g), hence
deg(F ) ≤ deg(G). We again assume f = φ(F ), g = φ(G).

Theorem 6.1. Let f(x), g(x) ∈ Q[x], both having only simple ratio-
nal roots. Suppose that the equation f(x) = g(y) has infinitely many
rational solutions x, y with a bounded denominator and that the cor-
responding standard pair (F (x), G(x)) ∈ Q[x] is of the first or second
kind. Then we can choose F,G, φ such that one of the following items
holds:

1. deg(f) | deg(g), there exist p0 ∈ Q, p0 ̸= 0 and distinct p1, p2, . . . , ps ∈
Q such that

(9) f(x) = p0

s∏
i=1

(x− pi), g(y) = p0

s∏
i=1

(G(y)− pi),

F (x) = x and G(y) is a PTEn,s base where n = deg(G). For every
X ∈ Z the equation f(x) = g(y) has solution (x, y) = (G(X), X).

2. deg(f) | 2 deg(g), there exist q0 ∈ Q, q0 ̸= 0 and distinct q1, q2, . . . , qs ∈
Q>0 such that

(10) f(x) = q0

s∏
i=1

(x− qi)(x+ qi), g(y) = q0

s∏
i=1

(G(y)− q2i ),
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F (x) = x2, G(y) ∈ Q[y] has at most two roots of odd multiplicities
and is a PTEn,s base, and the equation x2 = G(y) has infinitely many
rational solutions (x, y) = (Xi, Yi) (i = 1, 2, . . . ) with a bounded denom-
inator. Here the equation f(x) = g(y) has solutions (x, y) = (Xi, Yi)
(i = 1, 2, . . . ).

Proof. By Lemma 3.2 we know that deg(F ) ≤ 2.
If deg(F ) = 1, then (using the notation of Table 1) we have p = 0,

q = 1, F (x) = x, G = v, f = φ and G(y) − p1, . . . , G(y) − ps form a
PTEn,s polynomial set. Then f, g are as in (9). For every X ∈ Q there
is a solution (x, y) = (G(X), X). This is case 1.

If deg(F ) = 2, then we may assume F (x) = x2 according to the argu-
ment given in the preceding section. As before, we see that p1, p2, . . . , ps
are squares in Q. Let pi = q2i for i = 1, 2, . . . , s. Then f, g are as in (10)
where G(y)− q21, . . . , G(y)− q2s form a PTEn,s polynomial set. Further,
by Lemma 3.1 we know that the equation x2 = G(y) has infinitely
many solutions in rationals x, y with a bounded denominator. Clearly,
these solutions will be solutions to the original equation, too. The main
result of LeVeque [50] shows that G(y) can have at most two roots of
odd multiplicities. This is case 2. □

Case 1 corresponds with case a) in the previous section, case 2 with
cases b) and c). The following examples of case a) illustrate that
the results in Section 4 imply that there are instances of deg(F ) = 1
with deg(G) ∈ {3, 4, 6} and arbitrary deg(φ), (hence arbitrarily large
deg(f), deg(g) as well). This is obvious for deg(G) = 2, cf. Example
5.1.

Example 6.1. (Cf. Examples 4.1, 4.2 and 4.3.)
For deg(G) = 4 choose F (x) = x,G(y) = y4 − 1105y2 and

φ(x) = (x+ (33 · 4)2)(x+ (32 · 9)2)(x+ (31 · 12)2)(x+ (24 · 23)2).

Then f(x) = φ(x) and g(y) = φ(G(y)) is given by

(y2−332)(y2−42)(y2−322)(y2−92)(y2−312)(y2−122)(y2−242)(y2−232).

Similarly, for deg(G) = 6 choose

F (x) = x,G(y) = y6 − 2 · 1729y4 + 17292y2,

φ(x) = (x−(40·3·43)2)(x−(37·8·45)2)(x−(32·15·47)2)(x−(35·23·48)2).

Then f(x) = φ(x), g(y) =
∏

a∈T (y
2 − a2) with

T = {40, 3, 43, 37, 8, 45, 32, 15, 47, 25, 23, 48}.
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Finally, for deg(G) = 3 let F (x) = x,G(y) = y3 − 17292y,

φ(x) = x(x2 − (249 · 1840 · 1591)2)(x2 − (656 · 1961 · 1305)2)·
(x2 − (1185 · 1984 · 799)2)(x2 − (1679 · 1775 · 96)2)

Then f(x) = φ(x) and g(y) = y
∏

a∈T (y
2 − a2) with

T = {1729, 249, 1840, 1591, 656, 1961, 1305, 1185, 1984, 799, 1679, 1775, 96}.
In all three cases, we obtain a solution (x, y) = (G(X), X) of f(x) =
g(y) for every X ∈ Q and both f and g have only simple rational
roots. □

Now we turn to the case deg(F ) = 2. Again deg(φ) can be arbi-
trary (whence deg(f) and deg(g) can be arbitrarily large). Note that
deg(G) ≥ 2. An example of case b) is given by Example 5.5. The
following example illustrates case c). It is another generalization of
Example 1.2.

Example 6.2. Suppose that the equation x2 = ay2 + b with a, b ∈ Z,
ab ̸= 0 has solutions (Xi, Yi)

∞
i=1 ∈ Z2. Let s ≥ 1, F (x) = x2, G(y) =

ay2 + b, φ(x) =
∏s

i=1(x−X2
i ). Then we have

f(x) =
s∏

i=1

(x2 −X2
i ), g(y) =

s∏
i=1

(ay2 + b−X2
i ) = as

s∏
i=1

(y2 − Y 2
i ).

So both f(x) and g(y) have only simple rational roots. Further, the
equation f(x) = g(y) has as solutions (Xi, Yi) for all i. □

7. Standard pairs F,G of the third or fourth kind

To handle the cases corresponding to standard pairs of the third and
fourth kind, we apply the following result.

Lemma 7.1. Let a1, . . . , aN be distinct rationals, and assume that for
some rational numbers u1, u2, v1, v2, b with u1v1b ̸= 0 we have

(11) u1DN(x, b) + u2 = (v1x+ v2 − a1) · · · (v1x+ v2 − aN),

where DN(x, b) is the N-th Dickson polynomial with parameter b. Then
N ∈ {1, 2, 3, 4, 6}.

For appropriate choices of the parameters the cases N ∈ {1, 2, 3, 4, 6}
are possible. In Theorem 7.1 we describe these cases completely. First
we prove the first part of Theorem 1.1.

Proof of the first statement of Theorem 1.1. By Lemma 7.1 equation
(2) with (1) implies that deg(F ) ∈ {1, 2, 3, 4, 6}, if the corresponding
standard pair (F,G) is of the third or fourth kind. This combined with
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Lemma 3.2 completes the proof of the first statement of Theorem 1.1.
□

Lemma 7.1 has already been proved for N ≤ 12 in [41] (see the
proof of Theorem 2.3 there). However, in this paper we need a more
precise statement. To keep the presentation self-contained, we include
the complete proof.

Proof of Lemma 7.1. Writing wi = (v2 − ai)/v1 (i = 1, . . . , N) and
u = u2/v

N
1 , dividing both sides of (11) by vN1 and using that DN is

monic, we get the similar equation

(12) DN(x, b) + u = (x+ w1) . . . (x+ wN).

Here u ∈ Q and w1, . . . , wN are distinct rationals.
Applying the well-known identity

DN

(
y +

b

y
, b

)
= yN +

(
b

y

)N

to (12), we obtain

(13) y2N + uyN + bN =
N∏
i=1

(y2 + wiy + b) .

Write ζ, ξ for the roots of the polynomial Y 2 + uY + bN . Clearly, ζ, ξ
are algebraic numbers of degrees at most two. Further, b ̸= 0 yields
ζξ ̸= 0. Also observe that ζ ̸= ξ, since the numbers wi in (12) are
distinct. If u = 0, then the roots of the left-hand side of (13) are given
by

(14) ηj
√
b (j = 0, 1, . . . , 2N − 1),

where
√
b denotes one of the (complex) squareroots of b, and η is a

primitive 2N -th root of unity. In view of the right-hand side of (13),
we see that the numbers (14) are algebraic numbers of degrees at most
two. Hence φ(2N) = deg(η) ≤ 4. This implies N ∈ {1, 2, 3, 4, 6}.

So from this point on, we assume ζ + ξ = −u ̸= 0. Then the roots
of the polynomial on the left hand side of (13) are given by

ζ0ε
i and ξ0ε

i (i = 0, 1, . . . , N − 1),

where ζ0 and ξ0 are N -th roots of ζ and ξ, respectively, and ε is a
primitiveN -th root of unity. Since these are the roots of the polynomial
on the right hand side of (13), they are distinct algebraic numbers of
degrees at most two. In particular, ζ0 and ζ0ε are at most quadratic
algebraic numbers, so the degree of ε is at most four. Hence φ(N) ≤ 4,
and we obtain N ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}.
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To refine the restriction for N , we need a more careful consideration.
Write ζ1 := ζ0ε. Then we see that

(15) ε =
ζ1
ζ0

belongs to the number field K := Q(ζ0, ζ1). Observe that if ζ0 ∈ Q(ζ1),
then ε is (at most) quadratic, yielding φ(N) ≤ 2, and our claim follows.
So we may assume that deg(K) = 4, and also that K = Q(ε) and that
ζ0 is quadratic. Denoting its algebraic conjugate by ζ̄0, we have

(ζ0)
N = ζN0 = ζ̄ = ξ.

Therefore, without loss of generality we may assume that ξ0 = ζ0 holds,
in particular, that ζ0 and ξ0 belong to the same quadratic subfield of
K. From this point on, we shall use this assumption. We deal with the
remaining cases in turn. For the calculations we used Magma [13].

If N = 5, 10, then K is defined by x4 + x3 + x2 + x + 1. The only
quadratic subfield of K is given by T1 := Q(

√
5). So now ζ0, ξ0 ∈ T1.

Recall that ζ0, hence also ξ0 is not rational. However, the (unique)
factorization of

(16) P (x) := x2N + uxN + bN = (xN − ζN0 )(xN − ξN0 )

(into irreducible factors) in T1[x] contains both for N = 5 and for
N = 10 the factors

x2 + (3−
√
5)ζ0x+ ζ20 and x2 + (3−

√
5)ξ0x+ ξ20 .

Here the constant terms of the quadratic factors are not equal. Indeed,
otherwise ζ20 = ξ20 would imply ζ0 = ±ξ0, whence ζ = ±ξ, which is
excluded. Hence we see that (13) is not possible in these cases.

Let now N = 8. Then K is defined by x4 + 1. The number field
K has three quadratic subfields, namely T2 = Q(i), T3 = Q(

√
2) and

T4 = Q(i
√
2). Following the argument given above for the factorization

of P (x) defined by (16) we get that

• x2 + iζ20 and x2 + iξ20 are factors of P (x) in T2[x],
• x2 + ζ20 and x2 + ξ20 are factors of P (x) in T3[x] and T4[x],

assuming that ζ0, ξ0 ∈ T2, T3, T4, respectively. In all cases the constant
terms of the quadratic factors are not the same. So N = 8 is also
impossible.

Finally, let N = 12. Then K is defined by x4 − x2 + 1. The number
field K has three quadratic subfields, namely T5 = Q(i), T6 = Q(

√
3)

and T7 = Q(i
√
3). Now, similarly as before, for the factorization of

P (x) given by (16) we obtain that

• x2 + ζ0x+ ζ20 and x2 + ξ0x+ ξ20 are factors of P (x) in T5[x],
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• x2 + ζ20 and x2 + ξ20 are factors of P (x) in T6[x] and T7[x],

assuming that ζ0, ξ0 ∈ T5, T6, T7, respectively.
Again, in all cases we observe that the constant terms of the quadratic
factors are not identical. So N = 12 is excluded, too. □
Theorem 7.1. Let N ∈ {3, 4, 6}. For any w1, w2 ∈ Q we can choose
w3, . . . , wN , b, u ∈ Q such that (12) holds. On the other hand, this
provides the only solutions of equation (12).

Remark 7.1. The cases N = 1 and N = 2 are trivial. Indeed, for
N = 1 we have D1(x, b) = x, so w1 = u can be any rational number.
Further, for N = 2 we have D2(x, b) = x2 − 2b, whence w1 + w2 = 0,
w1w2 = −2b+ u. Therefore all cases of (12) are given by

(x+ w1)(x− w1) = D2(x, b) + (2b− w2
1),

i.e. with u = 2b− w2
1 for arbitrary b, w1 ∈ Q.

Proof of Theorem 7.1. We consider the possibilities in turn.
The case N = 3. We have

(17) D3(x, b) = x3 − 3bx,

hence

w1 + w2 + w3 = 0, w1w2 + w1w3 + w2w3 = −3b, w1w2w3 = u.

This gives

(18) w3 = −w1 − w2, b = (w2
1 + w1w2 + w2

2)/3, u = −w2
1w2 − w1w

2
2.

Thus we have for any w1, w2 ∈ Q that

(19) (x+ w1)(x+ w2)(x− w1 − w2) = D3(x, b) + u

and this provides all possibilities for (12).
The case N = 4. We have

(20) D4(x, b) = x4 − 4bx2 + 2b2.

This implies

w1 + w2 + w3 + w4 = 0

and

w1w2w3 + w1w2w4 + w1w3w4 + w2w3w4 = 0.

It follows that

0 = w1w2w3−(w1w2+w1w3+w2w3)(w1+w2+w3) = −(w1+w2)(w1+w3)(w2+w3).

We assume, without loss of generality,

(21) w1 + w3 = 0, hence w2 + w4 = 0.
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Further comparison of coefficients gives

(22) b = −w1w2 + w1w3 + w1w4 + w2w3 + w2w4 + w3w4

4
=

w2
1 + w2

2

4

and
(23)

u = w1w2w3w4 − 2b2 = w2
1w

2
2 −

1

8
(w2

1 + w2
2)

2 = −1

8
(w4

1 − 6w2
1w

2
2 + w4

2).

For any w1, w2 ∈ Q and b, u chosen as above we have

(24) (x+ w1)(x− w1)(x+ w2)(x− w2) = D4(x, b) + u

and this provides all possibilities for (12).
The case N = 6 is the most involved one. We have

(25) D6(x, b) = x6 − 6bx4 + 9b2x2 − 2b3.

On the other hand, the roots of the polynomial on the left hand side
of (13) are given by

±ζ0, ±ζ0ε, ±ζ0ε
2, ±ξ0,±ξ0ε, ±ξ0ε

2,

where ε is a primitive sixth root of unity (i.e. a root of x2−x+1), and
either ζ0, ξ0 ∈ Q, or they are conjugated quadratic algebraic numbers
from the field K = Q(ε). Anyhow, the factorization of the polynomial
on the right hand side of (13) over K reads as

(y − ζ0)(y + ζ0)(y − ζ0ε)(y + ζ0ε)(y − (1− ε)ζ0)(y + (1− ε)ζ0)·
· (y − ξ0)(y + ξ0)(y − ξ0ε)(y + ξ0ε)(y − (1− ε)ξ0)(y + (1− ε)ξ0).

Note that the (algebraic) conjugate of ε is 1−ε. Hence we immediately
get that the right hand side of (13) is given by

(y2 − (ζ0 + ξ0)y + ζ0ξ0)(y
2 + (ζ0 + ξ0)y + ζ0ξ0)·

· (y2 − (ζ0ε+ ξ0(1− ε))y + ζ0ξ0)(y
2 + (ζ0ε+ ξ0(1− ε))y + ζ0ξ0)·

· (y2 − (ζ0(1− ε) + ξ0ε)y + ζ0ξ0)(y
2 + (ζ0(1− ε) + ξ0ε)y + ζ0ξ0).

Here all the above quadratic polynomials have rational coefficients. The
coefficients of y are just the numbers wi from (13) (and (12)). Observe
that (by choosing an appropriate indexing) we have

(26) w3 = w1 + w2, w4 = −w1, w5 = −w2, w6 = −w3

in (12). Put W = w2
1 + w1w2 + w2

2. A simple calculation yields that

(x+ w1)(x+ w2)(x+ w3)(x+ w4)(x+ w5)(x+ w6) =

= x6 − 2Wx4 +W 2x2 − w2
1w

2
2(w1 + w2)

2.
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Comparing the coefficients with D6(x, b)+u = x6−6bx4+9b2x2−2b3+u
we see that

(27) b =
W

3
, u =

2W 3

27
− w2

1w
2
2(w1 + w2)

2.

On the other hand, for any w1, w2 ∈ Q we have, choosing b and u as
in (27), that
(28)
(x+w1)(x−w1)(x+w2)(x−w2)(x+w1+w2)(x−w1−w2) = D6(x, b)+u.

Thus this provides all possibilities for (12) if N = 6. □

We give examples to show that for deg(F ) = m ∈ {3, 4, 6} equation
(2) with f of the form (1) can have infinitely many solutions (x, y) ∈
Q2 with a bounded denominator. The examples are successively with
m = 3, 4, 6 for the third kind and with m = 4, 6 for the fourth kind.
By the gcd condition in Table 1, m = 3 cannot occur for the fourth
kind.

Example 7.1. Third kind, case m = 3, n = 4, b = 7, F (x) =
D3(x, 7

4), G(y) = D4(y, 7
3)), φ(x) = (x− 14 · 77 · 91)(x− 23 · 71 · 94).

We have

3 · 74 = 142 + 14 · 77 + 772 = 232 + 23 · 71 + 712.

Hence, by (19) and (20),

D3(x, 7
4) = (x+ 14)(x+ 77)(x− 91) + 14 · 77 · 91 =

= (x+ 23)(x+ 71)(x− 94) + 23 · 71 · 94,
D4(x, 7

3) = x4 − 4 · 73 · x2 + 2 · 76.

According to formula (5) of [11] we have, for all coprime positive
integers m,n and integers b,

(29) Dm(Dn(x, b), b
n) = Dn(Dm(x, b), b

m).

So the equation F (x) = G(y) has solutions (x, y) = (D4(X, 7), D3(X, 7))
for every X ∈ Z. Then the equation f(x) = g(y) with

f(x) = (D3(x, 7
4)− 14 · 77 · 91)(D3(x, 7

4)− 23 · 71 · 94),
g(y) = (D4(y, 7

3)− 14 · 77 · 91)(D4(y, 7
3)− 23 · 71 · 94)

has the same solutions. Note that f has only simple integral roots. □
Example 7.2. Third kind, m = 4, n = 3, b = 5, F (x) = D4(x, 5

3),
G(y) = D3(y, 5

4), φ(x) = (x+ 42 · 222 − 2 · 56)(x+ 102 · 202 − 2 · 56).
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We have 4 · 53 = 42 + 222 = 102 + 202. Hence

D4(x, 5
3) = (x+ 4)(x− 4)(x+ 22)(x− 22)− 42 · 222 + 2 · 56 =

= (x+ 10)(x− 10)(x+ 20)(x− 20)− 102 · 202 + 2 · 56.

By (29), the equation F (x) = D4(x, 5
3) = D3(y, 5

4) = G(y) has so-
lutions (x, y) = (D3(X, 5), D4(X, 5)) (X ∈ Z). Thus the equation
f(x) = g(y) with

f(x) = (x+4)(x−4)(x+22)(x−22)(x+10)(x−10)(x+20)(x−20),

g(y) = (D3(y, 5
4) + 42 · 222 − 2 · 56)(D3(y, 5

4) + 102 · 202 − 2 · 56.)

has the same solutions. □
Example 7.3. Third kind, m = 6, n = 5, b = 7, F (x) = D6(x, 7

5),
G(y) = D5(y, 7

6)), φ(x) = (x+ 7945347009886)(x+ 3958608139486).
We have 3 · 75 = 2112 +211 · 25+ 252 = 1962 +196 · 49+ 492. Hence

D6(x, 7
5) =

(x+211)(x+25)(x+236)(x−211)(x−25)(x−236)−7945347009886 =

= (x+196)(x+49)(x+245)(x−196)(x−49)(x−245)−3958608139486.

By (29), the equation F (x) := D6(x, 7
5) = D5(y, 7

6) =: G(y) has
solutions (x, y) = (D5(X, 7), D6(X, 7)) for (X ∈ Z). Thus the equation
f(x) = g(y) with

f(x) = (x+ 211)(x+ 25)(x+ 236)(x− 211)(x− 25)(x− 236)·
· (x+ 196)(x+ 49)(x+ 245)(x− 196)(x− 49)(x− 245),

g(y) = (D5(y, 7
6) + 7945347009886)(D5(y, 7

6) + 3958608139486)

has the same solutions. □
Example 7.4. Fourth kind, case m = 4, n = 10, a = −10 · 652, b = 65,
F (x) = b−2D4(x, b), G(y) = −a−5D10(y, a),
φ(x) = (x− 7426 · b−2)(x+ 4094 · b−2).

We have 4b = 260 = 22 + 162 = 82 + 142. Thus

D4(x, b) = (x2 − 22)(x2 − 162) + 7426 = (x2 − 82)(x2 − 142)− 4094.

According to formula (10) of [11] with m = 4, n = 10,

(30) b2v21 + av22 = 4ab

with v1, v2 ∈ Q implies that

(31) b−2D4(b
−2(v52 − 5bv32 + 5b2), b) = −a−5D10(v1v2, a).
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Observe that (30) becomes the Pell equation v21 − 10v22 = −2600 with
solutions (v1, v2) = (Xi, Yi) given by (X0, Y0) = (−80, 30), (X1, Y1) =
(280, 90) and

(Xi, Yi) = 38(Xi−1, Yi−1)− (Xi−2, Yi−2) (i ≥ 2).

Thus

F (x) = b−2D4(x, b) = −a−5D10(y, a) = G(y)

has infinitely many solutions (x, y) ∈ Q2 with a bounded denominator.
We conclude that the equation f(x) = g(y) with

f(x) = b−4(x−2)(x+2)(x−16)(x+16)(x−8)(x+8)(x−14)(x+14),

g(y) = (−a−5D10(y, a)− 7426b−2)(−a−5D10(y, a) + 4094b−2)

has infinitely many solutions (x, y) ∈ Q2 with a bounded denominator.
□

Example 7.5. Fourth kind, case m = 6, n = 10, a = −14 · 913, b = 91,
F (x) = b−3D6(x, b), G(y) = −a−5D10(y, a),
φ(x) = (x+ 1433158 · b−3)(x− 1288442 · b−3).

We have 3b = 162 + 16 · 1 + 12 = 112 + 11 · 8 + 82. Thus

D6(x, 91) = (x2 − 162)(x2 − 1)(x2 − 172)− 1433158

= (x2 − 112)(x2 − 82)(x2 − 192) + 1288442.

By formula (10) of [11] with m = 6, n = 10,

(32) b3v21 + av22 = 4ab

with v1, v2 ∈ Q implies that

(33) b−3D6(b
−2(v52 − 5bv32 + 5b2), b) = −a−5D10(v1(v

2
2 − b), a).

Observe that (32) becomes the Pell equation v21 − 14v22 = −5096, with
solutions (v1, v2) = (Xi, Yi) given by (X0, Y0) = (−140, 42), (X1, Y1) =
(252, 70) and

(Xi, Yi) = 30(Xi−1, Yi−1)− (Xi−2, Yi−2) (i ≥ 2).

Thus, by (33),

F (x) = b−3D6(x, b) = −a−5D10(y, a) = G(y)

has infinitely many solutions (x, y) ∈ Q2 with a bounded denominator.
We conclude that the equation f(x) = g(y) with

f(x) = b−6(x2 − 162)(x2 − 1)(x2 − 172)(x2 − 112)(x2 − 82)(x2 − 192),

g(y) = (−a−5D10(y, a) + 1433158b−3)(−a−5D10(y, a)− 1288442b−3)
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has infinitely many solutions (x, y) ∈ Q2 with a bounded denominator.
□

Remark 7.2. It follows from Lemmas 4.2 and 4.3 that in all the above
examples deg(φ) can equal any s ∈ Z>0, (hence deg(f) and deg(g) can
be made arbitrarily large) by choosing suitable W with number of
representations ≥ s and corresponding values u = u1, u2, . . . , us.

Remark 7.3. Let f(x) ∈ Q[x] have only simple rational roots and let
g(x) ∈ Q[x]. Suppose the equation f(x) = g(y) has infinitely many
solutions (x, y) ∈ Q2 with a bounded denominator. By Lemma 7.1
we have deg(F ) ∈ {1, 2, 3, 4, 6}. Put s = gcd(deg(f), deg(g)), m =
deg(f)/s, n = deg(g)/s. Then gcd(m,n) = 1 and m ∈ {1, 2, 3, 4, 6} or
n ∈ {1, 2}.

Ifm = 1 we refer to Example 5.1 to see that all pairs n, s are possible.
For m = 2 Example 5.2 shows that all pairs (n, s) (with n odd since
m and n are coprime) are possible. By (29) the equation Dm(x, b

n) =
Dn(y, b

m) with gcd(m,n) = 1 has infinitely many solutions in integers
(x, y) for any integer b. If m = 4, we proceed as in Example 7.2 (where
s = 2) using a b which is the product of sufficiently many distinct
primes ≡ 1 (mod 4). If m = 3 or m = 6, then we proceed as in
Examples 7.1 or 7.3 (where s = 2 too) using a b which is the product of
sufficiently many distinct primes ≡ 1 (mod 6). Remark 7.2 underlines
that this can be done for any s. Thus every pair (deg(f), deg(g)) with
corresponding m ∈ {1, 2, 3, 4, 6} can be represented.

8. f and g cannot have only simple rational roots
if (F,G) is of the third or fourth kind

If both f and g have simple rational roots, then by symmetry we
may assume that deg(f) ≤ deg(g). Throughout this chapter we shall
do so without further mentioning. We show that if in this case the
equation f(x) = g(y) has infinitely many rational solutions with a
bounded denominator and the corresponding standard pair (F,G) is of
the third or fourth kind, then deg(F ) ≤ 2. Note that deg(f) ≤ deg(g)
implies deg(F ) ≤ deg(G).

Theorem 8.1. Suppose that f and g have only simple rational roots,
and the equation f(x) = g(y) has infinitely many rational solutions
with a bounded denominator. If the corresponding standard pair (F,G)
is of the third or fourth kind, then deg(F ) ≤ 2 holds.

In the proof we use the following lemmas.
We denote the discriminant of a polynomial P by disc(P ).
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Lemma 8.1 (Davenport, Lewis, Schinzel, [24], Theorem 1). Let F (x) ∈
Z[x] be of degree m > 1 and G(y) ∈ Z[x] of degree n > 1. Let

D(z) = disc(F (x) + z), E(z) = disc(G(y) + z).

Suppose there are at least
⌊
1
2
m
⌋
roots of D(z) = 0 for which E(z) ̸= 0.

Then F (x) − G(y) is irreducible over the complex field. Further, the
genus of the equation F (x)−G(y) = 0 is strictly positive except possibly
when n = 2 or m = n = 3. Apart from these possible exceptions, the
equation has at most a finite number of integral solutions.

Lemma 8.2. Let a, b, c be rational numbers such that

3a2 + b2 = c2.

Then there exist rational numbers u, v, w such that

a = ±w(2uv), b = ±w(3u2 − v2), c = ±w(3u2 + v2)

with independent choices of the ± signs.

Proof. Using the trivial solution (a, b, c) = (0, 1, 1), the statement is a
simple consequence of Corollary 6.3.6 of Cohen [20] (in the particular
case (A,B,C) = (3, 1, 1) there). See also Desboves [25] and Dickson
[27], II p. 405. We note that the parametrization given in [27] is not
complete. □
Proof of Theorem 8.1. Suppose that the equation f(x) = g(y) has in-
finitely many solutions x, y ∈ Q with a bounded denominator, and
write (F,G) for the corresponding standard pair of the third or fourth
kind. Assume that deg(F ) ≥ 3. Then it follows from Lemma 7.1
that deg(F ), deg(G) ∈ {3, 4, 6}. In view of the gcd-restrictions on
standard pairs of the third and fourth kinds it remains to consider
(m,n) := (deg(F ), deg(G)) = (3, 4) for the third kind and = (4, 6) for
the fourth kind.

Standard pairs of the third kind. We have (m,n) = (3, 4). Write

φ(x) = p0(x− p1) · · · (x− ps)

with p0 ∈ Q, p0 ̸= 0 and pi ∈ C (i = 1, . . . , s). Since the roots of
f(x) = φ(F (x)) are simple and rational, we see that p1, . . . , ps are
distinct and rational. So we can write

F (x)− pi = (x− a
(i)
1 )(x− a

(i)
2 )(x− a

(i)
3 ),

G(y)− pi = (y − b
(i)
1 )(y − b

(i)
2 )(y − b

(i)
3 )(y − b

(i)
4 ) (i = 1, . . . , s).

Here the 3s numbers a form the set of roots of f and are therefore
distinct rationals. Similarly the 4s numbers b form the set of roots of g
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and are therefore distinct rationals. By Lemma 3.1 we know that the
equation

(34) F (x)− p1 = G(y)− p1

has infinitely many solutions in rationals x, y with a bounded denom-
inator. Since they are Dickson polynomials of degrees 3 and 4, re-
spectively, the proof of Theorem 7.1 implies that the equation (after
changing the indexing of the roots if it is necessary)

(x− a
(1)
1 )(x− a

(1)
2 )(x+ a

(1)
1 + a

(1)
2 ) = (y2 − (b

(1)
1 )2)(y2 − (b

(1)
2 )2)

has infinitely many solutions in rationals x, y with a bounded denom-
inator. Then there exist positive integers ∆1,∆2 such that, omitting
the superscript (1) for simplicity and putting

Ai = ∆1ai (i = 1, 2, 3) and Bj = ∆2bj (j = 1, 2),

the equation
(35)
U(x) := (x−A1)(x−A2)(x+A1+A2) = ∆(y2−B2

1)(y
2−B2

2) =: V (y)

with ∆ = ∆3
1/∆

4
2 has infinitely many solutions in integers x, y.

It follows from Lemma 8.1 that, writing

D(z) = disc(U(x) + z) and E(z) = disc(V (y) + z),

every root of D(z) is a root of E(z). A Maple calculation reveals that
the roots of D(z) are

(36) −A2
1A2 − A1A

2
2 ±

2

9

√
3(A2

1 + A1A2 + A2
2)

3

and that the roots of E(z),

(37) −∆B2
1B

2
2 , ∆

(
B2

1 − B2
2

2

)2

(the latter one being a double root), are rational. So the roots of D(z)
have to be rational. Hence, for some s ∈ Q,

(38) 3(A2
1 + A1A2 + A2

2) = s2.

We rewrite (38) as

3(2A1 + A2)
2 + (3A2)

2 = (2s)2.

By Lemma 8.2, we obtain

2A1 + A2 = ±w(2uv), 3A2 = ±w(3u2 − v2)
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with some u, v, w ∈ Q and independent choice of the ± signs. This
yields

(A1, A2) = w

(
−3u2 ± 6uv + v2

6
,
3u2 − v2

3

)
.

(Here in place of the factor ±w we can simply write w, since w ∈ Q is
arbitrary.) Therefore the roots of D(z) are given by

1

2
w3u2(u− v)2(u+ v)2, − 1

54
w3v2(3u− v)2(3u+ v)2.

Since, by (37), the products of any two roots (37) of E(z) are ± squares
and 2 · 54 = 108 is not a square in Q, we see that one of the roots of
D(z) is zero. Then E(z) has also a root 0. However, then either
B1B2 = 0 or B1 = ±B2, which contradicts the distinctness of the roots
B1, B2, B3, B4. This contradiction proves that (35) has only finitely
many solutions (x, y) ∈ Z2, hence (34) and thus also the equation
f(x) = g(y) has only finitely many rational solutions with a bounded
denominator. So this case cannot occur.

Standard pairs of the fourth kind. In this case the only possibil-
ity is (m,n) = (4, 6), and Lemma 3.1 implies that the standard pair
(F (x), G(y)) is of the form (a−2D4(x, a),−b−3D6(y, b)). Further, the
equation

(39) a−2D4(x, a) = −b−3D6(y, b)

should have infinitely many rational solutions x, y with bounded de-
nominator. However, by Theorem 7.1 we know that here b is of the
form (w2

1 + w1w2 + w2
2)/3 with some w1, w2 ∈ Q, in particular, b > 0.

However, since the signs of the leading coefficients of the even degree
polynomials in (39) are different, this equation can have only finitely
many solutions with a bounded denominator. So this case cannot occur
either, and the proof of Theorem 8.1 is complete. □

9. A sharpening of Theorem 1.1

We give a refinement of Theorem 1.1 in case both f and g have only
simple rational roots. This completes the proof of Theorem 1.1.

Theorem 9.1. Suppose that f and g have only simple rational roots,
and that the equation f(x) = g(y) has infinitely many rational solutions
with a bounded denominator. Let k = deg(f), ℓ = deg(g). If 0 < k ≤ ℓ,
then k | 2ℓ, f is a PTEm,s-polynomial and g is a PTEℓm/k,s-polynomial
with m ∈ {1, 2} and ℓm/k ∈ Z.

Conversely, if k, ℓ are positive integers with k | ℓ and g is a PTEℓ/k-
polynomial of degree ℓ with only simple rational roots, then there exists
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a polynomial f(x) ∈ Q[x] with deg(f) = k and only simple rational
roots such that the equation f(x) = g(y) has infinitely many rational
solutions with a bounded denominator.

Proof. Suppose that the equation f(x) = g(y) has infinitely many
solutions x, y ∈ Q with a bounded denominator. Write (F,G) for
a corresponding standard pair. Combining Lemma 3.2 and Theo-
rem 8.1 we see that deg(F ) ≤ 2, hence deg(f) | 2 deg(g). Simi-
larly as in the treatment of case deg(F ) = 2 in Section 5, without
loss of generality we may assume F (x) = xm with m ∈ {1, 2}. If
φ(x) = p0(x − p1) · · · (x − ps), then the rationals p1, . . . , ps are dis-
tinct, f(x) is similar to p0(x

m − p1) · · · (xm − ps) and g(y) is similar to
p0(G(y) − p1) · · · (G(y) − ps), which both have simple rational roots.
Thus f is a PTEm,s-polynomial, g is a PTEℓm/k-polynomial.

Conversely, let k | ℓ and g be a PTEℓ/k,s-polynomial of degree ℓ with
only simple rational roots. Then g is of the form

(40) g(y) = p0(G(y)− p1)(G(y)− p2) · · · (G(y)− pk)

for some p0, p1, . . . , pk ∈ Q with p1, p2, . . . , pk distinct. Write f(x) =
p0(x − p1) · · · (x − pk). Then the equation f(x) = g(y) has solutions
(x, y) = (G(X), X) for every X ∈ Z. □

Remark 9.1. If in (40) pi = b2i for bi ∈ Q, i = 1, . . . , k, then we may
choose F (x) = x2, f(x) = (x − b1)(x + b1) · · · (x − bk)(x + bk). This
is the case m = 2 in which f is both a PTE1,2k-polynomial and, after
replacing x2 by x, a PTE2,k-polynomial.

Remark 9.2. A remaining question is how large deg(v) in Table 1 can
be, if both f and g have only simple rational roots. Similarly as earlier,
without loss of generality we may assume F (x) = x or F (x) = x2.
Below we treat the cases with the largest known degree of v. As before
we distinguish between the cases a), b) and c) (see Section 5). We have
examples with deg(v) = 12 for a), deg(v) = 4 for b), deg(v) = 0 for c).

Example 9.1. Case F (x) = x,G(y) = v(y), φ(x) = x2 − A2.
It is known (see e.g. p. 7 of [57]) that the sets

T1 := {±22,±61,±86,±127,±140,±151},

T2 := {±35,±47,±94,±121,±146,±148}
form an ideal PTE2,12 pair. Let

v(y) =

∏
t∈T1

(y − t) +
∏

t∈T2
(y − t)

2
and A =

∏
t∈T1

t−
∏

t∈T2
t

2
.
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Then

g(y) = v(y)2 − A2 = (v(y) + A)(v(y)− A) =
∏

t∈T1∪T2

(y − t).

Thus f(x) = x2 − A2 and g have only simple rational roots and the
equation f(x) = g(y) has solutions (x, y) = (±v(X), X) for every X ∈
Z. □
Example 9.2. Case F (x) = x2, G(y) = αyv(y)2, φ(x) = x− A2.

It is known (see e.g. p. 7 of [57]) that the symmetric sets

T3 := {−98,−82,−58,−34, 13, 16, 69, 75, 99} and T4 := {t ∈ T3 : −t}
form an ideal PTE2,9 pair. Put f(x) = x2 − A2, g(y) =

∏
t∈T3

(y − t2),
A =

∏
t∈T3

t and yT (y) =
∏

t∈T3
(y − t) + A. Then

g(y2) =
∏
t∈T3

(y − t) ·
∏
t∈T4

(y − t) = (yT (y)− A)(yT (y) + A).

Observe that yT (y) is an odd polynomial (the coefficients of yi with i
odd are 0 in T ), so T (y) is an even polynomial. Then T (y) = v(y2) for
some v(y) ∈ Q[y] and therefore g(y) = yv(y)2−A2. Thus the equation
f(x) = g(y) has solutions (x, y) = (Xv(X2), X) for every X ∈ Z. □
Example 9.3. Case F (x) = x2, G(y) is of the form (αy2+β)v(y)2 with
αβ ̸= 0. An example with deg(v) = 0 is given by Example 6.2. □

10. Equal products from blocks

We give an application of Theorem 1.1 for equal products from blocks
of integers of bounded size. By a block we mean a set of consecutive
integers.

Theorem 10.1. For every positive integer N there exist only finitely
many pairs of disjoint blocks A and B of size at most N with the
property that for some k, ℓ with 1 ≤ k < ℓ and k ∤ 2ℓ, there exist
distinct elements a1, . . . , ak ∈ A and distinct elements b1, . . . , bℓ ∈ B
such that

(41) a1 · · · ak = b1 · · · bℓ.

Proof. Suppose the statement of the theorem is false for N . We may
clearly assume that k and ℓ are fixed and that

a1 < · · · < ak and b1 < · · · < bℓ.

Then we may assume as well that the differences

ci := ai − a1 (1 < i ≤ k) and dj := bj − b1 (1 < j ≤ ℓ)
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are fixed. Therefore the equation

f(x) := x(x+ c1) . . . (x+ ck−1) = y(y + d1) . . . (y + dℓ−1) =: g(y)

would have infinitely many solutions in rationals x, y with a bounded
denominator. By Theorem 9.1 the corresponding standard pair (F,G)
satisfies deg(F ) ≤ 2. This implies k | 2ℓ, and the statement follows. □

Remark 10.1. Example 5.1 provides examples with k | ℓ such that
(41) has infinitely many integral solutions. Here k can be arbitrarily
large. Examples 5.5 and 9.2 provide examples with k | 2ℓ, k ∤ ℓ, and
(41) has infinitely many integral solutions.

11. Open problems

Suppose equation (2) for f(x), g(x) ∈ Q[x] admits infinitely many in-
tegral solutions (x, y) with f subject to (1). Put s = gcd(deg(f), deg(g)),
m = deg(f)/s, n = deg(g)/s. At the end of Section 7 we have proved
that m ∈ {1, 2, 3, 4, 6} or n ∈ {1, 2}. Moreover we have argued that
every pair (deg(f), deg(g)) with corresponding m ∈ {1, 2, 3, 4, 6} can
be represented.

Problem 1. Which other possibilities are there for m, s, if n = 1 or 2
for equation (2) under (1)?

Now let f(x), g(x) ∈ Q[x] both have only simple rational roots and
equation (1.1) have infinitely many integral solutions. We assume
deg(f) ≤ deg(g), hence m ≤ n. Theorem 1.1 implies m ∈ {1, 2}.
Note that the cases m = s = 1, n arbitrary, m = n, s arbitrary and
m = 1, n = 2, s arbitrary are trivial, the latter in view of

(x− b21) · · · (x− b2s) = (y2 − b21) · · · (y2 − b2s), F (x) = x,G(y) = y2

with solutions (X2, X) for X ∈ Z. Example 6.1 shows that the cases
m = 1, n ∈ {3, 4, 6}, s arbitrary are possible, cf. Remark 7.3. Example
5.5 deals with the casem = 2, n = 3, s arbitrary. Using ideal PTE pairs
Example 9.1 can be extended to the cases m = 1, n ∈ {5, 7, 8, 9, 10, 12},
s = 2 and Example 9.2 to the cases m = 2, n ∈ {5, 7, 9}, s = 1.

Problem 2. Which other possibilities for triples m,n, s exist for equa-
tion (2) under (1) and (3)? In particular, which degrees of v are possible
for standard pairs of the second kind? (Cf. Example 6.2).
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[40] L. Hajdu, Á. Papp, Polynomial values of products of terms from an arithmetic
progression, Monatsh. Math. 193 (2020), 637–655. Corr. 195 (2021), 377.



THE DIOPHANTINE EQUATION f(x) = g(y) 35
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