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Abstract. In this paper we propose a new voting scheme for genera-
lizing the classical majority voting system. In contrast to the classical
voting method we can make good decision if the number of classifiers as-
signing the correct class label is less than the half of the overall number
of classifiers. This new method can be applied to such problems when the
decision is not only logical but is also required to satisfy a pre-defined
(e. g. geometrical) condition. In addition, we will show the results cor-
responding to the concept of pattern of success and failure using the
existence theorem for the combinatorial (0,1)-matrices.
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1 Introduction

In this paper we work out a theoretical model which generalizes the classical
majority voting scheme, where more than the half of the votes are needed to
make a final decision. Our model is based on the idea that in the case of less good
votes we still have some chance to make a good decision. This idea was motivated
by certain medical imaging problems to detect the optic disc and the macula
where bad votes can overcome good ones only if a further geometrical condition
is fulfilled. Applying more different optic disc/ macula detectors [1] for voting
we can achieve better performance for the automatic detection system than for
each individual algorithm. We were interested in the upper and lower bounds
of the system accuracy and discussed the concept of the pattern of success and
failure in our model. This generalized method can be applied to several problems
corresponding to spatial location with additional constraints (e.g. detecting a
certain pixel or region).

In the rest of the paper, section 2 presents the classical voting system. In sec-
tion 3 we introduce a generalization of voting system and show some theoretical
results, while in section 4 our results for the pattern of success and failure are
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discussed. In section 5 we present an illustrative game for this model. The follo-
wing section contains the medical imaging application. Section 7 gives conclusion
and further recommendations.

2 Majority voting

Let D = (D1, D2, . . . , Dn) be a set of classifiers, Di : Rk → Ω (i = 1, . . . , n)
where Ω = (ω1, ω2, . . . , ωc) be a set of class labels. In the majority vote method
of combining classifier decisions the class label ωi supported by the majority of
the classifiers Di is assigned to x. Most often ties are broken randomly.

In [2] Kuncheva et al. discuss exhaustively the following special case. Let n
be odd, Ω = (ω1, ω2) (each classifier output is a binary vector) and all classifiers
have the same classification accuracy p. An accurate class label is given by the
majority vote if at least [n/2] classifiers give correct answers. The majority vote
method with independent classifier decisions gives an overall correct classification
accuracy calculated by the binomial formula:

P =
[n/2]∑

k=0

(
n

k

)
pn−k(1− p)k

Several interesting results can be found in [3] applying the majority voting in
pattern recognition. This method is guaranteed to give a higher accuracy than
the individual classifiers if the classifiers are independent and p > 0.5.

3 The generalization

Let η = (η1, . . . , ηn) be an n-dimensional random variable. Assume that the
coordinates ηi of η are independent random variables with

P (ηi = 1) = p, P (ηi = 0) = 1− p (i = 1, . . . , n),

where p ∈ [0, 1]. Execute the experiment η independently t times, and write the
outcomes in a table of size n × t. (The j-th column of the table contains the
realization of η in the j-th experiment (j = 1, . . . , t).) Define now the random
variables χ1, . . . , χt in the following way. If in the j-th column there are k ones
then let

P (χj = 1) = pnk, P (χj = 0) = 1− pnk (j = 1, . . . , t),

where the pnk-s (k = 0, 1, . . . , n) are given numbers with

0 ≤ pn0 ≤ . . . ≤ pnn ≤ 1.

Observe that the χj-s are independent. Finally, put

ξ = |{j : χj = 1}|,
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that is, ξ is the number of ”good” decisions. Observe that all the individual
decisions ηi (i = 1, . . . , n) are of binomial distribution with parameters (t, p). As
we shall see, ξ is also of binomial distribution, with the appropriate parameters.
To show this, first we need the following lemma.

Lemma 1. For any j = 1, . . . , t we have

P (χj = 1) =
n∑

k=0

pnk

(
n

k

)
pk(1− p)n−k.

Proof. The statement is trivial in view of the definitions of the objects involved.

We introduce the following notation: put

q =
n∑

k=0

pnk

(
n

k

)
pk(1− p)n−k. (1)

Lemma 2. The random variable ξ is of binomial distribution with parameters
(t, q), where q is given by (1)

Proof. Let k ∈ {0, 1, . . . , t}. Then, since the χj-s are independent, we have

P (ξ = k) =
(

n

k

)
qk(1− q)n−k,

and the statement follows.

In order to have the majority voting be ”better” than the individual decisions,
we need only to guarantee that q ≥ p. The next statement yields a guideline along
this way.

Proposition 1. Let pnk = k/n (k = 0, 1, . . . , n). Then we have q = p, and
consequently Eξ = tp.

Proof. By Lemma 2 we have
Eξ = tq.

Thus we need only to show that q = p whenever pnk = k/n (k = 0, 1, . . . , n).
Indeed, using that a random variable of binomial distribution with parameters
(n, p) has expected value np, in this case we have

q =
n∑

k=0

pnk

(
n

k

)
pk(1− p)n−k =

n∑

k=0

k/n

(
n

k

)
pk(1− p)n−k = np/n = p.

Hence the statement follows.

As a trivial consequence we obtain the following statement.

Corollary 1. Suppose that for all k = 0, 1, . . . , n we have pnk ≥ k/n. Then
q ≥ p, and consequently Eξ ≥ tp.
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Theorem 1. Suppose that p ≥ 1/2 and for any n ≥ k1 > k2 ≥ 0 with k1+k2 = n
we have pnk1 +pnk2 ≥ 1(= (k1+k2)/n) and pnk1 ≥ k1/n; further, that pn n

2
≥ 1/2

if n is even. Then q ≥ p, and consequently Eξ ≥ tp.

Proof. One can easily check that for any k1, k2 as in the statement we have

pnk1

(
n

k1

)
pk1(1− p)n−k1 + pnk2

(
n

k2

)
pk2(1− p)n−k2 ≥

≥ k1

n

(
n

k1

)
pk1(1− p)n−k1 +

k2

n

(
n

k2

)
pk2(1− p)n−k2 .

This by Proposition 1 clearly implies the statement.

As a trivial consequence we obtain the following result of Kuncheva et al.

Corollary 2. Suppose that n is odd, p ≥ 1/2 and for all k = 0, 1, . . . , n we
have pnk = 1, if k > n/2,and pnk = 0 otherwise. Then q ≥ p, and consequently
Eξ ≥ tp.

Of particular interest is the value P (ξ = t), since this expresses the probabi-
lity that we make only ”good” decisions. In case of an individual decision, the
corresponding probability is pt. So we need to choose the probabilities pnk so
that P (ξ = t) ≥ pt. In fact we can characterize a much more general case. For
this purpose we need the following lemma, due to Gilat [4].

Lemma 3. For any integers t and l with t ≥ 1 and 1 ≤ l ≤ t the function

f(x) =
t∑

k=l

(
t

k

)
xk(1− x)t−k

is strictly monotone increasing on [0, 1].

Note that obviously, for any x ∈ [0, 1] we have

t∑

k=0

(
t

k

)
xk(1− x)t−k = 1.

As a simple consequence of Lemma 3 we obtain the following result. Recall
that the ηi-s (i = 1, . . . , n) are just ”individual” random variables, of binomial
distribution with parameters (t, p).

Theorem 2. Let t and l be integers with t ≥ 1 and 1 ≤ l ≤ t. Then P (ξ ≥ l) ≥
P (η1 ≥ l) if and only if q ≥ p, i.e. Eξ ≥ tp.

Proof. Let t and l be as given in the statement. Then we have

P (ξ ≥ l) =
t∑

k=l

(
t

k

)
qk(1− q)t−k
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and

P (η1 ≥ l) =
t∑

k=l

(
t

k

)
pk(1− p)t−k.

Thus by Lemma 3 we obtain that

P (ξ ≥ l) ≥ P (η1 ≥ l)

if and only if q ≥ p, and the theorem follows.

4 The deterministic case

Suppose that in each row of the above mentioned n× t table we have exactly r
ones. We keep the previous notation for the random variables χj (j = 1, . . . , t)
and ξ. Now we should choose the probabilities in a way that Eξ ≥ r.

Proposition 2. If pnk = k/n for all k = 0, 1, . . . , n then Eξ = r.

Proof. Denote by uj the number of ones in the j-th column. Then we have
Eχj = uj/n. Thus

Eξ =
t∑

j=1

Eχj =
t∑

j=1

uj/n = rn/n = r.

As a simple consequence we get that both Theorem 1 and Theorem 2 are
valid also in this case, with the obvious modifications.

4.1 Pattern of success

The concept of pattern of success and failure was introduced in [2]. We analyze
these notions in the generalized model. First we consider the pattern of success

in additive case where we would like to maximalize
t∑

j=1

pnuj . If pnk = k/n, then

the problem is solved concerning the Proposition 2. In general case the pattern
of success can be characterized by the following theorem.

Theorem 3. Let the probabilities pnk be arbitrary, up to pn0 = 0. Let k0 6= 0 be
an index such that pnk0/k0 ≥ pnk/k for all k = 1, . . . n, and suppose that k0 | tr
and k0 ≤ r. Then Eξ ≤ rpnk0/k0, and the maximum can be attained.

Proof. The statement follows by observing that in this way the ones in the table
gets the largest possible weights.

The multiplicative case for the pattern of success means to make only good

decisions. In other words, we consider the case when P (ξ = t) and
t∏

j=1

pnuj is

maximal. For pnk = k/n we have the following theorem.
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Theorem 4. Let pnk = k/n for all k = 0, 1, . . . , n and suppose that nr ≥ t.
Then P (ξ = t) is maximal for the tables in which |ui−uj | ≤ 1 for all 1 ≤ i, j ≤ t.
Here ui denotes the number of ones in the i-th column.

Proof. We have u1 + . . . + ut = nr, whence

t(Eχ1 + . . . + Eχt) = nr.

Thus if |ui − uj | ≥ 2, and say ui > uj , then (ui − 1)(uj + 1) > uiuj , and the
statement follows.

In general case we get the following result:

Theorem 5. Let the probabilities pnk be arbitrary, up to pn0 = 0. Let k0 6= 0 be
an index such that −log(pnk0)/k0 ≥ −logpnk/k for all k = 1, . . . n, and suppose
that k0 ≤ r. Then Eξ ≤ rpnk0/k0, and the maximum can be attained if t → ∞
while r/t remains constant.

Proof. The statement can be proved by applying the result of Theorem 3 for the

logarithm of
t∏

j=1

pnuj .

Same results can be proved for the concept of pattern of failure because it
is the dual version of pattern of success. For example, in additive general case

t∑
j=1

pnuj is minimal if we consider the index k0 6= 0 such that (1 − pnk0)/k0 ≥
(1− pnk)/k for all k = 1, . . . n.

4.2 Combinatorial (0,1)-matrices

If we consider the individual decisions η = (η1, η2, . . . , ηn) as an n-dimensional
random binary vector and execute η independently t times, we can collect the
outcomes into a matrix A of zeros and ones of size n× t. In this way we can get
the accuracy of individual algorithms from the sum of ones contained in each
row. We are interested in the sum of column vector of A in the case of known row
sum. We can check whether a given layout of this (0,1)-matrix A beside given
row sum exists or not by using Gale-Ryser theorem in [7],[6],[8]. Let the row
sum vector R = (r1, r2, . . . , rn) and the column sum vector S = (s1, s2, . . . , st)
be non-negative integral vectors. Denote by U(R,S) the set of all n× t matrices
A = [aij ] satisfying aij = 0 or 1 and

t∑

j=1

aij = ri and
n∑

i=1

aij = sj

for i = 1, .., n and j = 1, .., t. The vectors R and S satisfy the fundamental
equation

r1 + r2 + · · ·+ rn = s1 + s2 + · · ·+ st.
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Without loss of generality we can choose the ordering of the members of vectors
R and S so that

r1 ≥ r2 ≥ · · · ≥ rn and s1 ≥ s2 ≥ · · · ≥ st.

Then vectors R and S are said to be monotone. The existence of a (0,1)-matrix
in U(R,S) can be formulated in terms of conjugation and majorization of vectors
R and S. The conjugate of R = (r1, r2, . . . , rn) (where rk 6 t, (k = 1, 2, . . . , n))
is the non-negative integral vector R∗ = (r∗1 , r∗2 , . . . , r∗t ) where

r∗k =| {i : ri ≥ k, i = 1, 2, . . . , n} | .

We can show a geometric way to interpret the conjugate vector R∗. Consider an
array of n rows and t columns which has a layout that there are exactly ri ones
in the first position of row i, (i = 1, 2, . . . , n). Then R∗ = (r∗1 , r∗2 , . . . , r∗t ) is the
vector of column sums of the array.
Now let E = (e1, e2, . . . , en) and F = (f1, f2, . . . , fn) be two monotone, non
negative integral vectors. Then E is majorized by F (E ¹ F ) if all the partial
sums of E and F satisfy

k∑

i=1

ei 6
k∑

i=1

fi,

k = 1, 2, . . . , n, with equality for k = n.

Theorem 6. (Gale [7] and Ryser [8]) Let R = (r1, r2, . . . , rn) be non-negative
integral vector where ri 6 t (i = 1, 2, . . . , n) and S = (s1, s2, . . . , st) be monotone
non-negative integral vector. Then there exists an n× t (0,1)-matrix in U(R, S)
if and only if S ¹ R∗.

For equal accuracy p of each algorithm we got the following result.

Lemma 4. Let ri = r = pt for all i = 1, 2, . . . , n, then S ¹ R∗ is always
satisfied.

Proof. In the case ri = r = pt we get r1 + r2 + · · ·+ rn = s1 + s2 + · · ·+ st = nr.
Then we have r∗k = n for all k = 1, 2, . . . , n where rk 6 t, since there are exactly
r ones in each row so each r∗k (k = 1, 2, . . . , n) has the same cardinality for k ≤ r.
On the other hand si 6 n for all i = 1, 2, . . . , t because ones can be only in the
first n rows of the matrix. Then we have

s1 + s2 + · · ·+ sk ≤ r∗1 + r∗2 + · · ·+ r∗k = kn

for k = 1, 2, . . . , n so the condition S ¹ R∗ is completed.
In a special case where R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , st) are monotone
we can get the rearrangement of the matrix A where ri = r (i = 1, 2, . . . , n)
i.e. each row contains exactly r ones and the first r column sum is sj = n
(j = 1, 2, . . . , r), so equality holds in the assumption S ¹ R∗.
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Assume that we have different accuracies p1, p2, . . . , pn for the individual algo-
rithms. Then we have the following restrictions for these accuracies. Let A ∈
U(R, S), where R = (r1, r2, . . . , rn) = (tp1, tp2, . . . , tpn) is the row sum vector
that gives the individual accuracies. If we transpose the matrix A ∈ U(R, S)
then AT ∈ U(S, R) i.e. each entry of AT = [bij ] satisfies that bij = 0 or 1 and
r1 + r2 + · · ·+ rn = s1 + s2 + · · ·+ st also holds. Consequently the Gale-Ryser
theorem holds for AT ∈ U(S, R) as well.

5 Special illustrative game

We illustrate the results mentioned before with a game. Suppose that N players
play a game. Players can tell the truth with probability p or lie. Each player say
a number, if one says 1/N that means telling the truth, if one says a number xi

independently from the interval [−1/N,−1/(N − k)N ] that means telling a lie.
Let k mean the number of true answers, in this way N − k people tell lie. We
get the final decision by adding the numbers told by players. So we obtain the
final decision by evaluating the expression below:

N−k∑

i=1

xi +
k

N

If the value of this expression is positive then we make a good decision, other-
wise we make bad decision. We can calculate the distribution function for the
probability of good decision applying the result in [5] with some modifications.
We have

F

(
k − 1

N

)
=

G(N, k)

(N − k)!
(

N−k−1
(N−k)N

)N−k
,

where G(N, k) =
N−k∑
j=0

(−1)j
(
N−k

j

) [(
k−1
N − j(N−k−1)

(N−k)N

)+
]N−k

and (x)+ de-

notes max {x, 0}. Then we get that if k = N+1
3 i.e. approximately one third of

the players give the right answer then the probability of good final decision is
0.5 given by

F

(
k − 1

N

)
= F

(
N+1

3 − 1
N

)
= F

(
N − 2
3N

)
=

1
2
.

The majority vote accuracy of n independent classifiers with individual accuracy
p calculated in [2] is shown below in Table 1.

The accuracy of our decision system for the game illustrated in Table 2 is
above the individual accuracy in all cases.
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Table 1. System accuracy for classical majority voting scheme

n=3 n=5 n=7 n=9

p = 0.6 0.6480 0.6826 0.7102 0.7334

p = 0.7 0.7840 0.8369 0.8740 0.9012

p = 0.8 0.8960 0.9421 0.9667 0.9804

p = 0.9 0.9720 0.9914 0.9973 0.9991

Table 2. System accuracy of the generalized voting scheme

n=3 n=5 n=7 n=9

p = 0.6 0.8208 0.8390 0.8895 0.9247

p = 0.7 0.9163 0.9373 0.9658 0.9823

p = 0.8 0.9728 0.9850 0.9942 0.9980

p = 0.9 0.9963 0.9988 0.9997 0.9999

6 Medical imaging application

Detecting the optic disc/macula on the retinal images plays important role in
making diagnosis in the clinical protocol. We have organized more individual
OD/ macula detector algorithms into a voting system. In our approach, all of the
algorithms return with the center as a single pixel. We have combined the output
for each detector and considered the minimal bounding circles for all subgroups of
the candidates. The radius must be less than a clinically predetermined constant.
The circle with maximal number of candidates is chosen.

(a) outputs of OD detectors (b) outputs of macula de-
tectors

Fig. 1. Results of the different detecting algorithms

In this combined system with the above mentioned voting scheme we can
make a good decision even in the case when the bad candidates have majority
such as in the case illustrated in Fig.1. Bad decision is made only when the
bad candidates can be bounded by a circle with an appropriate radius. This
observation motivated to work out a theoretical model generalizing the majority
voting scheme.
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7 Conclusion

We worked out a new theoretical model that enables the investigation of majority
voting systems being more general than the simple majority voting scheme.
In our specific application better overall system accuracy is achieved than in
case of individual algorithm. Same results are expected for all image processing
problems where the algorithms vote with a single pixel or range as output. The
full characterization of the participating algorithms to achieve the best system
performance is still an open issue. The essential criterion for the selection of the
algorithms to be combined is that p > 1/2 for its accuracy.

Our plan is to discuss the dependent case in general, as well. For example,
it will be interesting to know how the accuracy of the individual algorithms and
the dependency influence the system accuracy. The pattern of success and failure
is a useful information in clinical systems since they characterize the expected
value of the system error and the boundary of the system accuracy.
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