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Abstract. In this paper we give finiteness results for the shifted
power values and polynomial values of Littlewood polynomials.

1. Introduction

There are many papers in the literature concerning polynomials with
coefficients belonging to the set {−1, 0, 1}. For a short survey, we refer
to the introduction of the paper [4] and the references there. If the
coefficients are only ±1, the polynomials are called Littlewood polyno-
mials. In [4], under certain necessary assumptions, an effective bound
for max(|x|, |y|,m) in the equation

f(x) = ym

is given in case f is a Littlewood polynomial and x, y,m are integral
unknowns with m ≥ 2. In this paper we give effective upper bounds
for the solutions of the more general equation

f(x) = aym + b

where a, b ∈ Q. Further, we describe all cases where a Littlewood poly-
nomial can have infinitely many common values with another polyno-
mial. In particular, we show that for any g(x) ∈ Q[x], the equation

f(x) = g(y)

can have only finitely many solutions in integers x, y, except for certain
explicitly given cases.
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2. The theorems

Theorem 2.1. Let f(x) be a Littlewood polynomial of degree n with
n ≥ 4 and a, b ∈ Q with a ̸= 0. Then all solutions x, y,m ∈ Z of the
equation

(1) f(x) = aym + b

with m ≥ 2, satisfy

max(|x|, |y|,m) ≤ C1,

except when m = 2 and

(2) f(x) ∈ {f ∗(x), f ∗(x)− 2f ∗(0), xf ∗(x)± 1}

with b = 0,−2f ∗(0),±1, respectively, where

f ∗(x) = ±(x2ℓ+1 + x2ℓ + . . .+ xℓ+1 − xℓ − . . .− 1), or

f ∗(x) = ±((−x)2ℓ+1 + (−x)2ℓ + . . .+ (−x)ℓ+1 − (−x)ℓ + · · · − 1)

with ℓ = ⌊(n − 1)/2⌋ and the solutions are given by y = Q(x) with
Q(±x) = ±(xk + . . . + x + 1). Here C1 is an effectively computable
constant depending only on n, a, b, and we use the convention that m ≤
3 if |y| ≤ 1.

Theorem 2.2. Let f(x) be a Littlewood polynomial of degree n with
n ≥ 4 and g(x) ∈ Z[x]. Then the equation

(3) f(x) = g(y)

has only finitely many solutions in integers x, y, except when g(y) =
f(T (y)) with some polynomial T (y) of degree ≥ 1 having rational co-
efficients, or if f(x) is of the shape (2) and g(y) = a(cy + d)2 + b for
a, b as in Theorem 2.1 and c, d ∈ Q, c ̸= 0.

Remark 1. In both theorems the assumption deg(f) ≥ 4 is necessary.
The case deg(f) = 1 is trivial. It is easy to construct infinitely many
f, a, b with deg(f) = 2, and g(y) = ay2 + b such that equation (1)
becomes a Pell equation having infinitely many integer solutions x, y.
Finally, also for deg(f) = 3 there exist cases not fitting in the families
described in the theorems. For example, taking

f(x) = x3 + x2 − x+ 1, a =
1

27
b =

22

27
,

in view of

f(x)− b = a(3x+ 5)(3x− 1)2

we see that equation (1) has infinitely many integer solutions x, y.
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It is also necessary that f(x) is not of the shape (2). We demonstrate
it only for one case. The other cases can be checked similarly. Take

f(x) = x(x2ℓ+1 + . . .+ xℓ+1 − xℓ − . . .− 1) + 1 =

= xn + . . .+ xn/2+1 − xn/2 − . . .− x+ 1.

One can readily check that

f(x)− 1 = x(x− 1)(xn/2−1 + · · ·+ x+ 1)2.

As the Pell equation x(x − 1) = 2y2 has infinitely many solutions,
equation (1) has infinitely many solutions in integers x, y when taking
m = 2, a = 2, b = 1.

Remark 2. Let f(x) be a Littlewood polynomial and write

f(x) = ε0x
n + ε1x

n−1 + ε2x
n−2 + · · ·+ εn−1x+ εn

with εi ∈ {−1, 1} (i = 0, 1, . . . , n). Applying the transformation x →
−x if necessary, we may assume that ε0 = ε1. Then, taking out a
factor −1 if necessary, we may suppose that ε0 = ε1 = 1. Since our
statements concern the root structure of f(x) and f ′(x), and equations
involving f(x), we can clearly do this in our arguments without loss of
generality. So from this point on, we shall assume that f(x) is of the
shape

(4) f(x) = xn + xn−1 + ε2x
n−2 + · · ·+ εn−1x+ εn.

3. Auxiliary results

We present some lemmas which we shall use in the proofs of the
theorems. By the height H(F (x)) of a polynomial F (x) with integer
coefficients we mean the maximum of the absolute values of its coeffi-
cients.

Lemma 3.1. Let F (x) ∈ Z[x] of degree D and height H have two
distinct (complex) roots, and B a non-zero rational number. Then the
equation

F (x) = Bym

with x, y ∈ Z, |y| > 1 implies that m < C2, where C2 is effectively
computable and depends only on B, D and H.

Proof. The statement follows from the Schinzel-Tijdeman theorem [6].
�
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The following lemma is a theorem of Brindza [2]. For any finite set
S of primes, write QS for those rationals whose denominators (in their
primitive forms) are composed exclusively from the primes in S. By the
height h(s) of a rational number s we mean the height of its minimal
defining polynomial.

Lemma 3.2. Let F (x) ∈ Z[x] of degree D and height H, and write

F (x) = A
ℓ∏

i=1

(x− γi)
ri ,

where A is the leading coefficient of F , and γ1, . . . , γℓ are the distinct
complex roots of F (x), with multiplicities r1, . . . , rℓ, respectively. Fur-
ther, let m be an integer with m ≥ 2, and put

qi =
m

(m, ri)
(i = 1, . . . , ℓ).

Suppose that (q1, . . . , qℓ) is not a permutation of any of the ℓ-tuples

(q, 1, . . . , 1) (q ≥ 1), (2, 2, 1, . . . , 1).

Then for any finite set S of primes and non-zero rational B, the solu-
tions x, y ∈ QS of the equation

F (x) = Bym

satisfy
max(h(x), h(y)) < C3,

where C3 is effectively computable and depends only on B,m,D,H, S.

In the proof of Theorem 2.2, the decomposability of polynomials will
play an important role. We call F (x) ∈ Q[x] decomposable over Q if
there exist G(x), H(x) ∈ Q[x] with deg(G) > 1, deg(H) > 1 such that
F = G(H), and otherwise indecomposable.

Lemma 3.3. Let F (x) ∈ Z[x], of the form

F (x) = xn + u1x
n−1 + · · ·+ un−1x+ un.

If gcd(u1, n) = 1 then F (x) is indecomposable over Q.

Proof. The statement is a simple consequence of Theorems 2 and 3 of
[3]. �
We further apply a deep result of Bilu and Tichy. Let δ be a non-zero

rational number and µ be a positive integer. Then the µ-th Dickson
polynomial is defined by

Dµ(x, δ) :=

⌊µ/2⌋∑
i=0

dµ,ix
µ−2i where dµ,i =

µ

µ− i

(
µ− i

i

)
(−δ)i.
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Kind Standard pair (unordered) Parameter restrictions
First (xq, αxpv(x)q) 0 ≤ p < q, (p, q) = 1,

p+ deg(v) > 0
Second (x2, (αx2 + β)v(x)2) -
Third (Dµ(x, α

ν), Dν(x, α
µ)) gcd(µ, ν) = 1

Fourth (α−µ/2Dµ(x, α),−β−ν/2Dν(x, β)) gcd(µ, ν) = 2
Fifth ((αx2 − 1)3, 3x4 − 4x3) -

Table 1. Standard pairs. Here α, β are non-zero rational

numbers, µ, ν, q are positive integers, p is a non-negative inte-

ger, v(x) ∈ Q[x] is a non-zero, but possibly constant polyno-

mial.

For properties of Dickson polynomials see e.g. [5]. The polynomials
F,G ∈ Q[x] form a standard pair over Q if either (F (x), G(x)) or
(G(x), F (x)) appears in Table 1.

Lemma 3.4 (Bilu, Tichy [1], Theorem 1.1). Let f(x), g(x) ∈ Q[x]
be non-constant polynomials. Then the following two statements are
equivalent.

(I) The equation f(x) = g(y) has infinitely many rational solutions
x, y with a bounded denominator.

(II) We have f = φ(F (κ)) and g = φ(G(λ)), where κ(x), λ(x) ∈
Q[x] are linear polynomials, φ(x) ∈ Q[x], and F (x), G(x) form
a standard pair over Q such that the equation F (x) = G(y) has
infinitely many rational solutions with a bounded denominator.

A multiple root is a root of multiplicity > 1.

Lemma 3.5. Let f(x) be a Littlewood polynomial and b ∈ Q. If f(x)−b
has a root of multiplicity ≥ 3, or has at least two roots of multiplicities
≥ 2, then b ∈ Z. Further, in both cases the multiple roots of f(x) − b
are units.

Proof. Let f(x) be given by (4) as in Remark 2. For any root α of
f(x) − b let vα(x) denote the monic minimal defining polynomial of
α over Q. If α is a triple (or higher multiplicity) root of f(x) − b,
then let v(x) = vα(x). Similarly, if α is a double root of f(x)− b with
deg(vα) ≥ 2, then let v(x) = vα(x). Finally, if deg(vα) = 1 in the case
of at least two roots of multiplicities ≥ 2, then take any other multiple
root β of f(x) − b and let v(x) = vα(x)vβ(x). Observe that in each
case, we can write

(5) f(x)− b = g(x)(v(x))ℓ
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with a monic g ∈ Q[x] and ℓ ≥ 2, and either k := deg(v) ≥ 2 or ℓ ≥ 3.
Write b = q1/q2 with coprime integers q1, q2 (q2 > 0), and v(x) =
v∗(x)/v0, g(x) = g∗(x)/g0 with v∗, g∗ ∈ Z[x] primitive polynomials,
v0, g0 positive integers. (Since v and g are monic, such v∗, g∗, v0, g0
exist.) Rewrite (5) as

(6) q2f(x)− q1 =
q2
g0vℓ0

g∗(x)(v∗(x))ℓ.

Since q2f(x) − q1 and g∗(x)(v∗(x))ℓ are primitive polynomials in Z[x]
(the latter one by the Gauss lemma), we see that q2/g0v

ℓ
0 = 1 in (6).

Suppose that q2 ̸= 1. Let p be any prime with p | q2. Then taking (6)
modulo p, we see that

(7) v∗(x) ≡ c (mod p)

for some integer c with p - c. Taking now derivatives in (5) we obtain

(8) f ′(x) = (v(x))ℓ−1h(x)

with
h(x) = g′(x)v(x) + ℓg(x)v′(x).

Note that deg(f ′) = n−1, deg(h) = n−1−k(ℓ−1). There exist coprime
positive integers h0, h1 and a primitive polynomial h∗(x) ∈ Z[x] such
that h(x) = h1h

∗(x)/h0. Thus we can rewrite (8) as

(9) f ′(x) =
h1

vℓ−1
0 h0

v∗(x)ℓ−1h∗(x).

Recall Remark 2. Since

f ′(x) = nxn−1 + (n− 1)xn−2 + . . .+ 2εn−2x+ εn−1

as well as v∗(x)ℓ−1h∗(x) are primitive polynomials in Z[x], we see that
h1/v

ℓ−1
0 h0 = 1. Taking (9) modulo p with the above prime p | q2, we

obtain by (7) that

deg(f ′(x) (mod p)) ≤ n− 1− k(ℓ− 1).

However, since the coefficients of the first two terms of f ′(x) are n and
n− 1 which are coprime, we see that

deg(f ′(x) (mod p)) ≥ n− 2.

As k ≥ 2, ℓ ≥ 2 or ℓ ≥ 3 this is a contradiction. Hence we conclude
that q2 = 1, hence b ∈ Z.

Next we show that under the assumptions of the statement, the
multiple roots of f(x) − b are units. Let α be any such root. Then,
since b ∈ Z, α is an algebraic integer. Thus vα(x) ∈ Z[x] and (vα(x))

2 |
f(x)− b over Z, whence vα(x) | f ′(x) over Z. As f ′(0) = ±1, our claim
follows. �
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We shall also apply the following information concerning the roots
of shifted Littlewood polynomials.

Lemma 3.6. Let f(x) be a Littlewood polynomial of degree n and let
b ∈ Z. Then for any root α of f(x)− b with |α| > 2 we have

|α| − 2

|α| − 1
|α|n < |b|.

Proof. We have

|α|n ≤ |α|n−1+ |α|n−2+ . . .+ |α|+1+ |b| = |α|n − 1

|α| − 1
+ |b| < |α|n

|α| − 1
+ |b|.

From this the statement follows. �
Finally, we shall also use the following result from [4].

Lemma 3.7. Let Q(x) ∈ Z[x] be a non-constant polynomial and r, t be
integers with 0 ≤ r < t, t ≥ 2. If all the coefficients of the polynomial
(x− 1)r(Q(x))t belong to {−1, 1}, then t = 2, r = 1 and Q(x) is of the
form

(10) Q(x) = ±(xk + . . .+ x+ 1)

with some k ≥ 1. If all the coefficients of the polynomial (x+1)r(Q(x))t

belong to {−1, 1}, then t = 2, r = 1 and Q(x) is of the form

(11) Q(−x) = ±(xk + . . .+ x+ 1)

with some k ≥ 1.

Proof. The first statement is Lemma 3.6 in [4]. The second statement
follows by the substitution x → −x. �

4. Proofs of the theorems

Proof of Theorem 2.1. Let f(x) be given by (4). The bound for m
follows from Lemma 3.1, unless f(x)−b is of the shape f(x) = (x−s)n

with s ∈ Q. Since Lemma 3.5 implies b ∈ Z, we have s ∈ Z. However,
we get a contradiction with the fact that the coefficient of xn−1 is 1 in
f(x)− b.

Thus, by Lemma 3.1, we may assume that m is fixed. Now our claim
follows from Lemma 3.2, except for the following two cases:

i) m ≥ 2 is arbitrary and f(x) − b = (P (x))r(Q(x))t with 0 ≤ r < t,
t ≥ 2 and P,Q ∈ Q[x], deg(P ) ≤ 1;

ii) m = 2 and f(x)− b = P (x)(Q(x))2 with P,Q ∈ Q[x], deg(P ) = 2.

Throughout the proof we suppose without loss of generality that P,Q
are both monic.
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For n = 4 a simple computer calculation shows that i) is impossible,
while ii) can occur only when we have

(f(x), b)) = (x4 + x3 − x2 − x± 1,±1).

Since this possibility is among the exceptional cases (2), we may assume
that n ≥ 5. Lemma 3.5 implies b ∈ Z, so we infer that P,Q ∈ Z[x].
We consider cases i) and ii) in turn.

Assume first that i) holds. If r = 0 or P (x) is constant then, since
the coefficient of xn−1 is 1 on the left-hand side, while it is divisible
by t on the right-hand side, we get a contradiction. So r ≥ 1 and
P (x) is linear. We write P (x) = x − s with s ∈ Z. Since either t ≥ 3
or deg(Q) ≥ 2, and the roots of Q are multiple roots of f(x) − b, by
Lemma 3.5 we obtain Q(0) = ±1. Further, the same lemma yields
that for r ≥ 2 we have s = ±1. We apply Lemma 3.7 and obtain a
contradiction. We conclude that the statement of Theorem 2.1 holds
if r ≥ 2.

So we may assume that r = 1. Comparing the constant terms, we
see that b = εn ± s. Lemma 3.6 with n ≥ 5, |b| ≤ 3 yields |s| < 3.
If |s| = 1 then Lemma 3.7 implies that Q(x) is of the form (10) or

(11). This leads to the first two options of (2).
If s = 0 then comparing the coefficients of xn−1 on both sides we get

a contradiction: it is 1 on the left-hand side, while it is a multiple of t
on the right-hand side.

Hence we are left with s = ±2. Since s is a root of f(x)− b, we have
(recall Remark 2)

(12) f(s)− b = sn + sn−1 + ε2s
n−2 + · · ·+ εn−1s+ εn − b = 0.

In view of |sn + sn−1| ≥ 2n−1, and as by εn − b = ±2 we have

|ε2sn−2 + · · ·+ εn−1s+ εn − b| ≤ 2n−2 + 2n−3 + · · ·+ 21 + 2 = 2n−1,

(12) is only possible if s = −2 and all other terms in (12) have signs
opposite to that of sn. Thus we conclude

(13) f(x)− b = xn + xn−1 − xn−2 + . . .+ (−1)n−2x+ (−1)n−1 · 2.

Hence we easily get

(Q(x))t = xn−1 − xn−2 + . . . .

However, it is not possible, since the coefficient of xn−2 is not divisible
by t. Thus the theorem is true in case i).
Suppose that ii) holds. Write P (x) = x2 + ux + w. Recall that

n = deg(f) ≥ 5 - thus now in fact n ≥ 6. First we clarify the parity of
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u and w. Taking the equation in ii) modulo 2 we obtain

xn + xn−1 + xn−2 + xn−3 + . . . ≡
≡ (x2 + ux+ w)(xn−2 + δ1x

n−4 + δ2x
n−6 + . . .) (mod 2).

Here a priori δ1, δ2 ∈ {0, 1}. Comparing the coefficients of xn−1, xn−3,
xn−2 (in this order) on both sides, we successively get that u is odd,
δ1 = 1 and w is even.

Since n ≥ 6, Lemma 3.5 implies (as in case r ≥ 2 of i)) that Q(0) =
±1, and consequently f(0) − b = w. Observe that P (x) has a root α

with |α| ≥
√

|w|. Since b = −w ± 1, for n ≥ 6 Lemma 3.6 yields that√
|w| − 2√
|w| − 1

|w|3 < |w|+ 1.

This implies |w| ≤ 4. Hence by the parity condition above, we obtain
w ∈ {0,±2,±4}. Assume first that w = 0. Then f(0) − b = 0, and
taking out a factor x the equality in ii) simplifies to

f(x)− b

x
= (x+ u)(Q(x))2.

Observe that the polynomial on the left hand side is a Littlewood
polynomial. So u = ±1, and by Lemma 3.7 we obtain (similarly as in
case r = 1, s = ±1 of Case i)) that Q(x) is of the form (10) or (11).
This yields the third option of (2) and

f(x)− b

x
= (x− 1)(xk + . . .+ x+ 1)2.

From this our claim follows in case w = 0. For the remaining values of
w, Lemma 3.6 implies

|α1,2| − 2

|α1,2| − 1
|α1,2|6 < |w|+ 1 ≤ 5

for any of

α1,2 =
−u±

√
u2 − 4w

2
with absolute value > 2. A simple calculation gives that then |α1,2| <
2.1. A further calculation yields that both roots are below this bound
in absolute value only if u = 0 for w = −4; |u| ≤ 4 for w = 4; |u| ≤ 1
for w = −2; |u| ≤ 3 for w = 2. Since u must be odd, we are left with
the following polynomials:

P (x) = x2 ± 3x+ 4, x2 ± x+ 4, x2 ± x− 2, x2 ± 3x+ 2, x2 ± x+ 2.

We handle these possibilities in turn.
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Let α be a root of any of the polynomials P (x) = x2 ± 3x + 4,
x2 ± x + 4. Then |α| = 2, and α is a root of f(x) − b. Since the
constant term of f(x)− b is 4, we obtain

2n = |α|n ≤ |α|n−1 + · · ·+ |α|4 +M = 2n − 16 +M,

where

M = max
ε1,ε2,ε3∈{−1,1}

|ε3α3 + ε2α
2 + ε1α + 4|.

However, a computer calculation shows that M < 16 for these choices
of P (x). Hence these cases cannot occur.

Consider now the polynomials P (x) = x2±x−2, x2±3x+2. Observe
that −2 or 2 is a root of these polynomials. Further, the constant term
of f(x)−b equals ±2 in these cases. Thus we get (similar to (13), recall
that f(x) is of the form (4), and that n is even)

f(x)− b = xn + xn−1 − xn−2 + xn−3 − xn−4 + . . .− x2 + x− 2

with a root −2. This, in view of the signs of the constant terms, rules
out the polynomials P (x) = x2 ± 3x+2. In case P (x) = x2 ± x− 2 we
get, since f is a Littlewood polynomial,

(Q(x))2 = xn−2 + xn−4 + . . .+ x2 + 1.

Then, writing

Q(x) = x
n−2
2 + q1x

n−4
2 + q2x

n−6
2 + . . . ,

from the coefficients of xn−3 we see that q1 = 0, and then from the
coefficients of xn−4 that 2q2 = 1. This contradicts Q(x) ∈ Z[x]. So
these cases are not possible either.

Thus we are left with P (x) = x2 ± x+ 2. Write

Q(x) = xk + q1x
k−1 + . . .+ qk−1x+ qk

with n = 2k + 2. Recall that q1, . . . , qk ∈ Z with qk = ±1. First we
argue that the equality

(14) f(x)− b = (x2 ± x+ 2)(Q(x))2

implies that q1, . . . , qk are all odd. Indeed, if i is the smallest index
with qi is even, then the coefficients of x2i−1, x2i, x2i+1 would all be
even in (Q(x))2, so the coefficient of x2i+1 would be even in f(x) − b,
a contradiction. Expanding the first few coefficients on the right-hand
side of (14) we get

xn + xn−1 + ε2x
n−2 + . . . =

= xn + (2q1 ± 1)xn−1 + (2q2 + q21 ± 2q1 + 2)xn−2 + . . . .
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Hence, using that q1 and q2 are odd, we obtain successively

q1 = 1, P (x) = x2 − x+ 2, q2 = −1, ε2 = −1.

Write α for a root of x2−x+2. Since α is a root of f(x)− b, we obtain

|αn + αn−1 − αn−2| ≤ |α|n−3 + · · ·+ |α|+ |f(0)− b|.

Note that |α| =
√
2 and |α2 + α − 1| > 6. Since the constant term

f(0)− b of f(x)− b is 2, we obtain

6 · (
√
2)n−2 <

(
√
2)n−2 − 1√
2− 1

+ 1.

This gives a contradiction, which shows that P (x) = x2 − x+ 2 is also
impossible. Hence the theorem is proved. �
Proof of Theorem 2.2. Let f(x) be of the form (4). Then Lemma 3.3
implies that f(x) is indecomposable over Q. Thus, if equation (3) has
infinitely many solutions in integers x, y, then by Lemma 3.4 we have
only two options. Either g(x) is of the form g(x) = f(T (x)) with
some T (x) ∈ Z[x] (in which case (3) clearly has infinitely many integer
solutions indeed) or f(x) is of the shape

(15) f(x) = AF (ux+ w) + B,

with some A,B, u, w ∈ Q, Au ̸= 0, where F belongs to a standard pair
from Table 1. Only the latter case needs more investigation.

Suppose first that F (x) belongs to case I or II of Table 1. Since
a Littlewood polynomial cannot be a perfect power of another poly-
nomial, in these cases G(x) is a perfect power of x and F (x) is the
other possibility in Table 1. Therefore f(x) is of the shape occurring
as i) or ii) in the proof of Theorem 2.1 and g(x) = P (cx+ d) for some
c, d ∈ Q, c ̸= 0. So the statement follows Theorem 2.1 in the cases I
and II.

Now assume that we are in case III or IV of Table 1. Then F (x) is
a constant multiple of a Dickson polynomial in (15). Clearly, (15) is
equivalent to

(16) f

(
x− w

u

)
= ADn(x, δ) + B

with some non-zero δ ∈ Q, where n is the degree of f . (Here in case
III, A is replaced by another constant.) Recall that n ≥ 4. Since Dn

is either an odd or an even polynomial (depending on the parity of n),
comparing the coefficients of xn−1 and xn−3 in (16), we get

−nw

un
+

1

un−1
= 0,
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−
(
n

3

)
w3

un
+

(
n

2

)
w2

un−1
− ε2

nw

un−2
+ ε3

1

un−3
= 0,

respectively. These equalities imply

(3ε3 − 3ε2 + 1)n2 − 1 = 0.

Hence n = ±1, which is excluded.
Finally, suppose that F (x) comes from case V of Table 1. The poly-

nomial (αx2 − 1)3 is an even polynomial of degree 6 and it can be
handled and excluded in the same way as the possibilities in the cases
III and IV. If F (x) = 3x4 − 4x3, then (15) gives

f(x) = A(3(ux+ w)4 − 4(ux+ w)3) + B.

A simple calculation shows that f(x) cannot be a Littlewood polyno-
mial. Hence the theorem is proved. �
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