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Abstract. In this paper we give necessary and sufficient conditions for polynomials

in Q[x] having not too small Galois groups to divide infinitely many standard k-
nomials over Q.

1. Introduction

A polynomial Q ∈ Q[x] of the form

Q(x) =
k∑

i=1

aix
mi with m1 > . . . > mk−1 > mk = 0 and a1 = 1

is called a standard k-nomial. It is worth to mention that the restriction to monic k-
nomials is only for convenience. We may replace every standard k-nomial by any of
its constant multiples, and the theorems would still be valid. We call (m1, . . . ,mk)
the exponent k-tuple of Q. Note that if Q is a standard k-nomial, but not a standard
(k − 1)-nomial, then its exponent k-tuple is uniquely determined. Let

PRk = {P ∈ Q[x] : ∃ Q ∈ Q[x] and r ∈ Z with deg(Q) < k

and r ≥ 1 such that P (x) | Q(xr) over Q}.

In 1965 Posner and Rumsey observed (see [5], pp. 339 and 348) that P ∈ PRk

implies that P divides infinitely many standard k-nomials over Q. They conjectured
that the converse is also true, that is, if a polynomial P ∈ Q[x] divides infinitely
many standard k-nomials over Q, then P ∈ PRk. For k = 2 the conjecture obviously
holds.

In [2] Győry and Schinzel verified the conjecture in a quantitative form for k = 3.
They proved that if P divides more than C1 standard trinomials over Q, then
P ∈ PR3. Here C1 is a number depending on the degree of P and some other
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parameters, and it is explicitly given in [2]. Later, Schlickewei and Viola [6] provided
a value for C1 which depends only on the degree of P .

However, the authors of [2] disproved the conjecture for every k ≥ 4. For ev-
ery k ≥ 2 they gave a polynomial P ∈ Q[x] that divides infinitely many standard
quadrinomials over Q with P 6∈ PRk. In fact the quadrinomials have a zero constant
term and have therefore only three non-zero terms. In case of polynomials with
non-zero constant terms, the problem is more difficult. For every k ≥ 2 Győry and
Schinzel [2] provided a P 6∈ PRk which divides infinitely many standard quintino-
mials over Q with non-zero constant terms. They proposed the following problem
instead of the disproved conjecture of Posner and Rumsey.

Let k be an integer with k ≥ 4. Is it true that a polynomial P ∈ Q[x] with
P (0) 6= 0 divides infinitely many standard k-nomials with non-zero constant terms
if and only if either P ∈ PRk, or P divides a standard

[
k+1
2

]
-nomial?

For k ≥ 6 Hajdu [3] gave a negative answer to this question by providing
other kinds of counterexamples. He proposed to modify the problem of Győry
and Schinzel as follows.

Let k be an integer with k ≥ 4. Is it true that a polynomial P ∈ Q[x] with
P (0) 6= 0 divides infinitely many standard k-nomials with non-zero constant terms
if and only if either P ∈ PRk or P divides a standard (k− 2)-nomial which divides
infinitely many standard k-nomials over Q?

Schlickewei and Viola [7] described a so-called ‘proper’ family Fk of standard
k-nomials such that if a polynomial P having only simple zeros divides more than
C2(k) elements of Fk, then P ∈ PRk.

In [4] Hajdu and Tijdeman gave necessary and sufficient conditions for a polyno-
mial P ∈ Q[x] having only simple zeros to divide infinitely many standard quadri-
nomials or standard quintinomials over Q. Moreover, for k = 5 they presented a
polynomial which yields negative answers to the problems stated by Győry and
Schinzel, and by Hajdu.

The aim of this paper is to extend the results of [4] to polynomials dividing
standard k-nomials for arbitrary k ≥ 4. For this purpose, we impose a new type of
assumption. More precisely, we assume that the polynomial P dividing infinitely
many k-nomials is irreducible over Q, and also that its Galois group is sufficiently
large. We note that as ”almost all” polynomials in Q[x] are irreducible and have
the whole symmetric group as its Galois group, we exclude only a minor part of
polynomials from our investigations. The new results indicate that the conditions
(i) and (ii) of Theorem 1 of [4] (which are the same as in Theorem 1 below) are
the ”right ones” to characterize polynomials dividing infinitely many standard k-
nomials over Q. The proofs rely on the Subspace Theorem based on Schmidt’s
fundamental work.

2. The main results

Let P ∈ Q[x] be an irreducible polynomial of degree n, with Galois group G
and with splitting field K over Q. We keep this notation for the whole paper. For
any t ∈ {1, . . . , n} we say that the Galois group of P is t-times transitive, if for all
ordered t-tuples (αi1 , . . . , αit

) and (αj1 , . . . , αjt
) consisting of zeros of P there exists

an automorphism σ of K such that σ(αil
) = αjl

for l = 1, . . . , t. It is well-known
that the Galois group of any irreducible polynomial is transitive (with t = 1). Note
that if P is t-times transitive then it is s-times transitive for any integer s with
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1 ≤ s ≤ t.

Theorem 1. Let k be an integer with k ≥ 4. An irreducible polynomial P ∈
Q[x] with [2k/3]-times transitive Galois group G divides infinitely many standard
k-nomials with non-zero constant terms over Q if and only if one of the following
conditions holds:

(i) P ∈ PRk,

(ii) P divides over Q two different standard k-nomials with the same exponent
k-tuple.

We note that for k = 4 the statement follows from Theorem 1 of [4]. We shall
derive the following simple corollaries.

Corollary 1. Let P be as in Theorem 1. Then P divides infinitely many standard
k-nomials over Q if and only if either P ∈ PRk, or P divides a standard (k − 1)-
nomial over Q.

Corollary 2. Let P be as in Theorem 1, with the further assumption that deg(P ) ≥
k. Then condition (i) can be replaced by

(i’) P divides a standard binomial over Q.

The following statement shows that the conditions (i) and (ii) in Theorem 1 are
independent.

Proposition. For every k ≥ 5 there exist polynomials P1, P2 ∈ Q[x] such that both
divide infinitely many standard k-nomials over Q, (i) holds for P1 but not for P2,
and conversely, (ii) holds for P2 but not for P1.

Remark 1. The Proposition, together with Theorem 1, strongly suggests that
the conditions (i) and (ii) are necessary and sufficient to characterize polynomials
dividing infinitely many standard k-nomials over Q.

Remark 2. Following the proof of Theorem 1, one can easily see that there is an
effectively computable constant C3(k) depending only on k, such that if P divides
more than C3(k) standard k-nomials over Q, then the conclusion of the theorem is
still valid.

In case of k = 5 we need only double transitivity to have the same conclusion as
in Theorem 1.

Theorem 2. An irreducible polynomial P ∈ Q[x] with doubly transitive Galois
group G divides infinitely many standard quintinomials with non-zero constant terms
over Q if and only if condition (i) or (ii) in Theorem 1 with k = 5 holds.

Remark 3. In Theorem 2 of [4] the authors proved that a polynomial P ∈ Q[x]
with only simple zeros and with P (0) 6= 0 divides infinitely many standard quinti-
nomials with non-zero constant terms over Q if and only if (i), (ii) or the next
condition holds:

(iii) there exist integers M1,M2,M3,M4 such that P divides over Q infinitely many
standard quintinomials Qm of the form

Qm(x) = xM1+2m + amxM2+m + bmxM3+m + cmxM4+m + dm
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with m ∈ N and am, bm, cm, dm ∈ Q.

The proof of Theorem 2 shows that if k = 5 and P has a doubly transitive Galois
group, then condition (iii) implies (i) or (ii).

3. Basic lemmas

Two algebraic numbers β1 and β2 are called equivalent, if for some root of unity
ε we have β1ε = β2. Hence we have a partition of the algebraic numbers into
equivalence classes.

Lemma 1. Let k ∈ Z with k ≥ 2, and let P ∈ Q[x] be a polynomial having only
simple zeros. Then P ∈ PRk if and only if the zeros of P belong to the union of at
most k − 1 equivalence-classes defined above.

Proof. The statement is a reformulation of Proposition 2.1 of [7]. �

Lemma 2. Let α1, . . . , αk be non-zero elements of a field of characteristic zero,
such that αi/αj is not a root of unity (1 ≤ i < j ≤ k). Then the equation∣∣∣∣∣∣∣

αX1
1 . . . αX1

k
...

...
...

αXk
1 . . . αXk

k

∣∣∣∣∣∣∣ = 0

has at most exp((6k!)3k!) solutions in (X1, . . . , Xk) ∈ Zk with Xk = 0 for which the
above determinant has no vanishing subdeterminant.

Proof. This is a reformulation of Theorem 1.1 in [8]. �

Let L be an algebraic number field and αij ∈ L∗ for 1 ≤ i ≤ m, 1 ≤ j ≤ n, where
m,n are positive integers. Moreover, let ai ∈ L (1 ≤ i ≤ m). For i = 1, . . . ,m
and x ∈ Zn with x = (x1, . . . , xn) write αi

x = αx1
i1 . . . αxn

in for brevity. Consider the
equation

(1)
m∑

i=1

aiαi
x = 0 in x ∈ Zn.

Let P be a partition of the set Λ = {1, . . . ,m}, and consider the system of equations

(1.P)
∑
i∈λ

aiαi
x = 0 (λ ∈ P) in x ∈ Zn,

which is a refinement of (1). Let S(P) denote the set of those solutions of (1.P)
which are not solutions of any (1.Q) where Q is a proper refinement of P. Set
i1
P∼i2, if i1 and i2 are in the same class of P, and put

G(P) = {z ∈ Zn : αi1
z = αi2

z for any i1, i2 with i1
P∼i2}.

Denote the cardinality of the set A by |A|.
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Lemma 3. Using the above notation, there exists an explicitly computable constant
C(m,n) depending only on m and n such that if P is any partition of Λ with

|S(P)| ≥ C(m,n)

then there are different solutions z′ and z′′ of (1.P) such that z′ − z′′ ∈ G(P).

Proof. The statement follows from Theorem 1.1 of [1] by a simple induction argu-
ment. �

Lemma 4. Let P ∈ Q[x] be an irreducible polynomial with doubly transitive Galois
group G. Then either all the zeros of P are equivalent or no pair of zeros of P is
equivalent.

Proof. Suppose α1, α2, αi, αj are zeros of P such that α1 6= α2, αi 6= αj and α1/α2

is a root of unity. Choose a σ ∈ G such that σ(α1) = αi and σ(α2) = αj . Then we
obtain that αi/αj is also a root of unity. �

4. Proofs

As the proof of Theorem 2 is more concrete, we give it first. Thereafter we
present the proofs of Theorem 1 and Corollaries 1 and 2. The verification of the
Proposition is the final item of the section.

Proof of Theorem 2. As we mentioned in the Introduction, (i) is sufficient by a result
of Posner and Rumsey (see [5], pp. 339 and 348). The sufficiency of (ii) follows by
considering suitable linear combinations of the two polynomials. To prove necessity,
in view of Remark 3, we may assume that there exist integers M1,M2,M3,M4 such
that P divides over Q infinitely many standard quintinomials Qm of the form

Qm(x) = xM1+2m + amxM2+m + bmxM3+m + cmxM4+m + dm

with m ∈ N and am, bm, cm, dm ∈ Q.
Let A be an infinite set of such quintinomials. We may suppose that n =

deg(P ) ≥ 5, otherwise (i) holds by Lemma 1. Let α1, . . . , αn be the zeros of P . If
any two of these zeros are equivalent, then by Lemmas 4 and 1 we are done. So we
may assume that αi/αj is not a root of unity whenever i 6= j. Observe that the
equation

(2)

∣∣∣∣∣∣∣∣∣∣

αM1+2m
i1

αM1+2m
i2

αM1+2m
i3

αM1+2m
i4

αM1+2m
i5

αM2+m
i1

αM2+m
i2

αM2+m
i3

αM2+m
i4

αM2+m
i5

αM3+m
i1

αM3+m
i2

αM3+m
i3

αM3+m
i4

αM3+m
i5

αM4+m
i1

αM4+m
i2

αM4+m
i3

αM4+m
i4

αM4+m
i5

1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣
= 0

has infinitely many solutions in m for any i1, . . . , i5 with 1 ≤ i1 < . . . < i5 ≤ n.
Thus by Lemma 2 the determinant in (2) must have a vanishing subdeterminant
for infinitely many m. If there is a vanishing subdeterminant of type 2×2, then the
corresponding zeros are equivalent, which is a contradiction. Thus we may assume
that

Du1u2u3 :=

∣∣∣∣∣∣
αM2

u1
αM2

u2
αM2

u3

αM3
u1

αM3
u2

αM3
u3

αM4
u1

αM4
u2

αM4
u3

∣∣∣∣∣∣ = 0
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for some u1, u2, u3 with 1 ≤ u1 < u2 < u3 ≤ n, otherwise by Lemma 2 we get a
contradiction. Note that Du1u2u3 does not have a 2× 2 vanishing subdeterminant,
otherwise we obtain two equivalent zeros, which is a contradiction again.

Suppose first that Du1u2u3 = 0 for each choice of u1, u2, u3. Then there are
r3, r4 ∈ K such that P divides xM2 + r3x

M3 + r4x
M4 over K. Therefore, for an

appropriate choice of m, P divides both Qm and the polynomial

xM1+2m + (am + 1)xM2+m + (bm + s3)xM3+m + (cm + s4)xM4+m + dm

over Q, where si = trace(ri) (i = 3, 4). Thus we have (ii), and the theorem follows
in this case.

So we may assume that D123 = 0 and D124 6= 0. Then, by the double transitivity
of G, there is an automorphism σ of K such that σ(α1) = α1 and σ(α2) = α4.
Observe that by D124 6= 0, σ(α3) 6= α2. Moreover, σ(α3) = α3 is impossible, since
D123 = 0 and D134 = 0 yield D124 = 0. Hence without loss of generality we may
assume that σ(α3) = α5, whence D123 = D145 = 0 and D124 6= 0. It is easy to
check that Dj1j2j3 = 0 with 1 ≤ j1 < j2 < j3 ≤ 5 only if (j1, j2, j3) = (1, 2, 3) or
(1, 4, 5).

Consider now (2), with (i1, i2, i3, i4, i5) = (1, 2, 3, 4, 5). Expanding the determi-
nant by its middle three rows, after dividing by (α1α2α3α4α5)

m, we obtain

(3)
∑

{i1,i2,i3,i4,i5}={1,2,3,4,5}
i3<i4<i5

(−1)i1+i2+1 · sgn(i2 − i1) ·Di3i4i5 · α
M1
i1

(αi1/αi2)
m = 0.

Observe that, by D123 = 0 and D145 = 0, (3) is an exponential equation in K
with exactly 16 nonzero terms. Choose a system P of subsums of the left hand
side of (3) such that each subsum in P vanishes simultaneously for the exponent
quintuples corresponding to polynomials in an infinite subset A1 of A, but all the
proper subsums of each of these subsums do not vanish. Without loss of generality
we may assume that A = A1. Applying Lemma 3 to the partition P, we obtain
G(P) 6= {0}. Note that each class of P contains at least two elements. There exists
a z ∈ Z with z 6= 0 such that for all (i1, i2), (j1, j2) we have that if (αi1/αi2)

m and
(αj1/αj2)

m occur in the same class of P, then

(αi1/αi2)
z = (αj1/αj2)

z

holds. Thus we obtain many multiplicative relations among the αi’s. If (α1/α2)z =
(α2/α1)z, (α1/αi)z or (αi/α2)z for some i with 3 ≤ i ≤ 5, then we obtain that two
zeros of P are equivalent, which is a contradiction. If (α1/α2)z equals (αi/α1)z or
(α2/αi)z for some i with 3 ≤ i ≤ 5 then we get

(4) αz
j1α

z
j2α

−2z
j3

= 1

for some distinct j1, j2, j3 with 1 ≤ j1, j2, j3 ≤ 5. Suppose that (α1/α2)z =
(α3/α4)z. Checking the possible elements of the class of (α1/α5)z, we find that
in each case two zeros of P are equivalent or some relation (4) holds. Thus, since
the former case is excluded, it remains to prove that (4) is impossible. Assume
that (4) holds for some distinct j1, j2, j3 with 1 ≤ j1, j2, j3 ≤ 5. Write βi = αji

for i = 1, 2, 3. By the double transitivity of G, there exists an automorphism σ1
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of K, such that σ1(β1) = β2, σ1(β2) = β3. Write β4 = σ1(β3). We observe that if
β1 = β4 then from (4) we get β3z

1 = β3z
3 , which is a contradiction. So assume that

β1 6= β4, and choose inductively automorphisms σi of K such that σi(βi) = βi+1,
σi(βi+1) = βi+2, and write βi+3 = σi(βi+2). As P has n zeros, after j steps with
j ≤ n − 3, we get that βj+3 = βl with some l ≤ j. Without loss of generality
we may assume that j is minimal with this property and that l = 1. Define the
numbers λi for i = 1, . . . , j + 1 in the following way. Put λ1 = 1, λ2 = −1, and let
λi+2 = 2λi −λi+1 (i = 1, . . . , j− 1). A simple calculation yields λi = (1− (−2)i)/3
(i = 1, . . . , j + 1). Observe that by (4) and the definition of the βi and λi we have

(βz
j+1β

z
j+2β

−2z
1 )

λj+1

j∏
i=1

(βz
i βz

i+1β
−2z
i+2 )

λi = β
z(λ1−2λj+1)
1 β

z(−2λj+λj+1)
j+2 = 1.

By induction it is easy to see that −2λj + λj+1 = −λ1 + 2λj+1. As clearly λ1 6=
2λj+1, we find that β1 and βj+2 are equivalent. However, by the minimality of j
we have β1 6= βj+2. This is a contradiction, and the theorem follows. �

Proof of Theorem 1. The sufficiency of (i) and (ii) just follows as in the proof of
Theorem 2. To prove necessity, suppose that P ∈ Q[x] of degree n divides infinitely
many standard k-nomials, and that P is irreducible with [2k/3]-times transitive
Galois group G. If n < k then (i) holds by Lemma 1 and we are done. Moreover,
if two zeros of P are equivalent then the theorem follows from Lemmas 4 and 1.
Thus without loss of generality we may assume that n ≥ k and that the zeros of
P are pairwise non-equivalent. Let A be an infinite set of k-nomials divisible by
P . Observe that P ∈ PRk−1 implies that P ∈ PRk. Moreover, if P divides two
standard (k − 1)-nomials with the same exponent (k − 1)-tuple, then either these
polynomials are also standard k-nomials, or P divides a polynomial of degree less
than k. Hence, as the statement is true for k = 4 (cf. Theorem 1 of [4]), by induction
we may assume that A does not contain any (k− 1)-nomial. Let α1, . . . , αn be the
zeros of P . If P divides a standard k-nomial xm1 + a2x

m2 + . . . + ak over Q, then
for any i1, . . . , ik with 1 ≤ i1 < . . . < ik ≤ n we have

(5)

∣∣∣∣∣∣∣
αm1

i1
. . . αm1

ik

...
...

...
αmk

i1
. . . αmk

ik

∣∣∣∣∣∣∣ = 0

with mk = 0. We may assume that the set of such k-tuples (m1, . . . ,mk) is in-
finite, otherwise (ii) holds. Thus, by Lemma 2 we get that for any i1, . . . , ik the
determinant in (5) must have a proper subdeterminant which vanishes for infinitely
many k-tuples (m1, . . . ,mk). Choose such a subdeterminant of size t× t with some
1 ≤ u1 < . . . < ut ≤ n and 0 ≤ mjt

< . . . < mj1 ≤ m1 such that

(6)

∣∣∣∣∣∣∣
α

mj1
u1 . . . α

mj1
ut

...
...

...
α

mjt
ut . . . α

mjt
ut

∣∣∣∣∣∣∣ = 0

for infinitely many (m1, . . . ,mk), and t is minimal with this property. Observe
that 3 ≤ t ≤ k − 1, since in case of t = 2, P has two equivalent zeros, which is a
contradiction.
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Suppose first that t ≤ 2k/3. Take any standard k-nomial Q1 from A with
exponent k-tuple (m1, . . . ,mk) for which (6) is valid. Observe that as G is [2k/3]-
times transitive (6) holds for any system of t zeros of P . Hence there are numbers
rj1 , . . . , rjt

from K, one of them being 1, such that P divides rj1x
mj1 + . . .+rjt

xmjt

over K. Therefore, P divides the non-zero polynomial Q2(x) = sj1x
mj1 + . . . +

sjtx
mjt over Q, where sjl

= trace(rjl
) (l = 1, . . . , t). Then P divides the standard

k-nomial Q1 + Q2 (or rather (1/2)Q1 + (1/2sj1)Q2 if deg(Q1) = mj1 and sj1 6= 0)
over Q. This implies (ii), and the theorem follows in this case.

Assume now that t > 2k/3. Without loss of generality we may assume that
there is no k-nomial in A for which there is a vanishing subdeterminant in (5) with
some i1, . . . , ik of size smaller than t × t, and by the minimality of t that the set
A is infinite. As in (6) there are no vanishing subdeterminants, we obtain from
Lemma 2 that there exist integers Mj1 > . . . > Mjt

≥ 0 such that for infinitely
many k-nomials from A we have mj1 −mjl

= Mj1 −Mjl
(l = 2, . . . , t). Again, we

may assume that all the k-nomials in A have this property.
Now by a simple process we are going to separate the exponents (more precisely,

the indices of the exponents) of the polynomials in A into certain sets. Let I1 ⊃
{j1, . . . , jt} be a maximal subset of {1, . . . , k} such that there exists an infinite
subset A1 of A with the following property: for each i ∈ I1 there exists an integer
Ci such that for each polynomial Q ∈ A1 the exponent tuple satisfies

mj1 −mi = Ci (i ∈ I1).

Suppose that Iγ and Aγ with some integer γ ≥ 1 have already been defined. If
{1, . . . , k} \ (I1 ∪ . . .∪ Iγ) is nonempty, let Iγ+1 be a maximal subset of {1, . . . , k} \
(I1∪ . . .∪Iγ) such that there exists an infinite subset Aγ+1 of Aγ with the following
property: for each pair (j, k) with j, k ∈ Aγ+1 there is an integer Cjk such that
each polynomial Q ∈ Aγ+1 has an exponent tuple satisfying

mj −mk = Cjk

(where Cjk is independent of Q). We continue this process as far as we can. By
this method in finitely many, say Γ steps we get an infinite set AΓ and a partition
of {1, . . . , k} into disjoint subsets Iγ (γ = 1, . . . ,Γ). Note that the sets Iγ (γ =
1, . . . ,Γ) are connected in the sense that if s1, s2 ∈ Iγ and s is an integer with
s1 < s < s2, then s also belongs to Iγ . Moreover, without loss of generality we may
assume that A = AΓ. Then for any Q, Q′ ∈ A with exponent k-tuples (m1, . . . ,mk)
and (m′

1, . . . ,m
′
k), respectively, we have ms1 − ms2 = m′

s1
− m′

s2
if and only if s1

and s2 belong to the same Iγ for some γ ∈ {1, . . . ,Γ}. Hence there exist integers
Mi (i = 1, . . . , k) such that if (m1, . . . ,mk) is the exponent k-tuple of a standard
k-nomial from A, then i ∈ Iγ implies mi = Mi + m(γ) with some positive integers
m(γ) (γ = 1, . . . ,Γ) where m(γ) depends only on γ and not further on i. For each
γ ∈ {1, . . . ,Γ} put lγ = |Iγ |, and for any u1, . . . , ulγ with 1 ≤ u1 < . . . < ulγ ≤ n
write

D(γ)
u1...ulγ

= |αMi
ur
|
i∈Iγ
r=1,...,lγ

.

Note that l1 ≥ t > 2k/3, and consequently lγ < k/3 for each γ ∈ {2, . . . ,Γ}. Thus
by the minimality of t and our assumptions on A, we obtain that D

(γ)
u1...ulγ

6= 0 for
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all γ ≥ 2 and u1, . . . , ulγ with 1 ≤ u1 < . . . < ulγ ≤ n. Further, if D
(1)
u1...ul1

= 0 for
all u1, . . . , ul1 with 1 ≤ u1 < . . . < ul1 ≤ n, then by a similar argument as in case
of t ≤ 2k/3, we obtain (ii), and we are done. So, without loss of generality we may
assume that i1 = 1, . . . , ik = k in (5), and that D

(1)
q1...ql1

6= 0 for some q1, . . . , ql1

with 1 ≤ q1 < . . . < ql1 ≤ k. Expanding the determinant in equation (5) by the

rows corresponding to the elements of I1, and then dividing by (α1 . . . αk)m(1)

, we
obtain an exponential equation in K of the form

(7)
∑

(−1)ε

(
Γ∏

γ=1

D(γ)
vγ1...vγlγ

)
Γ∏

γ=2

(
αvγ1 . . . αvγlγ

)m(γ)−m(1)

= 0.

Here the summation is taken over all partitions Hγ = {vγ1, . . . , vγlγ} of {1, . . . , k}

such that
Γ
∪

γ=1
Hγ = {1, . . . , k}, and vγ1 < . . . < vγlγ for each γ. The exponent ε

of (−1) depends only on the choice of the partition Hγ (γ = 1, . . . ,Γ). Further, in

view of the previous considerations, the coefficients
Γ∏

γ=1
D

(γ)
vγ1...vγlγ

are not all zero.

Recall that if m′(γ) and m′′(γ) (γ = 1, . . . ,Γ) correspond to the exponent k-tuples
of the standard k-nomials Q′ and Q′′ in A, respectively, then by the definition of
Iγ we have

m′(γ) −m′(1) 6= m′′(γ) −m′′(1) (γ = 2, . . . ,Γ).

Hence equation (7) is satisfied by infinitely many distinct exponent tuples (m(2) −
m(1), . . . ,m(Γ) −m(1)). Thus, by Lemma 3 there exist integers z2, . . . , zΓ such that

(8)
Γ∏

γ=2

(
αv′γ1

. . . αv′γlγ

)zγ

=
Γ∏

γ=2

(
αv′′γ1

. . . αv′′γlγ

)zγ

for some different partitions {H ′
γ}

Γ

γ=1
and {H ′′

γ }
Γ

γ=1
of the set {1, . . . , k} with H ′

γ =
{v′γ1, . . . , v

′
γlγ
} and H ′′

γ = {v′′γ1, . . . , v
′′
γlγ
} (γ = 1, . . . ,Γ), where

zγ = (m′(γ) −m′(1))− (m′′(γ) −m′′(1))

for certain m′(γ)
,m′(1),m′′(γ)

,m′′(1) corresponding to two distinct k-nomials in A.
In particular, by the definition of Iγ we have zγ1 6= zγ2 whenever γ1 6= γ2 (γ1, γ2 ∈
{2, . . . ,Γ}). Equation (8) leads to an equation of the form

(9) αλ1
w1

. . . αλh
wh

= 1

with 2 ≤ h ≤ 2(k − |I1|), 1 ≤ w1 < . . . < wh ≤ k and non-zero integers λ1, . . . , λh.
As |I1| > 2k/3, we have 2 ≤ h ≤ 2k/3. Since G is [2k/3]-times transitive, there
exists an automorphism σ of K such that σ(αw1) = αw2 , σ(αw2) = αw1 , and
σ(αwp

) = αwp
for p = 3, . . . , h. Together with (9) this yields that αw1 and αw2 are

equivalent. It contradicts an earlier assumption. �

Proof of Corollary 1. Suppose that (ii) holds, and P divides the standard k-nomials

Q(x) =
k∑

i=1

aix
mi and Q′(x) =

k∑
i=1

bix
mi
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where m1 > . . . > mk−1 > mk = 0, a1 = b1 = 1 and ai 6= bi for some i with
2 ≤ i ≤ k − 1. Then P divides the standard (k − 1)-nomial (biQ− aiQ

′)/(bi − ai).
On the other hand, if P divides a standard (k − 1)-nomial Q, then P divides

the standard k-nomials xlQ for any non-negative integer l. Hence the statement
follows. �

Proof of Corollary 2. As a binomial can be considered as a linear polynomial in
some xr, (i’) implies P ∈ PR2, whence (i) follows. On the other hand, if (i) holds
then as deg(P ) ≥ k, by Lemmas 1 and 4 we get that any two zeros of P are
equivalent, which yields (i’). �

Proof of the Proposition. Fix any k with k ≥ 5. Then by Lemma 3 of [3] there
exists a polynomial P1 ∈ Q[x] of degree k − 1 such that P1 does not divide any
standard (k−1)-nomial over Q. Then by definition (i) is valid for P1, and P1 divides
infinitely many standard k-nomials. Moreover, (ii) cannot hold for P1, as in that
case P1 would divide a standard (k − 1)-nomial over Q.

On the other hand, the Proposition in [4] in case of k = 5 and the Theorem
together with Lemma 1 and its proof in [3] when k ≥ 6 guarantees the existence of
a polynomial P2 ∈ Q[x] such that (ii) is valid for P2 but (i) is not. �
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[3] L. Hajdu, On a problem of Győry and Schinzel concerning polynomials, Acta Arith. 78 (1997),
287–295.

[4] L. Hajdu and R. Tijdeman, Polynomials dividing infinitely many quadrinomials or quintino-

mials, Acta Arith. 107 (2003), 381–404.

[5] E. C. Posner and H. Rumsey, Jr., Polynomials that divide infinitely many trinomials, Michigan
Math. J. 12 (1965), 339–348.

[6] H. P. Schlickewei and C. Viola, Polynomials that divide many trinomials, Acta Arith. 78

(1997), 267–273.

[7] H. P. Schlickewei and C. Viola, Polynomials that divide many k-nomials, Number Theory,
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